

Electronic Journal of Graph Theory and Applications

Metric dimension of fullerene graphs

Shehnaz Akhter, Rashid Farooq

School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan.

shehnazakhter36@yahoo.com, farook.ra@gmail.com

Abstract

A resolving set W is a set of vertices of a graph G(V, E) such that for every pair of distinct vertices $u, v \in V(G)$, there exists a vertex $w \in W$ satisfying $d(u, w) \neq d(v, w)$. A resolving set with minimum number of vertices is called metric basis of G. The metric dimension of G, denoted by $\dim(G)$, is the minimum cardinality of a resolving set of G. In this paper, we consider (3, 6)fullerene and (4, 6)-fullerene graphs and compute the metric dimension for these fullerene graphs. We also give conjecture on the metric dimension of (3, 6)-fullerene and (4, 6)-fullerene graphs.

Keywords: resolving set, metric dimension, fullerene graph Mathematics Subject Classification : 05C12 DOI: 10.5614/ejgta.2019.7.1.7

1. Introduction

The metric dimension was initially studied by Slater [16] and Harary and Melter [7]. They characterized the metric dimension of trees. Metric dimension has several applications in robot navigation [9], chemistry [3], sonar [16] and combinatorical optimization [13]. Let G be a molecular graph, that is, a representation of the structural formula of a chemical compound in terms of graph theory. The vertices and edges of G correspond to atoms and chemical bonds, respectively. For $u, v \in V(G)$, the length of a shortest path from u to v is called the *distance* between u and v and is denoted by d(u, v). A graph G is said to be k-connected if there does not exist a set of less than k vertices whose removal disconnects the graph G. A planar graph G is a graph that can be drawn in such a way that no two edges cross each other. A cubic graph G is a graph in which all vertices have degree 3.

Received: 25 July 2017, Revised: 13 September 2018, Accepted: 28 December 2018.

A vertex w of G resolves a pair u, v of vertices if $d(w, u) \neq d(w, v)$. Let $W = \{w_1, w_2, \dots, w_k\} \subset V(G)$. The metric representation of a vertex $v \in V(G)$ with respect to W is the k-tuple

$$r(v|W) = (d(v, w_1), d(v, w_2), \dots, d(v, w_k)).$$

If every pair of distinct vertices of G have a distinct metric representation then the ordered set W is called a *resolving set* of G. A resolving set of minimum cardinality is called the *metric basis* for G and this cardinality is the *metric dimension* of G, denoted by $\dim(G)$. If $\dim(G) = k$, then G is said to be k-dimensional. Several variations of metric dimension have been discussed in the literature, like resolving dominating sets [2], independent resolving sets [4], local metric sets [11], resolving partitions [5] and strong metric generators [13].

In 1985, Kroto et al. [8] discovered fullerene molecule and since then, scientists took a great interest in the fullerene graphs. A (k, 6)-fullerene graph is a 3-connected cubic plane graph whose faces have sizes k and 6. The only values of k for which a (k, 6)-fullerene graph exists are 3, 4 and 5. A (5, 6)-fullerene is an ordinary fullerene and constructed from pentagons and hexagons. Fowler et al. [6] discussed the mathematical properties of (5, 6)-fullerene.

A (3, 6)-fullerene graph have attained attention due to the similarity of its structure with ordinary fullerenes. The Eulers formula implies that a (3, 6)-fullerene graph has exactly four faces of size 3 and (n/2) - 2 hexagons. If the triangles in (3, 6)-fullerene have no common edge then it is called isolated triangular rules (ITR).

A (4, 6)-fullerene graph is a mathematical model of a boron-nitrogen fullerene. The Eulers formula implies that a (4, 6)-fullerene graph has exactly six square faces and (n/2) - 4 hexagons. If the six quadrangles in (4, 6)-fullerene don't have common edge, then it is called isolated square rules (ISR).

Ashrafi et al. [1] calculated the topological indices of (3, 6)- and (4, 6)-fullerene graphs. Koorepazan-Moftakhar et al. [10] find the automorphism group and fixing number of (3, 6)- and (4, 6)-fullerene graphs.

Siddiqui et al. [14, 15] calculated the metric dimension and partition dimension of Nanotubes. Rajan, et al. [12] calculated the metric dimension of enhanced hypercube networks. In this paper, we consider (3, 6)-fullerene and (4, 6)-fullerene graphs and compute their metric dimension. We also give conjecture on the metric dimension of (3, 6)-fullerene and (4, 6)-fullerene graphs.

2. Metric dimension of (3,6)-fullerene graphs

Let $F_1[n]$, $F_2[n]$, $F_3[n]$ and $F_4[n]$ are the graphs of (3, 6)-fullerene depicted in Figures ??-4 with order 8n + 4, 12n + 4, 16n - 32 and 24n, respectively. In this section, we find the metric dimension of $F_1[n]$, $F_2[n]$, $F_3[n]$ and $F_4[n]$ fullerene graphs.

Theorem 2.1. The metric dimension of fullerene graph $F_1[n]$ is 3.

Proof. Let $\{z_1, z_2, z_3\}$ and $\{z_4, z_5, z_6\}$ be the vertex sets of outer triangles of $F_1[n]$. Let $W = \{z_2, z_3, z_5\} \subset V(F_1[n])$. We show that W is a resolving set of $F_1[n]$. For this we give the representation of vertices in $V(F_1[n]) \setminus W$ with respect to W. The representation of vertices z_1, z_4 and z_6 is given by:

$$r(z_1|W) = (1, 1, 2), \quad r(z_4|W) = (2, 2, 1), \quad r(z_6|W) = (3, 3, 1).$$

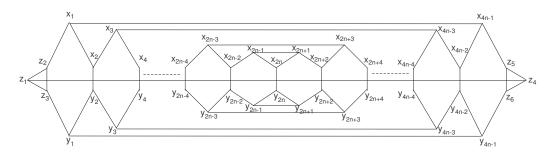


Figure 1. The Graph $F_1[n]$.

The representation of vertices of upper half of the fullerene graph $F_1[n]$ is given by:

$$r(x_i|W) = \begin{cases} (i, i+1, i+1), & \text{if } 1 \leq i \leq 2n-1, \\ (2n, 2n+1, 2n), & \text{if } i = 2n, \\ (4n-i+1, 4n-i+2, 4n-i), & \text{if } 2n+1 \leq i \leq 4n-1. \end{cases}$$

The representation of vertices of lower half of the fullerene graph $F_1[n]$ is given by:

$$r(y_i|W) = \begin{cases} (i+1,i,i+2), & \text{if } 1 \le i \le 2n-1, \\ (2n-1,2n-2,2n-1), & \text{if } i = 2n, \\ (4n-i+2,4n-i+1,4n-i+1), & \text{if } 2n+1 \le i \le 4n-1. \end{cases}$$

All the vertices of $F_1[n]$ have different representation with respect to W, this implies that W is a resolving set of $F_1[n]$. Thus the metric dimension of $\dim(F_1[n]) \leq 3$.

On the other hand, we show that $\dim(F_1[n]) \ge 3$ by proving that there is no resolving set W' such that |W'| = 2. Let $A = \{z_1, z_2, z_3, z_4, z_5, z_6\}$ be the set of vertices of outer triangles of $F_1[n]$. Suppose on contrary that $\dim(F_1[n]) = 2$ and W' is a resolving set with |W'| = 2, then there are following cases:

Case 1. If both vertices of W' are in upper half of the fullerene graph $F_1[n]$, then the representations of pair of vertices z_4 , z_6 and z_1 , z_3 are the same. Thus W' is not a resolving set of $F_1[n]$.

Case 2. If both vertices of W' are in lower half of the fullerene graph $F_1[n]$, then the representations of pair of vertices z_4, z_5 and z_1, z_2 are the same. Thus W' is not a resolving set of $F_1[n]$.

Case 3. If one vertex of W' is from $\{x_1, x_2, \dots, x_{4n-1}\}$ and other vertex is from $\{y_1, y_2, \dots, y_{4n-1}\}$, then the pair of vertices z_1, z_5 or z_2, z_6 have the same representation with respect to W'. Thus W' is not a resolving set of $F_1[n]$.

Case 4. If one vertex from upper half of fullerene graph $F_1[n]$ and one from the set of vertices A in W', then the representation of some vertices in $\{x_1, x_2, \dots, x_{4n-1}\}$ and $\{y_1, y_2, \dots, y_{4n-1}\}$ is the same. Therefore W' is not a resolving set in this case.

Case 5. If one vertex from lower half of fullerene graph $F_1[n]$ and one from the set of vertices A in W', then the representation of some vertices in $\{x_1, x_2, \dots, x_{4n-1}\}$ and $\{y_1, y_2, \dots, y_{4n-1}\}$ is the same. Therefore W' is not a resolving set in this case.

Case 6. If both vertices of W' belongs to the set of vertices A, then we have the following subcases:

• If $W' = \{z_2, z_5\}$ or $W' = \{z_2, z_6\}$, then the representation of pair of vertices x_1, z_1 or x_1, z_3 are the same. Similarly if $W' = \{z_3, z_5\}$ or $W' = \{z_3, z_6\}$, then the representation of pair of vertices y_1, z_1 or y_1, z_2 are the same.

• All other possible subsets of A, then the representation of remanning pair of vertices of set A is the same.

Thus, in every subcase we get a contradiction.

From above cases, we conclude that there is no resolving set W' containing two vertices of $F_1[n]$. Thus the metric dimension of $F_1[n]$ is 3. This completes the proof.

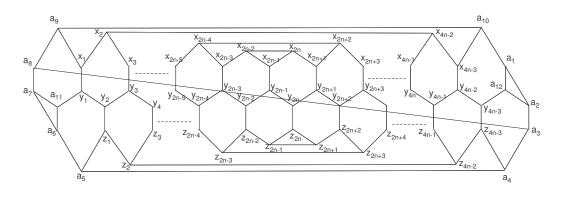


Figure 2. The Graph $F_2[n]$.

Theorem 2.2. The metric dimension of fullerene graph $F_2[n]$ is 3.

Proof. Let $\{a_1, a_2, a_{12}\}$ and $\{a_6, a_7, a_{11}\}$ be the vertex sets of outer triangles of $F_2[n]$. Let $W = \{a_1, a_2, a_{11}\} \subset V(F_2[n])$. We show that W is a resolving set of $F_2[n]$. For this purpose, we give the representation of vertices in $V(F_2[n]) \setminus W$ with respect to W. The representation of outer vertices of the fullerene graph $F_2[n]$ is given below:

$$\begin{aligned} r(a_3|W) &= (2,1,3), \quad r(a_4|W) = (3,2,3), \quad r(a_5|W) = (4,3,2), \\ r(a_6|W) &= (5,4,1), \quad r(a_7|W) = (4,3,1), \quad r(a_8|W) = (3,2,2), \\ r(a_9|W) &= (2,3,3), \quad r(a_{10}|W) = (1,2,4), \quad r(a_{12}|W) = (1,1,5). \end{aligned}$$

The representation of vertices of upper half of the fullerene graph $F_2[n]$ is given below:

$$r(x_i|W) = \begin{cases} (i+2,i+3,i+1), & \text{if } 1 \le i \le 2n-2, \\ (2n,2n+1,2n), & \text{if } i = 2n-1, \\ (4n-i-1,4n-i,4n-i), & \text{if } 2n \le i \le 4n-2, \\ (2,3,5), & \text{if } i = 4n-3. \end{cases}$$

The representation of middle vertices of the fullerene graph $F_2[n]$ for n = 1 is given below:

$$r(y_i|W) = \begin{cases} (4n-i, 4n-i, i), & \text{if } i = 2n-11, \\ (4n-i, 4n-i, 4n-i), & \text{if } i = 4n-2. \end{cases}$$

The representation of middle vertices of the fullerene graph $F_2[n]$ for $n \ge 2$ is given below:

$$r(y_i|W) = \begin{cases} (4,5,1), & \text{if } i = 1, \\ (i+3,i+3,i), & \text{if } 2 \le i \le 2n-2, \\ (4n-i,4n-i,i), & \text{if } 2n-1 \le i \le 2n, \\ (4n-i,4n-i,4n-i+1), & \text{if } 2n+1 \le i \le 4n-5, \\ (4n-i,4n-i,4n-i+3), & \text{if } 4n-4 \le i \le 4n-2. \end{cases}$$

The representation of vertices of lower half of the fullerene graph $F_2[n]$ is given below:

$$r(z_i|W) = \begin{cases} (5,4,3), & \text{if } i = 1, \\ (i+3,i+3,i+2), & \text{if } 2 \le i \le 2n-2, \\ (2n+1,2n+1,2n+1), & \text{if } i = 2n-1, \\ (4n-i,4n-i,4n-i+1), & \text{if } 2n \le i \le 4n-3. \end{cases}$$

However all pair of vertices can easily be resolved by the set W. Thus the set W is a resolving set of $F_2[n]$ and $\dim(F_2[n]) \leq 3$. Now, we show that $\dim(F_2[n]) \geq 3$ by showing that there is no resolving set W' such that |W'| = 2. Let $A = \{a_1, a_2, a_3, \dots, a_{12}\}, B = \{x_1, x_2, \dots, x_{4n-3}\}, C = \{y_1, y_2, \dots, y_{4n-3}\}$ and $D = \{z_1, z_2, \dots, z_{4n-3}\}$ be the sets of vertices of $F_2[n]$. Suppose on contrary that $\dim(F_2[n]) = 2$ and W' is a resolving set with |W'|. Then there are following possibilities:

Case 1. The pair of vertices a_1, a_2 and a_7, a_8 have the same distance from the vertices of set B, C and D. Then any subset of B, C and D is not a resolving set of $F_2[n]$.

Case 2. If both vertices of W' are from set of vertices A, then some vertices of A have same representation. Therefore W' is not a resolving set of $F_2[n]$.

Thus in every case we get a contradiction. Thus we conclude that there is no resolving set W' containing two vertices of $F_2[n]$. Thus the metric dimension of $F_2[n]$ is 3. This completes the proof.

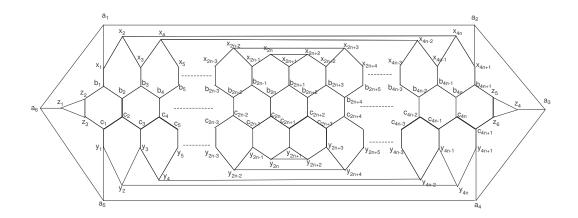


Figure 3. The Graph $F_3[n]$.

Theorem 2.3. The metric dimension of fullerene graph $F_3[n]$ is 3.

Proof. Let $\{z_1, z_2, z_3\}$ and $\{z_4, z_5, z_6\}$ be the vertex sets of outer triangles and $\{a_1, a_2, a_3, a_4, a_5, a_6\}$ be the vertices of outer hexagonal of $F_3[n]$. Let $W = \{a_5, z_2, z_5\} \subset V(F_3[n])$. We need to show that W is a resolving set of $F_3[n]$. For this purpose, first we give the representation of vertices in $V(F_3[n]) \setminus W$ with respect to W. The representation of outer vertices of fullerene graph $F_3[n]$ is given by:

$$r(a_1|W) = (2,3,4), \quad r(a_2|W) = (3,4,3), \quad r(a_3|W) = (2,5,2),$$

 $r(a_4|W) = (1,4,3), \quad r(a_6|W) = (1,2,5).$

The representation of vertices of outer triangles in $F_3[n]$ is given by:

$$r(z_1|W) = (2, 1, 6), \quad r(z_3|W) = (3, 1, 7), r(z_4|W) = (3, 6, 1), \quad r(z_6|W) = (4, 7, 1).$$

The representation of vertices of upper half of the fullerene graph $F_3[n]$ is given by:

$$r(x_i|W) = \begin{cases} (3,2,5), & \text{if } i = 1, \\ (i+2,i+1,i+2), & \text{if } 2 \le i \le 2n, \\ (2n+3,2n+2,2n+2), & \text{if } i = 2n+1, \\ (4n-i+5,4n-i+4,4n-i+3), & \text{if } 2n+2 \le i \le 4n, \\ (4,5,2), & \text{if } i = 4n+1. \end{cases}$$

The representation of middle vertices of the fullerene graph $F_3[n]$ for n = 1 is given by:

$$r(b_1|W) = (4, 1, 5), \quad r(b_2|W) = (4, 2, 4), \quad r(b_3|W) = (5, 3, 3),$$

 $r(b_4|W) = (5, 4, 2), \quad r(b_5|W) = (5, 5, 1).$

The representation of middle vertices of the fullerene graph $F_3[n]$ for $n \ge 2$ is given by:

$$r(b_i|W) = \begin{cases} (4, i, i+5), & \text{if } i \in \{1, 2\}, \\ (i+2, i, i+3), & \text{if } 3 \le i \le 2n-1, \\ (i+2, i, 4n-i+2), & \text{if } i \in \{2n, 2n+1\}, \\ (2n+3, 2n+2, 2n), & \text{if } i = 2n+2, \\ (4n-i+5, 4n-i+5, 4n-i+2), & \text{if } 2n+3 \le i \le 4n-1, \\ (5, 4n-i+7, 4n-i+2), & \text{if } i \in \{4n, 4n+1\}. \end{cases}$$

The representation of middle vertices of the fullerene graph $F_3[n]$ is given by:

$$r(c_i|W) = \begin{cases} (i+1,i+1,i+5), & \text{if } i \in \{1,2\}, \\ (i+1,i+1,i+4), & \text{if } 3 \le i \le 2n-1, \\ (i+1,i+1,4n-i+3), & \text{if } i \in \{2n,2n+1\}, \\ (2n+2,2n+3,2n+1), & \text{if } i = 2n+2, \\ (4n-i+4,4n-i+6,4n-i+3), & \text{if } 2n+3 \le i \le 4n-1, \\ (4n-i+4,4n-i+7,4n-i+3), & \text{if } i \in \{4n,4n+1\}. \end{cases}$$

www.ejgta.org

The representation of vertices of lower half of the fullerene graph $F_3[n]$ is given by:

$$r(y_i|W) = \begin{cases} (1,3,5), & \text{if } i = 1, \\ (i,i+2,i+3), & \text{if } 2 \le i \le 2n, \\ (2n+1,2n+2,2n+2), & \text{if } i = 2n+1, \\ (4n-i+3,4n-i+5,4n-i+4), & \text{if } 2n+2 \le i \le 4n, \\ (2,5,3), & \text{if } i = 4n+1. \end{cases}$$

Therefore the set W resolves all the vertices in $V(F_3[n]) \setminus W$. Thus $\dim(F_3[n]) \leq 3$. Now we show that $\dim(F_3[n]) \geq 3$. For this we show that there does not exists any resolving set W' with two vertices. Let $A = \{a_1, a_2, a_3, a_4, a_5, a_6\}, B = \{z_1, z_2, z_3, z_4, z_5, z_6\}, C = \{x_1, x_2, \cdots, x_{4n+1}\}, D = \{b_1, b_2, \cdots, b_{4n+1}\}, E = \{c_1, c_2, \cdots, c_{4n+1}\}$ and $F = \{y_1, y_2, \cdots, y_{4n+1}\}$ be the sets of vertices of $F_3[n]$. Then there are following cases:

Case 1. If both vertices of W' are in the set of vertices C, then the vertices of A and D have the same representation. Therefore W' is not a resolving set of $F_3[n]$.

Case 2. If both vertices of W' are in the set of vertices D, then the vertices of B and C have the same representation. Therefore W' is not a resolving set of $F_3[n]$.

Case 3. The vertices of set A have same distance from the vertices of B. Therefore the resolving set is not the subset of A or B.

Case 4. If both vertices of W' are in the set of vertices F, then the vertices of A and E have the same representation. Therefore W' is not a resolving set of $F_3[n]$.

Case 5. If both vertices of W' are in the set of vertices E, then the vertices of B and F have the same representation. Therefore W' is not a resolving set of $F_3[n]$.

Thus, in every case we get a contradiction. From above cases, we conclude that there is no resolving set W' with exactly two vertices of $F_3[n]$. Thus the metric dimension of $F_3[n]$ is 3. This completes the proof.

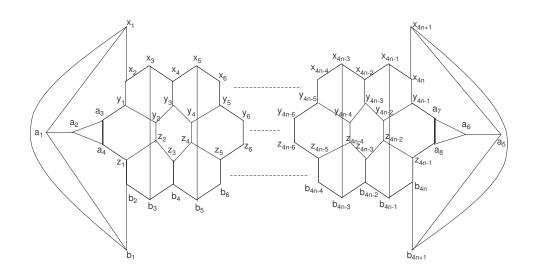


Figure 4. The Graph $F_4[n]$.

Theorem 2.4. The metric dimension of fullerene graph $F_4[n]$ is 3.

Proof. Let $W = \{a_3, a_7, a_8\} \subset V(F_4[n])$. We need to show that W is a resolving set of $F_4[n]$. First we give the representation of vertices of $F_4[n] \setminus W$ with respect to W.

 $r(a_1|W) = (2, 4n + 2, 4n + 2), \quad r(a_2|W) = (1, 4n + 1, 4n + 1), \quad r(a_4|W) = (1, 4n + 1, 4n),$ $r(a_5|W) = (4n + 2, 2, 2), \quad r(a_6|W) = (4n + 1, 1, 1).$

The representation of vertices of upper half of the fullerene graph $F_4[n]$ is given below:

$$r(x_i|W) = \begin{cases} (3,4n+i,4n+i+1), & \text{if } i = 1, \\ (i,4n-i+2,4n-i+3), & \text{if } 2 \le i \le 4n, \\ (4n+1,3,4), & \text{if } i = 4n+1. \end{cases}$$

The representation of middle vertices of the fullerene graph $F_4[n]$ is given below:

$$r(y_i|W) = (i, 4n - i, 4n - i + 1), \qquad 1 \le i \le 4n - 1,$$

$$r(z_i|W) = (i + 1, 4n - i + 1, 4n - i), \qquad 1 \le i \le 4n - 1.$$

The representation of vertices of lower half of the fullerene graph $F_4[n]$ is given below:

$$r(b_i|W) = \begin{cases} (3,4n+2,4n+1), & \text{if } i = 1, \\ (i+1,4n-i+3,4n-i+2), & \text{if } 2 \le i \le 4n, \\ (4n+2,3,3), & \text{if } i = 4n+1. \end{cases}$$

All vertices of $V(F_4[n]) \setminus W$ can be resolved with respect to W. Thus W is a resolving set of $F_4[n]$ and $\dim(F_4[n]) \leq 3$.

On the other hand, we show that $\dim(F_4[n]) \ge 3$ by proving that there is no resolving set W' with cardinality 2. Suppose on contrary that $\dim(F_4[n]) = 2$ and W' is a resolving set of $F_4[n]$ with |W'| = 2. Let $A = \{a_1, a_2, \cdot, a_8\}$, $B = \{x_1, x_2, \cdots, x_{4n+1}\}$, $C = \{y_1, y_2, \cdots, y_{4n+1}\}$, $D = \{z_1, z_2, \cdots, z_{4n+1}\}$ and $E = \{b_1, b_2, \cdots, b_{4n+1}\}$ be the sets of vertices of $F_4[n]$. The pairs of vertices a_1, a_3 and a_5, a_7 have the same distance with the vertices of set B. The pairs of vertices a_2, a_4 and a_6, a_8 have the same distance with the vertices of set C. The pairs of vertices a_1, a_4 and a_5, a_7 have the same distance with the vertices of set D. Similarly, The pairs of vertices a_1, a_4 and a_5, a_8 have the same distance with the vertices of set C. Therefore, there is no a resolving set W' with cardinality 2 of $F_4[n]$. Thus $\dim(F_4[n]) = 3$. This completes the proof.

3. Metric dimension of (4,6)-fullerene graphs

Suppose $G_1[n]$, $G_2[n]$ and $G_3[n]$ are depicted in Figures 5-7 with order 8n, 8n + 4 and 12n + 12 respectively. In this subsection we find the metric dimension of $G_1[n]$, $G_2[n]$ and $G_3[n]$ fullerene graphs.

Theorem 3.1. The metric dimension of fullerene graph $G_1[n]$ is 3 for $n \ge 2$.

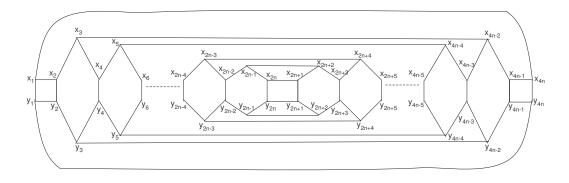


Figure 5. The Graph $G_1[n]$.

Proof. For a set $W = \{x_1, y_1, x_{4n}\} \subset V(G_1[n])$, we need to show that W is a resolving set of $G_1[n]$. First we show that $\dim(G_1[n]) \neq 2$. There are following cases:

Case 1. If both vertices are in the upper half of $G_1[n]$ and the resolving set is $W' = \{x_s, x_t\}$, $1 \le s \le t \le 4n$. Then the representations of x_i and y_{i+1} , $2n + 1 \le i \le 4n - 1$ are the same. Similarly the representations of x_{i+1} and y_i , $2 \le i \le 2n - 1$ are the same. Therefore the resolving set of $G_1[n]$ is not a subset of $\{x_1, x_2, \dots, x_{4n}\}$.

Case 2. If both vertices are in the lower half of $G_1[n]$ and the resolving set is $W' = \{y_s, y_t\}$, $1 \le s \le t \le 4n$. Then the representations of x_{i+1} and y_i , $2n + 1 \le i \le 4n - 1$ are the same. Similarly the representations of x_i and y_{i+1} , $2 \le i \le 2n - 1$ are the same. Therefore the resolving set is not a subset of $\{y_1, y_2, \dots, y_{4n}\}$.

Case 3. If one vertex belongs to the set of vertices $\{x_1, x_2, \dots, x_{4n}\}$ and other is in the set of vertices $\{y_1, y_2, \dots, y_{4n}\}$. Without loss of generality, we can suppose that the resolving set is $W' = \{x_s, y_t\}, 1 \le s \le 4n$ and $1 \le t \le 4n$.

If s = t, then the representation of pairs of vertices x_{s+1}, x_{s-1} and y_{t-1}, y_{t+1} are the same.

If s < t, then the representation of x_i , i > s and y_j , j < 4n are the same.

If s > t, then the representation of x_i , i < 4n and y_j , j > t are the same.

Thus, in every subcase we get a contradiction. From above cases, we conclude that there is no resolving set W' with |W'| = 2. Thus $\dim(G_1[n]) \ge 3$. Now we show that $\dim(G_1[n] \le 3$. For this purpose we give the representation of the vertices in $V(G_1[n]) \setminus W$ with respect to W. The representation of vertices of upper half of the fullerene graph $G_1[n]$ is given below:

$$r(x_i|W) = \begin{cases} (i-1,i,i), & \text{if } 2 \le i \le 2n, \\ (4n-i+1,4n-i+2,4n-i), & \text{if } 2n+1 \le i \le 4n-1. \end{cases}$$

The representation of vertices of lower half of the fullerene graph $G_1[n]$ is given below:

$$r(y_i|W) = \begin{cases} (i, i-1, i+1), & \text{if } 2 \le i \le 2n, \\ (4n-i+2, 4n-i+1, 4n-i+1), & \text{if } 2n+1 \le i \le 4n. \end{cases}$$

This implies that all vertices of $V(G_1[n]) \setminus W$ can be resolved with respect to W. Thus W is a resolving set of $G_1[n]$. Therefore dim $(G_1[n]) = 3$ for $n \ge 2$. This completes the proof. \Box

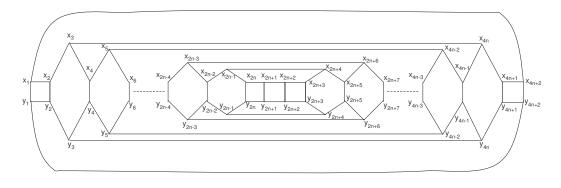


Figure 6. The Graph $G_2[n]$.

Theorem 3.2. The metric dimension of fullerene graph $G_2[n]$ is 3.

Proof. Let $W = \{x_1, y_1, x_{4n+2}\} \subset V(G_2[n])$. We show that W is a resolving set of $G_2[n]$. First we give the representation of vertices in $V(G_2[n]) \setminus W$ with respect to W. The representation of vertices of upper half of the fullerene graph $G_2[n]$ is given by:

$$r(x_i|W) = \begin{cases} (i-1,i,i), & \text{if } 2 \le i \le 2n+1, \\ (4n-i+3,4n-i+4,4n-i+2), & \text{if } 2n+2 \le i \le 4n+1. \end{cases}$$

The representation of vertices of lower half of the fullerene graph $G_2[n]$ is given by:

$$r(y_i|W) = \begin{cases} (i, i-1, i+1), & \text{if } 2 \le i \le 2n+1, \\ (4n-i+4, 4n-i+3, 4n-i+3), & \text{if } 2n+2 \le i \le 4n+2. \end{cases}$$

This implies that W is a resolving set of $G_2[n]$ and $\dim(G_2[n]) \leq 3$. Now we show that $\dim(G_2[n]) \geq 3$ by proving that W' is a resolving set of $G_2[n]$ with |W'| = 2. There are following possibilities:

Case 1. If both vertices are in the upper half of $G_2[n]$ and the resolving set is $W' = \{x_s, x_t\}$, $1 \le s \le t \le 4n$. Then the representation of x_i and y_{i+1} , $2n + 2 \le i \le 4n - 1$ is the same. Similarly the representation of x_{i+1} and y_i , $2 \le i \le 2n$ is the same. Therefore the resolving set of $G_2[n]$ is not a subset of $\{x_1, x_2, \dots, x_{4n}\}$.

Case 2. If both vertices are in the lower half of $G_1[n]$ and the resolving set is $W' = \{y_s, y_t\}$, $1 \le s \le t \le 4n$. Then the representation of x_{i+1} and y_i , $2n + 2 \le i \le 4n - 1$ is the same. Similarly the representation of x_i and y_{i+1} , $2 \le i \le 2n$ is the same. Therefore the resolving set of $G_2[n]$ is not a subset of $\{y_1, y_2, \dots, y_{4n}\}$.

Case 3. If one vertex belongs to the set of vertices $\{x_1, x_2, \dots, x_{4n}\}$ and other is in the set of vertices $\{y_1, y_2, \dots, y_{4n}\}$. Without loss of generality, we can suppose that the resolving set of $G_2[n]$ is $W' = \{x_s, y_t\}, 1 \le s \le 4n$ and $1 \le t \le 4n$.

If s = t, then the representation of pair of vertices x_{s+1}, x_{s-1} and y_{t-1}, y_{t+1} is the same.

If s < t, then the representation of x_i , i > s and y_j , j < 4n is the same.

If s > t, then the representation of x_i , i < 4n and y_j , j > t is the same.

From above cases, we conclude that there is no resolving set W' for $G_2[n]$ with |W'| = 2. Thus $\dim(G_2[n]) = 3$. This completes the proof.

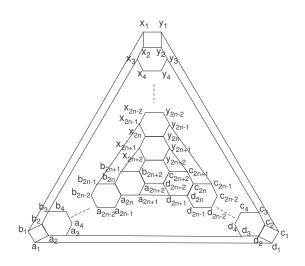


Figure 7. The Graph $G_3[n]$.

Theorem 3.3. The metric dimension of fullerene graph $G_3[n]$ is 3.

Proof. Let $\{x_1, y_1, a_1, b_1, c_1, d_1\}$ be the set of outer vertices of $G_3[n]$. The vertex x_1 and y_1 have the same distance from other vertices and a_1 and b_1 have the same distance from other vertices of $G_3[n]$. Similarly c_1 and d_1 have the same distance from other vertices of $G_3[n]$. Thus any metric basis will contain either x_1 or y_1 , a_1 or b_1 and c_1 or d_1 . There are 6 boundary vertices in $G_3[n]$. Hence any metric basis of $G_3[n]$ should contain at least 3 nodes of $G_3[n]$. Let $W = \{x_1, a_1, c_1\} \subset V(G_3[n])$, we need to show that W is a resolving set of $G_3[n]$. Then the representation of vertices in $V(G_3[n]) \setminus W$ with respect to W for $n \ge 2$ is given by:

$$\begin{split} r(x_i|W) &= (i-1,i+1,i+1), & \text{if} \quad 2 \leq i \leq 2n+2, \\ r(y_i|W) &= (i,i+2,i), & \text{if} \quad 1 \leq i \leq 2n+2, \\ r(a_i|W) &= (i+1,i-1,i+1), & \text{if} \quad 2 \leq i \leq 2n+2, \\ r(b_i|W) &= (i,i,i+2), & \text{if} \quad 1 \leq i \leq 2n+2, \\ r(c_i|W) &= (i+1,i+1,i-1), & \text{if} \quad 2 \leq i \leq 2n+2, \\ r(d_i|W) &= (i+2,i,i), & \text{if} \quad 1 \leq i \leq 2n+2. \end{split}$$

The representation of vertices of $V(G_3[n]) \setminus W$ with respect to W for n = 1 is given by:

$$\begin{split} r(x_i|W) &= \begin{cases} (i-1,i+1,i+1), & \text{if } 2 \leq i \leq 2n+1, \\ (i-1,i,i), & \text{if } i = 2n+2. \end{cases} \\ r(y_i|W) &= \begin{cases} (i,i+2,i), & \text{if } 1 \leq i \leq 2n+1, \\ (i,i+1,i), & \text{if } i = 2n+2. \end{cases} \\ r(a_i|W) &= (i+1,i-1,i+1), & \text{if } 2 \leq i \leq 2n+2, \\ r(b_i|W) &= (i,i,i+2), & \text{if } 1 \leq i \leq 2n+2, \\ r(c_i|W) &= (i+1,i+1,i-1), & \text{if } 2 \leq i \leq 2n+2, \\ r(c_i|W) &= (i+2,i,i), & \text{if } 1 \leq i \leq 2n+2. \end{cases} \end{split}$$

www.ejgta.org

Hence there are no two vertices having the same representations. Thus $W = \{x_1, c_1, a_1\}$ is a resolving set of $G_3[n]$. Therefore dim $(G_3[n]) = 3$. This completes the proof.

4. Conclusion and open problems

In this paper, we considered some (3, 6)-fullerene and (4, 6)-fullerene graphs and computed the metric dimension for these fullerene graphs. All (3, 6)-fullerene and (4, 6)-fullerene graphs considered in this paper have metric dimension 3. It will be interesting to prove or disprove the following statement:

"All (3,6)-fullerene and (4,6)-fullerene graphs have metric dimension 3."

Acknowledgement

This research is supported by the Higher Education Commission of Pakistan under grant No. 20-3067/NRPU /R&D/HEC/12

References

- A.R. Ashrafi and Z. Mehranian, Topological study of (3,6) and (4,6)-fullerenes, *Topological Modelling of Nanostructures and Extended Systems*, Springer Netherlands, (2013), 487–510.
- [2] R.C. Brigham, G. Chartrand, R.D. Dutton and P. Zhang, Resolving domination in graphs, *Math. Bohem.* 128 (1) (2003), 25–36.
- [3] G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, *Discrete Appl. Math.* 105 (2000), 99–113.
- [4] G. Chartrand, C. Poisson and P. Zhang, Resolvability and the upper dimension of graphs, *Comput. Math. Appl.* **39** (2000), 19–28.
- [5] G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph, *Aequationes Math.* **59** (2000), 45–54.
- [6] P.W. Fowler and D.E. Manolopoulos, *An Atlas of Fullerenes*, Oxford Univ Press Oxford, (1995).
- [7] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976), 191– 195.
- [8] H.W. Kroto, J.R. Heath, S.C. OBrien, R.F. Curl and R.E. Smalley, C₆₀: buckminsterfullerene, *Nature* **318** (1985), 162–163.
- [9] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, *Discrete Appl. Math.* 70 (3) (1996), 217–229.

- [10] F. Koorepazan-Moftakhar, A.R. Ashrafi and Z. Mehranian, Automorphism group and fixing number of (3,6)- and (4,6)-fullerene graphs, *Electron. Notes Discrete Math.* 45 (2014), 113–120.
- [11] F. Okamoto, B. Phinezyn and P. Zhang, The local metric dimension of a graph, *Math. Bohem.* 135 (3) (2010), 239–255.
- [12] B. Rajan, I. Rajasingh, M.C. Monica and P. Manuel, Metric dimension of enhanced hypercube networks, J. Combin. Math. Combin. Comput. 67 (2008), 5–15.
- [13] A. Sebö and E. Tannier, On metric generators of graphs, *Math. Oper. Res.* **29** (2) (2004), 383–393.
- [14] H.M.A. Siddiqui and M. Imran, Computation of metric dimension and partition dimension of Nanotubes, *Journal of Computational and Theoretical Nanoscience* 12 (2) (2015), 199–203.
- [15] H.M.A. Siddiqui and M. Imran, Computing metric and partition dimension of 2-Dimensional lattices of certain Nanotubes, *Journal of Computational and Theoretical Nanoscience* 11 (12) (2014), 2419–2423.
- [16] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975), 549–559.