Electronic Journal of Graph Theory and Applications

Metric dimension of fullerene graphs

Shehnaz Akhter, Rashid Farooq
School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan.
shehnazakhter36@yahoo.com, farook.ra@gmail.com

Abstract

A resolving set W is a set of vertices of a graph $G(V, E)$ such that for every pair of distinct vertices $u, v \in V(G)$, there exists a vertex $w \in W$ satisfying $d(u, w) \neq d(v, w)$. A resolving set with minimum number of vertices is called metric basis of G. The metric dimension of G, denoted by $\operatorname{dim}(G)$, is the minimum cardinality of a resolving set of G. In this paper, we consider (3,6)fullerene and $(4,6)$-fullerene graphs and compute the metric dimension for these fullerene graphs. We also give conjecture on the metric dimension of $(3,6)$-fullerene and $(4,6)$-fullerene graphs.

Keywords: resolving set, metric dimension, fullerene graph Mathematics Subject Classification : 05C12
DOI: 10.5614/ejgta.2019.7.1.7

1. Introduction

The metric dimension was initially studied by Slater [16] and Harary and Melter [7]. They characterized the metric dimension of trees. Metric dimension has several applications in robot navigation [9], chemistry [3], sonar [16] and combinatorical optimization [13]. Let G be a molecular graph, that is, a representation of the structural formula of a chemical compound in terms of graph theory. The vertices and edges of G correspond to atoms and chemical bonds, respectively. For $u, v \in V(G)$, the length of a shortest path from u to v is called the distance between u and v and is denoted by $d(u, v)$. A graph G is said to be k-connected if there does not exist a set of less than k vertices whose removal disconnects the graph G. A planar graph G is a graph that can be drawn in such a way that no two edges cross each other. A cubic graph G is a graph in which all vertices have degree 3 .

Received: 25 July 2017, Revised: 13 September 2018, Accepted: 28 December 2018.

A vertex w of G resolves a pair u, v of vertices if $d(w, u) \neq d(w, v)$. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ $\subset V(G)$. The metric representation of a vertex $v \in V(G)$ with respect to W is the k-tuple

$$
r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)
$$

If every pair of distinct vertices of G have a distinct metric representation then the ordered set W is called a resolving set of G. A resolving set of minimum cardinality is called the metric basis for G and this cardinality is the metric dimension of G, denoted by $\operatorname{dim}(G)$. If $\operatorname{dim}(G)=k$, then G is said to be k-dimensional. Several variations of metric dimension have been discussed in the literature, like resolving dominating sets [2], independent resolving sets [4], local metric sets [11], resolving partitions [5] and strong metric generators [13].

In 1985, Kroto et al. [8] discovered fullerene molecule and since then, scientists took a great interest in the fullerene graphs. A $(k, 6)$-fullerene graph is a 3 -connected cubic plane graph whose faces have sizes k and 6 . The only values of k for which a $(k, 6)$-fullerene graph exists are 3,4 and 5. A (5,6)-fullerene is an ordinary fullerene and constructed from pentagons and hexagons. Fowler et al. [6] discussed the mathematical properties of $(5,6)$-fullerene.

A (3, 6)-fullerene graph have attained attention due to the similarity of its structure with ordinary fullerenes. The Eulers formula implies that a (3, 6)-fullerene graph has exactly four faces of size 3 and $(n / 2)-2$ hexagons. If the triangles in $(3,6)$-fullerene have no common edge then it is called isolated triangular rules (ITR).

A $(4,6)$-fullerene graph is a mathematical model of a boron-nitrogen fullerene. The Eulers formula implies that a (4,6)-fullerene graph has exactly six square faces and $(n / 2)-4$ hexagons. If the six quadrangles in $(4,6)$-fullerene don't have common edge, then it is called isolated square rules (ISR).

Ashrafi et al. [1] calculated the topological indices of $(3,6)$ - and $(4,6)$-fullerene graphs. Koorepazan-Moftakhar et al. [10] find the automorphism group and fixing number of $(3,6)$ - and (4, 6)-fullerene graphs.

Siddiqui et al. $[14,15]$ calculated the metric dimension and partition dimension of Nanotubes. Rajan, et al. [12] calculated the metric dimension of enhanced hypercube networks. In this paper, we consider $(3,6)$-fullerene and $(4,6)$-fullerene graphs and compute their metric dimension. We also give conjecture on the metric dimension of $(3,6)$-fullerene and $(4,6)$-fullerene graphs.

2. Metric dimension of (3,6)-fullerene graphs

Let $F_{1}[n], F_{2}[n], F_{3}[n]$ and $F_{4}[n]$ are the graphs of (3,6)-fullerene depicted in Figures ??-4 with order $8 n+4,12 n+4,16 n-32$ and $24 n$, respectively. In this section, we find the metric dimension of $F_{1}[n], F_{2}[n], F_{3}[n]$ and $F_{4}[n]$ fullerene graphs.
Theorem 2.1. The metric dimension of fullerene graph $F_{1}[n]$ is 3 .
Proof. Let $\left\{z_{1}, z_{2}, z_{3}\right\}$ and $\left\{z_{4}, z_{5}, z_{6}\right\}$ be the vertex sets of outer triangles of $F_{1}[n]$. Let $W=$ $\left\{z_{2}, z_{3}, z_{5}\right\} \subset V\left(F_{1}[n]\right)$. We show that W is a resolving set of $F_{1}[n]$. For this we give the representation of vertices in $V\left(F_{1}[n]\right) \backslash W$ with respect to W. The representation of vertices z_{1}, z_{4} and z_{6} is given by:

$$
r\left(z_{1} \mid W\right)=(1,1,2), \quad r\left(z_{4} \mid W\right)=(2,2,1), \quad r\left(z_{6} \mid W\right)=(3,3,1)
$$

Figure 1. The Graph $F_{1}[n]$.

The representation of vertices of upper half of the fullerene graph $F_{1}[n]$ is given by:

$$
r\left(x_{i} \mid W\right)= \begin{cases}(i, i+1, i+1), & \text { if } 1 \leq i \leq 2 n-1 \\ (2 n, 2 n+1,2 n), & \text { if } i=2 n, \\ (4 n-i+1,4 n-i+2,4 n-i), & \text { if } 2 n+1 \leq i \leq 4 n-1\end{cases}
$$

The representation of vertices of lower half of the fullerene graph $F_{1}[n]$ is given by:

$$
r\left(y_{i} \mid W\right)= \begin{cases}(i+1, i, i+2), & \text { if } 1 \leq i \leq 2 n-1 \\ (2 n-1,2 n-2,2 n-1), & \text { if } i=2 n \\ (4 n-i+2,4 n-i+1,4 n-i+1), & \text { if } 2 n+1 \leq i \leq 4 n-1\end{cases}
$$

All the vertices of $F_{1}[n]$ have different representation with respect to W, this implies that W is a resolving set of $F_{1}[n]$. Thus the metric dimension of $\operatorname{dim}\left(F_{1}[n]\right) \leq 3$.

On the other hand, we show that $\operatorname{dim}\left(F_{1}[n]\right) \geq 3$ by proving that there is no resolving set W^{\prime} such that $\left|W^{\prime}\right|=2$. Let $A=\left\{z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}\right\}$ be the set of vertices of outer triangles of $F_{1}[n]$. Suppose on contrary that $\operatorname{dim}\left(F_{1}[n]\right)=2$ and W^{\prime} is a resolving set with $\left|W^{\prime}\right|=2$, then there are following cases:
Case 1. If both vertices of W^{\prime} are in upper half of the fullerene graph $F_{1}[n]$, then the representations of pair of vertices z_{4}, z_{6} and z_{1}, z_{3} are the same. Thus W^{\prime} is not a resolving set of $F_{1}[n]$.
Case 2. If both vertices of W^{\prime} are in lower half of the fullerene graph $F_{1}[n]$, then the representations of pair of vertices z_{4}, z_{5} and z_{1}, z_{2} are the same. Thus W^{\prime} is not a resolving set of $F_{1}[n]$.
Case 3. If one vertex of W^{\prime} is from $\left\{x_{1}, x_{2}, \cdots, x_{4 n-1}\right\}$ and other vertex is from $\left\{y_{1}, y_{2}, \cdots, y_{4 n-1}\right\}$, then the pair of vertices z_{1}, z_{5} or z_{2}, z_{6} have the same representation with respect to W^{\prime}. Thus W^{\prime} is not a resolving set of $F_{1}[n]$.
Case 4. If one vertex from upper half of fullerene graph $F_{1}[n]$ and one from the set of vertices A in W^{\prime}, then the representation of some vertices in $\left\{x_{1}, x_{2}, \cdots, x_{4 n-1}\right\}$ and $\left\{y_{1}, y_{2}, \cdots, y_{4 n-1}\right\}$ is the same. Therefore W^{\prime} is not a resolving set in this case.
Case 5. If one vertex from lower half of fullerene graph $F_{1}[n]$ and one from the set of vertices A in W^{\prime}, then the representation of some vertices in $\left\{x_{1}, x_{2}, \cdots, x_{4 n-1}\right\}$ and $\left\{y_{1}, y_{2}, \cdots, y_{4 n-1}\right\}$ is the same. Therefore W^{\prime} is not a resolving set in this case.
Case 6. If both vertices of W^{\prime} belongs to the set of vertices A, then we have the following subcases:

- If $W^{\prime}=\left\{z_{2}, z_{5}\right\}$ or $W^{\prime}=\left\{z_{2}, z_{6}\right\}$, then the representation of pair of vertices x_{1}, z_{1} or x_{1}, z_{3} are the same. Similarly if $W^{\prime}=\left\{z_{3}, z_{5}\right\}$ or $W^{\prime}=\left\{z_{3}, z_{6}\right\}$, then the representation of pair of vertices y_{1}, z_{1} or y_{1}, z_{2} are the same.
- All other possible subsets of A, then the representation of remanning pair of vertices of set A is the same.
Thus, in every subcase we get a contradiction.
From above cases, we conclude that there is no resolving set W^{\prime} containing two vertices of $F_{1}[n]$. Thus the metric dimension of $F_{1}[n]$ is 3 . This completes the proof.

Figure 2. The Graph $F_{2}[n]$.

Theorem 2.2. The metric dimension of fullerene graph $F_{2}[n]$ is 3 .
Proof. Let $\left\{a_{1}, a_{2}, a_{12}\right\}$ and $\left\{a_{6}, a_{7}, a_{11}\right\}$ be the vertex sets of outer triangles of $F_{2}[n]$. Let $W=$ $\left\{a_{1}, a_{2}, a_{11}\right\} \subset V\left(F_{2}[n]\right)$. We show that W is a resolving set of $F_{2}[n]$. For this purpose, we give the representation of vertices in $V\left(F_{2}[n]\right) \backslash W$ with respect to W. The representation of outer vertices of the fullerene graph $F_{2}[n]$ is given below:

$$
\begin{array}{lll}
r\left(a_{3} \mid W\right)=(2,1,3), & r\left(a_{4} \mid W\right)=(3,2,3), & r\left(a_{5} \mid W\right)=(4,3,2) \\
r\left(a_{6} \mid W\right)=(5,4,1), & r\left(a_{7} \mid W\right)=(4,3,1), & r\left(a_{8} \mid W\right)=(3,2,2) \\
r\left(a_{9} \mid W\right)=(2,3,3), & r\left(a_{10} \mid W\right)=(1,2,4), & r\left(a_{12} \mid W\right)=(1,1,5)
\end{array}
$$

The representation of vertices of upper half of the fullerene graph $F_{2}[n]$ is given below:

$$
r\left(x_{i} \mid W\right)= \begin{cases}(i+2, i+3, i+1), & \text { if } 1 \leq i \leq 2 n-2 \\ (2 n, 2 n+1,2 n), & \text { if } i=2 n-1 \\ (4 n-i-1,4 n-i, 4 n-i), & \text { if } 2 n \leq i \leq 4 n-2 \\ (2,3,5), & \text { if } i=4 n-3\end{cases}
$$

The representation of middle vertices of the fullerene graph $F_{2}[n]$ for $n=1$ is given below:

$$
r\left(y_{i} \mid W\right)= \begin{cases}(4 n-i, 4 n-i, i), & \text { if } i=2 n-11, \\ (4 n-i, 4 n-i, 4 n-i), & \text { if } i=4 n-2 .\end{cases}
$$

The representation of middle vertices of the fullerene graph $F_{2}[n]$ for $n \geq 2$ is given below:

$$
r\left(y_{i} \mid W\right)= \begin{cases}(4,5,1), & \text { if } i=1 \\ (i+3, i+3, i), & \text { if } 2 \leq i \leq 2 n-2 \\ (4 n-i, 4 n-i, i), & \text { if } 2 n-1 \leq i \leq 2 n \\ (4 n-i, 4 n-i, 4 n-i+1), & \text { if } 2 n+1 \leq i \leq 4 n-5 \\ (4 n-i, 4 n-i, 4 n-i+3), & \text { if } 4 n-4 \leq i \leq 4 n-2\end{cases}
$$

The representation of vertices of lower half of the fullerene graph $F_{2}[n]$ is given below:

$$
r\left(z_{i} \mid W\right)= \begin{cases}(5,4,3), & \text { if } i=1 \\ (i+3, i+3, i+2), & \text { if } 2 \leq i \leq 2 n-2 \\ (2 n+1,2 n+1,2 n+1), & \text { if } i=2 n-1 \\ (4 n-i, 4 n-i, 4 n-i+1), & \text { if } 2 n \leq i \leq 4 n-3\end{cases}
$$

However all pair of vertices can easily be resolved by the set W. Thus the set W is a resolving set of $F_{2}[n]$ and $\operatorname{dim}\left(F_{2}[n]\right) \leq 3$. Now, we show that $\operatorname{dim}\left(F_{2}[n]\right) \geq 3$ by showing that there is no resolving set W^{\prime} such that $\left|W^{\prime}\right|=2$. Let $A=\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{12}\right\}, B=\left\{x_{1}, x_{2}, \cdots, x_{4 n-3}\right\}$, $C=\left\{y_{1}, y_{2}, \cdots, y_{4 n-3}\right\}$ and $D=\left\{z_{1}, z_{2}, \cdots, z_{4 n-3}\right\}$ be the sets of vertices of $F_{2}[n]$. Suppose on contrary that $\operatorname{dim}\left(F_{2}[n]\right)=2$ and W^{\prime} is a resolving set with $\left|W^{\prime}\right|$. Then there are following possibilities:
Case 1. The pair of vertices a_{1}, a_{2} and a_{7}, a_{8} have the same distance from the vertices of set B, C and D. Then any subset of B, C and D is not a resolving set of $F_{2}[n]$.
Case 2. If both vertices of W^{\prime} are from set of vertices A, then some vertices of A have same representation. Therefore W^{\prime} is not a resolving set of $F_{2}[n]$.

Thus in every case we get a contradiction. Thus we conclude that there is no resolving set W^{\prime} containing two vertices of $F_{2}[n]$. Thus the metric dimension of $F_{2}[n]$ is 3 . This completes the proof.

Figure 3. The Graph $F_{3}[n]$.

Theorem 2.3. The metric dimension of fullerene graph $F_{3}[n]$ is 3 .

Proof. Let $\left\{z_{1}, z_{2}, z_{3}\right\}$ and $\left\{z_{4}, z_{5}, z_{6}\right\}$ be the vertex sets of outer triangles and $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ be the vertices of outer hexagonal of $F_{3}[n]$. Let $W=\left\{a_{5}, z_{2}, z_{5}\right\} \subset V\left(F_{3}[n]\right)$. We need to show that W is a resolving set of $F_{3}[n]$. For this purpose, first we give the representation of vertices in $V\left(F_{3}[n]\right) \backslash W$ with respect to W. The representation of outer vertices of fullerene graph $F_{3}[n]$ is given by:

$$
\begin{array}{ll}
r\left(a_{1} \mid W\right) & =(2,3,4), \\
r\left(a_{4} \mid W\right) & r\left(a_{2} \mid W\right)=(3,4,3), \quad r\left(a_{3} \mid W\right)=(2,5,2), \\
r\left(a_{6} \mid W\right)=(1,2,5) .
\end{array}
$$

The representation of vertices of outer triangles in $F_{3}[n]$ is given by:

$$
\begin{array}{ll}
r\left(z_{1} \mid W\right)=(2,1,6), & r\left(z_{3} \mid W\right)=(3,1,7), \\
r\left(z_{4} \mid W\right)=(3,6,1), & r\left(z_{6} \mid W\right)=(4,7,1) .
\end{array}
$$

The representation of vertices of upper half of the fullerene graph $F_{3}[n]$ is given by:

$$
r\left(x_{i} \mid W\right)= \begin{cases}(3,2,5), & \text { if } i=1 \\ (i+2, i+1, i+2), & \text { if } 2 \leq i \leq 2 n \\ (2 n+3,2 n+2,2 n+2), & \text { if } i=2 n+1 \\ (4 n-i+5,4 n-i+4,4 n-i+3), & \text { if } 2 n+2 \leq i \leq 4 n \\ (4,5,2), & \text { if } i=4 n+1\end{cases}
$$

The representation of middle vertices of the fullerene graph $F_{3}[n]$ for $n=1$ is given by:

$$
\begin{array}{ll}
r\left(b_{1} \mid W\right)=(4,1,5), & r\left(b_{2} \mid W\right)=(4,2,4), \quad r\left(b_{3} \mid W\right)=(5,3,3), \\
r\left(b_{4} \mid W\right)=(5,4,2), & r\left(b_{5} \mid W\right)=(5,5,1) .
\end{array}
$$

The representation of middle vertices of the fullerene graph $F_{3}[n]$ for $n \geq 2$ is given by:

$$
r\left(b_{i} \mid W\right)= \begin{cases}(4, i, i+5), & \text { if } i \in\{1,2\}, \\ (i+2, i, i+3), & \text { if } 3 \leq i \leq 2 n-1, \\ (i+2, i, 4 n-i+2), & \text { if } i \in\{2 n, 2 n+1\}, \\ (2 n+3,2 n+2,2 n), & \text { if } i=2 n+2, \\ (4 n-i+5,4 n-i+5,4 n-i+2), & \text { if } 2 n+3 \leq i \leq 4 n-1, \\ (5,4 n-i+7,4 n-i+2), & \text { if } i \in\{4 n, 4 n+1\}\end{cases}
$$

The representation of middle vertices of the fullerene graph $F_{3}[n]$ is given by:

$$
r\left(c_{i} \mid W\right)= \begin{cases}(i+1, i+1, i+5), & \text { if } i \in\{1,2\}, \\ (i+1, i+1, i+4), & \text { if } 3 \leq i \leq 2 n-1, \\ (i+1, i+1,4 n-i+3), & \text { if } i \in\{2 n, 2 n+1\}, \\ (2 n+2,2 n+3,2 n+1), & \text { if } i=2 n+2, \\ (4 n-i+4,4 n-i+6,4 n-i+3), & \text { if } 2 n+3 \leq i \leq 4 n-1, \\ (4 n-i+4,4 n-i+7,4 n-i+3), & \text { if } i \in\{4 n, 4 n+1\}\end{cases}
$$

The representation of vertices of lower half of the fullerene graph $F_{3}[n]$ is given by:

$$
r\left(y_{i} \mid W\right)= \begin{cases}(1,3,5), & \text { if } i=1 \\ (i, i+2, i+3), & \text { if } 2 \leq i \leq 2 n \\ (2 n+1,2 n+2,2 n+2), & \text { if } i=2 n+1 \\ (4 n-i+3,4 n-i+5,4 n-i+4), & \text { if } 2 n+2 \leq i \leq 4 n \\ (2,5,3), & \text { if } i=4 n+1\end{cases}
$$

Therefore the set W resolves all the vertices in $V\left(F_{3}[n]\right) \backslash W$. Thus $\operatorname{dim}\left(F_{3}[n]\right) \leq 3$. Now we show that $\operatorname{dim}\left(F_{3}[n]\right) \geq 3$. For this we show that there does not exists any resolving set W^{\prime} with two vertices. Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}, B=\left\{z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}\right\}, C=\left\{x_{1}, x_{2}, \cdots, x_{4 n+1}\right\}$, $D=\left\{b_{1}, b_{2}, \cdots, b_{4 n+1}\right\}, E=\left\{c_{1}, c_{2}, \cdots, c_{4 n+1}\right\}$ and $F=\left\{y_{1}, y_{2}, \cdots, y_{4 n+1}\right\}$ be the sets of vertices of $F_{3}[n]$. Then there are following cases:
Case 1. If both vertices of W^{\prime} are in the set of vertices C, then the vertices of A and D have the same representation. Therefore W^{\prime} is not a resolving set of $F_{3}[n]$.
Case 2. If both vertices of W^{\prime} are in the set of vertices D, then the vertices of B and C have the same representation. Therefore W^{\prime} is not a resolving set of $F_{3}[n]$.
Case 3. The vertices of set A have same distance from the vertices of B. Therefore the resolving set is not the subset of A or B.
Case 4. If both vertices of W^{\prime} are in the set of vertices F, then the vertices of A and E have the same representation. Therefore W^{\prime} is not a resolving set of $F_{3}[n]$.
Case 5. If both vertices of W^{\prime} are in the set of vertices E, then the vertices of B and F have the same representation. Therefore W^{\prime} is not a resolving set of $F_{3}[n]$.
Thus, in every case we get a contradiction. From above cases, we conclude that there is no resolving set W^{\prime} with exactly two vertices of $F_{3}[n]$. Thus the metric dimension of $F_{3}[n]$ is 3 . This completes the proof.

Figure 4. The Graph $F_{4}[n]$.

Theorem 2.4. The metric dimension of fullerene graph $F_{4}[n]$ is 3 .
Proof. Let $W=\left\{a_{3}, a_{7}, a_{8}\right\} \subset V\left(F_{4}[n]\right)$. We need to show that W is a resolving set of $F_{4}[n]$. First we give the representation of vertices of $F_{4}[n] \backslash W$ with respect to W.

$$
\begin{array}{lll}
r\left(a_{1} \mid W\right)=(2,4 n+2,4 n+2), & r\left(a_{2} \mid W\right)=(1,4 n+1,4 n+1), & r\left(a_{4} \mid W\right)=(1,4 n+1,4 n), \\
r\left(a_{5} \mid W\right)=(4 n+2,2,2), & r\left(a_{6} \mid W\right)=(4 n+1,1,1) . &
\end{array}
$$

The representation of vertices of upper half of the fullerene graph $F_{4}[n]$ is given below:

$$
r\left(x_{i} \mid W\right)= \begin{cases}(3,4 n+i, 4 n+i+1), & \text { if } i=1 \\ (i, 4 n-i+2,4 n-i+3), & \text { if } 2 \leq i \leq 4 n \\ (4 n+1,3,4), & \text { if } i=4 n+1\end{cases}
$$

The representation of middle vertices of the fullerene graph $F_{4}[n]$ is given below:

$$
\begin{array}{ll}
r\left(y_{i} \mid W\right)=(i, 4 n-i, 4 n-i+1), & 1 \leq i \leq 4 n-1 \\
r\left(z_{i} \mid W\right)=(i+1,4 n-i+1,4 n-i), & 1 \leq i \leq 4 n-1
\end{array}
$$

The representation of vertices of lower half of the fullerene graph $F_{4}[n]$ is given below:

$$
r\left(b_{i} \mid W\right)= \begin{cases}(3,4 n+2,4 n+1), & \text { if } i=1 \\ (i+1,4 n-i+3,4 n-i+2), & \text { if } 2 \leq i \leq 4 n \\ (4 n+2,3,3), & \text { if } i=4 n+1\end{cases}
$$

All vertices of $V\left(F_{4}[n]\right) \backslash W$ can be resolved with respect to W. Thus W is a resolving set of $F_{4}[n]$ and $\operatorname{dim}\left(F_{4}[n]\right) \leq 3$.

On the other hand, we show that $\operatorname{dim}\left(F_{4}[n]\right) \geq 3$ by proving that there is no resolving set W^{\prime} with cardinality 2 . Suppose on contrary that $\operatorname{dim}\left(F_{4}[n]\right)=2$ and W^{\prime} is a resolving set of $F_{4}[n]$ with $\left|W^{\prime}\right|=2$. Let $A=\left\{a_{1}, a_{2}, \cdot, a_{8}\right\}, B=\left\{x_{1}, x_{2}, \cdots, x_{4 n+1}\right\}, C=\left\{y_{1}, y_{2}, \cdots, y_{4 n+1}\right\}$, $D=\left\{z_{1}, z_{2}, \cdots, z_{4 n+1}\right\}$ and $E=\left\{b_{1}, b_{2}, \cdots, b_{4 n+1}\right\}$ be the sets of vertices of $F_{4}[n]$. The pairs of vertices a_{1}, a_{3} and a_{5}, a_{7} have the same distance with the vertices of set B. The pairs of vertices a_{2}, a_{4} and a_{6}, a_{8} have the same distance with the vertices of set C. The pairs of vertices a_{2}, a_{3} and a_{6}, a_{7} have the same distance with the vertices of set D. Similarly, The pairs of vertices a_{1}, a_{4} and a_{5}, a_{8} have the same distance with the vertices of set C. Therefore, there is no a resolving set W^{\prime} with cardinality 2 of $F_{4}[n]$. Thus $\operatorname{dim}\left(F_{4}[n]\right)=3$. This completes the proof.

3. Metric dimension of (4,6)-fullerene graphs

Suppose $G_{1}[n], G_{2}[n]$ and $G_{3}[n]$ are depicted in Figures 5-7 with order $8 n, 8 n+4$ and $12 n+12$ respectively. In this subsection we find the metric dimension of $G_{1}[n], G_{2}[n]$ and $G_{3}[n]$ fullerene graphs.

Theorem 3.1. The metric dimension of fullerene graph $G_{1}[n]$ is 3 for $n \geq 2$.

Figure 5. The Graph $G_{1}[n]$.

Proof. For a set $W=\left\{x_{1}, y_{1}, x_{4 n}\right\} \subset V\left(G_{1}[n]\right)$, we need to show that W is a resolving set of $G_{1}[n]$. First we show that $\operatorname{dim}\left(G_{1}[n]\right) \neq 2$. There are following cases:
Case 1. If both vertices are in the upper half of $G_{1}[n]$ and the resolving set is $W^{\prime}=\left\{x_{s}, x_{t}\right\}$, $1 \leq s \leq t \leq 4 n$. Then the representations of x_{i} and $y_{i+1}, 2 n+1 \leq i \leq 4 n-1$ are the same. Similarly the representations of x_{i+1} and $y_{i}, 2 \leq i \leq 2 n-1$ are the same. Therefore the resolving set of $G_{1}[n]$ is not a subset of $\left\{x_{1}, x_{2}, \cdots, x_{4 n}\right\}$.
Case 2. If both vertices are in the lower half of $G_{1}[n]$ and the resolving set is $W^{\prime}=\left\{y_{s}, y_{t}\right\}$, $1 \leq s \leq t \leq 4 n$. Then the representations of x_{i+1} and $y_{i}, 2 n+1 \leq i \leq 4 n-1$ are the same. Similarly the representations of x_{i} and $y_{i+1}, 2 \leq i \leq 2 n-1$ are the same. Therefore the resolving set is not a subset of $\left\{y_{1}, y_{2}, \cdots, y_{4 n}\right\}$.
Case 3. If one vertex belongs to the set of vertices $\left\{x_{1}, x_{2}, \cdots, x_{4 n}\right\}$ and other is in the set of vertices $\left\{y_{1}, y_{2}, \cdots, y_{4 n}\right\}$. Without loss of generality, we can suppose that the resolving set is $W^{\prime}=\left\{x_{s}, y_{t}\right\}, 1 \leq s \leq 4 n$ and $1 \leq t \leq 4 n$.
If $s=t$, then the representation of pairs of vertices x_{s+1}, x_{s-1} and y_{t-1}, y_{t+1} are the same.
If $s<t$, then the representation of $x_{i}, i>s$ and $y_{j}, j<4 n$ are the same.
If $s>t$, then the representation of $x_{i}, i<4 n$ and $y_{j}, j>t$ are the same.
Thus, in every subcase we get a contradiction. From above cases, we conclude that there is no resolving set W^{\prime} with $\left|W^{\prime}\right|=2$. Thus $\operatorname{dim}\left(G_{1}[n]\right) \geq 3$. Now we show that $\operatorname{dim}\left(G_{1}[n] \leq 3\right.$. For this purpose we give the representation of the vertices in $V\left(G_{1}[n]\right) \backslash W$ with respect to W. The representation of vertices of upper half of the fullerene graph $G_{1}[n]$ is given below:

$$
r\left(x_{i} \mid W\right)= \begin{cases}(i-1, i, i), & \text { if } 2 \leq i \leq 2 n \\ (4 n-i+1,4 n-i+2,4 n-i), & \text { if } 2 n+1 \leq i \leq 4 n-1\end{cases}
$$

The representation of vertices of lower half of the fullerene graph $G_{1}[n]$ is given below:

$$
r\left(y_{i} \mid W\right)= \begin{cases}(i, i-1, i+1), & \text { if } 2 \leq i \leq 2 n \\ (4 n-i+2,4 n-i+1,4 n-i+1), & \text { if } 2 n+1 \leq i \leq 4 n\end{cases}
$$

This implies that all vertices of $V\left(G_{1}[n]\right) \backslash W$ can be resolved with respect to W. Thus W is a resolving set of $G_{1}[n]$. Therefore $\operatorname{dim}\left(G_{1}[n]\right)=3$ for $n \geq 2$. This completes the proof.

Figure 6. The Graph $G_{2}[n]$.
Theorem 3.2. The metric dimension of fullerene graph $G_{2}[n]$ is 3.
Proof. Let $W=\left\{x_{1}, y_{1}, x_{4 n+2}\right\} \subset V\left(G_{2}[n]\right)$. We show that W is a resolving set of $G_{2}[n]$. First we give the representation of vertices in $V\left(G_{2}[n]\right) \backslash W$ with respect to W. The representation of vertices of upper half of the fullerene graph $G_{2}[n]$ is given by:

$$
r\left(x_{i} \mid W\right)= \begin{cases}(i-1, i, i), & \text { if } 2 \leq i \leq 2 n+1 \\ (4 n-i+3,4 n-i+4,4 n-i+2), & \text { if } 2 n+2 \leq i \leq 4 n+1\end{cases}
$$

The representation of vertices of lower half of the fullerene graph $G_{2}[n]$ is given by:

$$
r\left(y_{i} \mid W\right)= \begin{cases}(i, i-1, i+1), & \text { if } 2 \leq i \leq 2 n+1 \\ (4 n-i+4,4 n-i+3,4 n-i+3), & \text { if } 2 n+2 \leq i \leq 4 n+2\end{cases}
$$

This implies that W is a resolving set of $G_{2}[n]$ and $\operatorname{dim}\left(G_{2}[n]\right) \leq 3$. Now we show that $\operatorname{dim}\left(G_{2}[n]\right) \geq 3$ by proving that W^{\prime} is a resolving set of $G_{2}[n]$ with $\left|W^{\prime}\right|=2$. There are following possibilities:
Case 1. If both vertices are in the upper half of $G_{2}[n]$ and the resolving set is $W^{\prime}=\left\{x_{s}, x_{t}\right\}$, $1 \leq s \leq t \leq 4 n$. Then the representation of x_{i} and $y_{i+1}, 2 n+2 \leq i \leq 4 n-1$ is the same. Similarly the representation of x_{i+1} and $y_{i}, 2 \leq i \leq 2 n$ is the same. Therefore the resolving set of $G_{2}[n]$ is not a subset of $\left\{x_{1}, x_{2}, \cdots, x_{4 n}\right\}$.
Case 2. If both vertices are in the lower half of $G_{1}[n]$ and the resolving set is $W^{\prime}=\left\{y_{s}, y_{t}\right\}$, $1 \leq s \leq t \leq 4 n$. Then the representation of x_{i+1} and $y_{i}, 2 n+2 \leq i \leq 4 n-1$ is the same. Similarly the representation of x_{i} and $y_{i+1}, 2 \leq i \leq 2 n$ is the same. Therefore the resolving set of $G_{2}[n]$ is not a subset of $\left\{y_{1}, y_{2}, \cdots, y_{4 n}\right\}$.
Case 3. If one vertex belongs to the set of vertices $\left\{x_{1}, x_{2}, \cdots, x_{4 n}\right\}$ and other is in the set of vertices $\left\{y_{1}, y_{2}, \cdots, y_{4 n}\right\}$. Without loss of generality, we can suppose that the resolving set of $G_{2}[n]$ is $W^{\prime}=\left\{x_{s}, y_{t}\right\}, 1 \leq s \leq 4 n$ and $1 \leq t \leq 4 n$.
If $s=t$, then the representation of pair of vertices x_{s+1}, x_{s-1} and y_{t-1}, y_{t+1} is the same.
If $s<t$, then the representation of $x_{i}, i>s$ and $y_{j}, j<4 n$ is the same.
If $s>t$, then the representation of $x_{i}, i<4 n$ and $y_{j}, j>t$ is the same.
From above cases, we conclude that there is no resolving set W^{\prime} for $G_{2}[n]$ with $\left|W^{\prime}\right|=2$. Thus $\operatorname{dim}\left(G_{2}[n]\right)=3$. This completes the proof.

Figure 7. The Graph $G_{3}[n]$.
Theorem 3.3. The metric dimension of fullerene graph $G_{3}[n]$ is 3 .
Proof. Let $\left\{x_{1}, y_{1}, a_{1}, b_{1}, c_{1}, d_{1}\right\}$ be the set of outer vertices of $G_{3}[n]$. The vertex x_{1} and y_{1} have the same distance from other vertices and a_{1} and b_{1} have the same distance from other vertices of $G_{3}[n]$. Similarly c_{1} and d_{1} have the same distance from other vertices of $G_{3}[n]$. Thus any metric basis will contain either x_{1} or y_{1}, a_{1} or b_{1} and c_{1} or d_{1}. There are 6 boundary vertices in $G_{3}[n]$. Hence any metric basis of $G_{3}[n]$ should contain at least 3 nodes of $G_{3}[n]$. Let $W=\left\{x_{1}, a_{1}, c_{1}\right\} \subset$ $V\left(G_{3}[n]\right)$, we need to show that W is a resolving set of $G_{3}[n]$. Then the representation of vertices in $V\left(G_{3}[n]\right) \backslash W$ with respect to W for $n \geq 2$ is given by:

$$
\begin{array}{lll}
r\left(x_{i} \mid W\right)=(i-1, i+1, i+1), & \text { if } \quad 2 \leq i \leq 2 n+2, \\
r\left(y_{i} \mid W\right)=(i, i+2, i), & \text { if } 1 \leq i \leq 2 n+2, \\
r\left(a_{i} \mid W\right)=(i+1, i-1, i+1), & \text { if } \quad 2 \leq i \leq 2 n+2, \\
r\left(b_{i} \mid W\right)=(i, i, i+2), & \text { if } \quad 1 \leq i \leq 2 n+2, \\
r\left(c_{i} \mid W\right)=(i+1, i+1, i-1), & \text { if } \quad 2 \leq i \leq 2 n+2, \\
r\left(d_{i} \mid W\right)=(i+2, i, i), & \text { if } \quad 1 \leq i \leq 2 n+2 .
\end{array}
$$

The representation of vertices of $V\left(G_{3}[n]\right) \backslash W$ with respect to W for $n=1$ is given by:

$$
\begin{aligned}
& r\left(x_{i} \mid W\right)= \begin{cases}(i-1, i+1, i+1), & \text { if } 2 \leq i \leq 2 n+1, \\
(i-1, i, i), & \text { if } i=2 n+2 .\end{cases} \\
& r\left(y_{i} \mid W\right)= \begin{cases}(i, i+2, i), & \text { if } 1 \leq i \leq 2 n+1, \\
(i, i+1, i), & \text { if } i=2 n+2 .\end{cases} \\
& r\left(a_{i} \mid W\right)=(i+1, i-1, i+1), \quad \text { if } \quad 2 \leq i \leq 2 n+2, \\
& r\left(b_{i} \mid W\right)=(i, i, i+2), \quad \text { if } \quad 1 \leq i \leq 2 n+2 \text {, } \\
& r\left(c_{i} \mid W\right)=(i+1, i+1, i-1), \quad \text { if } \quad 2 \leq i \leq 2 n+2 \text {, } \\
& r\left(d_{i} \mid W\right)=(i+2, i, i), \quad \text { if } \quad 1 \leq i \leq 2 n+2 .
\end{aligned}
$$

Hence there are no two vertices having the same representations. Thus $W=\left\{x_{1}, c_{1}, a_{1}\right\}$ is a resolving set of $G_{3}[n]$. Therefore $\operatorname{dim}\left(G_{3}[n]\right)=3$. This completes the proof.

4. Conclusion and open problems

In this paper, we considered some $(3,6)$-fullerene and $(4,6)$-fullerene graphs and computed the metric dimension for these fullerene graphs. All $(3,6)$-fullerene and $(4,6)$-fullerene graphs considered in this paper have metric dimension 3. It will be interesting to prove or disprove the following statement:
"All (3, 6)-fullerene and (4, 6)-fullerene graphs have metric dimension 3."

Acknowledgement

This research is supported by the Higher Education Commission of Pakistan under grant No. 20-3067/NRPU /R\&D/HEC/12

References

[1] A.R. Ashrafi and Z. Mehranian, Topological study of $(3,6)$ - and $(4,6)$-fullerenes, Topological Modelling of Nanostructures and Extended Systems, Springer Netherlands, (2013), 487-510.
[2] R.C. Brigham, G. Chartrand, R.D. Dutton and P. Zhang, Resolving domination in graphs, Math. Bohem. 128 (1) (2003), 25-36.
[3] G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), 99-113.
[4] G. Chartrand, C. Poisson and P. Zhang, Resolvability and the upper dimension of graphs, Comput. Math. Appl. 39 (2000), 19-28.
[5] G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph, Aequationes Math. 59 (2000), 45-54.
[6] P.W. Fowler and D.E. Manolopoulos, An Atlas of Fullerenes, Oxford Univ Press Oxford, (1995).
[7] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976), 191195.
[8] H.W. Kroto, J.R. Heath, S.C. OBrien, R.F. Curl and R.E. Smalley, C_{60} : buckminsterfullerene, Nature 318 (1985), 162-163.
[9] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (3) (1996), 217-229.
[10] F. Koorepazan-Moftakhar, A.R. Ashrafi and Z. Mehranian, Automorphism group and fixing number of (3, 6)- and (4, 6)-fullerene graphs, Electron. Notes Discrete Math. 45 (2014), 113-120.
[11] F. Okamoto, B. Phinezyn and P. Zhang, The local metric dimension of a graph, Math. Bohem. 135 (3) (2010), 239-255.
[12] B. Rajan, I. Rajasingh, M.C. Monica and P. Manuel, Metric dimension of enhanced hypercube networks, J. Combin. Math. Combin. Comput. 67 (2008), 5-15.
[13] A. Sebö and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2) (2004), 383-393.
[14] H.M.A. Siddiqui and M. Imran, Computation of metric dimension and partition dimension of Nanotubes, Journal of Computational and Theoretical Nanoscience 12 (2) (2015), 199-203.
[15] H.M.A. Siddiqui and M. Imran, Computing metric and partition dimension of 2-Dimensional lattices of certain Nanotubes, Journal of Computational and Theoretical Nanoscience 11 (12) (2014), 2419-2423.
[16] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975), 549-559.

