

Electronic Journal of Graph Theory and Applications

Maximum cycle packing using SPR-trees

Christin Otto, Peter Recht

Operations Research and Business Informatics TU Dortmund 44221 Dortmund, Germany

christin-maria.otto@tu-dortmund.de, peter.recht@tu-dortmund.de

Abstract

Let G = (V, E) be an undirected multigraph without loops. The maximum cycle packing problem is to find a collection $\mathcal{Z}^* = \{C_1, ..., C_s\}$ of edge-disjoint cycles $C_i \subset G$ of maximum cardinality $\nu(G)$. In general, this problem is \mathcal{NP} -hard. An approximation algorithm for computing $\nu(G)$ for 2-connected graphs is presented, which is based on splits of G. It essentially uses the representation of the 3-connected components of G by its SPR-tree. It is proved that for generalized series-parallel multigraphs the algorithm is optimal, i.e. it determines a maximum cycle packing \mathcal{Z}^* in linear time.

Keywords: maximum cycle packing, decomposition, SPR-trees, edge-disjoint cycle Mathematics Subject Classification : 05C38, 05C70 DOI: 10.5614/ejgta.2019.7.1.11

1. Introduction

Let G = (V(G), E(G)) be a finite and undirected graph with vertex set V(G) and edge set E(G) which may contain multiple edges but no loops. A graph G' = (V', E') is a *subgraph* of G $(G' \subseteq G)$, if $V' \subseteq V$ and $E' \subseteq E$. A subgraph $G' = (V', E') \subset G$ is *induced* by $E' \subset E$ $(G' = G|_{E'})$ if V' consists of all vertices that are incident with edges in E'. Similarly, $G' = (V', E') \subset G$ is *induced* by $V' \subset V$ $(G' = G|_{V'})$ if E' consists of all edges $e \in E$, that have both endvertices in V'. We will write $G \setminus V' := G|_{V\setminus V'}$ and $G \setminus E' := G|_{E\setminus E'}$, respectively. For $u \in V$ the *degree* $\delta_G(u)$ is the number of its incident edges in G. A path P of length $r \ge 0$ is a sequence of distinct edges (e_1, \ldots, e_r) such that $e_i = (v_{i-1}, v_i) \in E(G)$ where the vertices $v_0, \ldots, v_r \in V(G)$

Received: 2 February 2017, Revised: 26 September 2018, Accepted: 23 December 2018.

are distinct. We sometimes say P is a $v_0 \cdot v_r$ -path to emphasize the first and the last vertex of a path. A cycle C of length $r \ge 2$ is a sequence $(e_1, \ldots, e_{r-1}, e_r)$ such that (e_1, \ldots, e_{r-1}) is a path of length r - 1 and $e_r = (v_{r-1}, v_0)$. Since P can be considered as a subgraph of G we sometimes say that P is induced by its edgeset E(P). A graph G is connected if for each pair of vertices $v, w \in V$ there is a v-w-path in G. A set $S \subset V$ is called a k-separator of G ($k \ge 0$, |S| = k) if $G|_{V \setminus S}$ is not connected. A connected graph G is called k-connected if there is no (k-1)-separator in G. The maximum 1-connected subgraphs of G are called 1-components. The maximum 2-connected subgraphs of G are called blocks. We say G is k-separable if there exist subgraphs G_1, G_2 of G such that $G = G_1 \cup G_2$ with $|V(G_1) \cap V(G_2)| = k$, $E(G_1) \cap E(G_2) = \emptyset$ and $|E(G_1)| \ge k, |E(G_2)| \ge k$. The pair $\{G_1, G_2\}$ is then called a k-separation of G. Two subgraphs G' = (V', E') and G'' = (V'', E'') are called edge-disjoint if $E' \cap E'' = \emptyset$. A packing of edge-disjoint cycles of cardinality s in G is a set $\mathcal{Z} = \{C_1, \ldots, C_s\}$ of cycles that are mutually edge-disjoint. A cycle packing \mathcal{Z}^* of maximum cardinality is called a maximum cycle packing. Its cardinality $|\mathcal{Z}^*|$ is denoted by $\nu(G)$.

Packing edge-disjoint cycles in graphs is a classical graph-theoretical problem. There is a large amount of literature concerning cycle packing problems for example [12], [11], [10], [1], [20], [7], [6], [19], [18]. In [14], [2] and [8] simple approximation algorithms are described since cycle packing problems are typically hard [14].

The basic idea of this paper is to decompose G into suitable subgraphs G_i and relate maximum cycle packings \mathcal{Z}_i of the G_i to a maximum cycle packing \mathcal{Z}^* of G. In the case that G_i are the 1-components it holds that $\mathcal{Z}^* = \bigcup \mathcal{Z}_i$ and $\nu(G) = \sum \nu(G_i)$. If G is decomposed into blocks B_i it holds that $\nu(G) = \sum \nu(B_i)$. If G is 2-connected an appropriate tool to represent G by its 3-connected components is the SPR-tree [5]. In Section 2 this tool is used to obtain an algorithm that provides an approximation of a maximum cycle packing of G. The proof of optimality of the algorithm for general series-parallel graphs is given in Section 3.

2. Cycle packing by using SPR-trees

In [2] a greedy type algorithm was suggested for the determination of a large number of edgedisjoint cycles in an arbitrary graph G (see also [14]). Its basic idea is to search for the shortest cycle C in G, then delete it from G and delete also edges that cannot be contained in a cycle of $G \setminus C$. This procedure is continued until there are no edges left. The set of successively deleted cycles finally provides the approximation of a maximum cycle packing of G (Algorithm 1). The algorithm has approximation ratio $O(\log n)$ (see [2]).

In the special case that G is 2-connected we, additionally, will exploit the *splits* of G into 3components during the algorithmic procedure. By this we can relate the edge-disjoint cycles within each of these components to cycles in a cycle packing of G. Let G be a 2-connected multigraph and let $\{G_1, G_2\}$ be a 2-separation of G. If $\{u, v\} = V(G_1) \cap V(G_2)$, we call the 2-separation a *split*, if G_1 or G_2 has no 0- or 1-separator and $G_1 \setminus \{u, v\}$ or $G_2 \setminus \{u, v\}$ is non-empty and connected [16]. In [21] it was proved that 2-connected graphs that have no splits are either 3-connected or cycles of length ≥ 3 or a bundle of parallel edges between two vertices, respectively. For a split $\{G_1, G_2\}$ let G'_1 and G'_2 be the graphs obtained from G_1 and G_2 by adding an edge (u, v) to each of them where (u, v) is determined by the common vertices $\{u, v\} = V(G_1) \cap V(G_2)$. The added

Require: Biconnected multigraph G = (V, E) without loops. **Ensure:** Cycle packing C of size $\underline{\nu}(G)$. 1: $\mathcal{C} \leftarrow \emptyset$ and $\underline{\nu}(G) \leftarrow 0$ 2: while $G \neq \emptyset$ do 3: for all vertices $v \in V$ with $\delta(v) \leq 1$ do 4: delete v5: end for for all vertices $v \in V$ with $\delta(v) = 2$ do 6: replace e' = (u, v) and e'' = (v, w) by e = (u, w)7: 8: end for 9: search for a shortest cycle $C \in G$ 10: $\mathcal{C} \leftarrow \mathcal{C} \cup C$ $\underline{\nu}(G) \leftarrow \underline{\nu}(G) + 1$ 11: 12: for all edges $e \in C$ do delete $e \in G$ 13: 14: end for 15: end while 16: **return** Cycle packing C and lower bound $\underline{\nu}(G)$ of $\nu(G)$.

Algorithm 1 Greedy algorithm for the maximum cycle packing problem

edges are called *virtual edges*. Since G'_1 and G'_2 are 2-connected one may repeat the split process as long as the obtained graphs admit splits. Each of the resulting graphs finally constructed in this way is called a *split component* of G. A split component contains edges from E and some virtual edges determined by its consecutive split operations. In [15] and [21] it was shown, that split components of G are uniquely determined and independent of the sequence in which consecutive split operations were performed.

By this G can be represented using the SPR-tree $\mathcal{T}(G) = (M, A)$ of G as defined in [3], which is an alternative to the definition of [5, 9]. If no ambiguity is possible we write \mathcal{T} for short. A SPR-tree \mathcal{T} of a 2-connected multigraph G is the smallest tree with the following properties

- 1. To every node¹ $\mu \in M$ a multigraph $G_{\mu} = (V_{\mu}, E_{\mu})$ (called *skeleton* of μ) is associated.
- 2. Depending on their skeletons the nodes of \mathcal{T} are of one of the following three types
 - μ is a S-node if G_{μ} is a cylce of length ≥ 3 ,
 - μ is a P-node if G_{μ} is a bundle of parallel edges,
 - μ is a R-node if G_{μ} is a simple 3-connected graph.
- 3. There is an edge $(\mu, \mu') \in A$ if and only if there is $u, v \in V$ such that G_{μ} and $G_{\mu'}$ have $\bar{e}_{(\mu,\mu')} := (u, v)$ as a common virtual edge.
- 4. The graph G can be recovered by applying the following operation on the nodes of \mathcal{T} : for $(\mu, \mu') \in A$ set $G_{(\mu, \mu')} := (G_{\mu} \setminus \overline{e}_{(\mu, \mu')}) \cup (G_{\mu'} \setminus \overline{e}_{(\mu, \mu')})$ and merge the two nodes μ, μ' to a new single node.

In [3] it was proved that a SPR-tree \mathcal{T} of a 2-connected multigraph G exists and is unique. Moreover, it has neither two adjacent S-nodes nor two adjacent P-nodes. Since there is a strong

¹The vertices in \mathcal{T} are usually called nodes.

relation between SPR-trees and SPQR-trees introduced in [4], its size as well as the complexity of its determination is linear (in $\mathcal{O}(|V| + |E|)$) (cf. [3]).

In the sequel we assume that G is a 2-connected multigraph with no loops. Let \mathcal{T} be the SPR-tree of G and μ be a leaf in \mathcal{T} (i.e. a node in \mathcal{T} such that $\delta_{\mathcal{T}}(\mu) = 1$). The following approximation procedure applies Algorithm 1 in some of the iterations. It essentially exploits the SPR-tree representation of G and uses property 4 of \mathcal{T} for an iterative construction of a large cycle packing \mathcal{Z} in G. These cycles will be constructed from paths \mathcal{P}_{μ} for $\mu \in \mathcal{T}$. We initialize the sets \mathcal{P}_{μ} by $\mathcal{P}_{\mu} = \{P(e) \mid e \text{ is a real edge in } E_{\mu}\}$ with P(e) := e and $\mathcal{Z} = \emptyset$.

During the procedure leaf nodes μ and the corresponding set \mathcal{P}_{μ} are successively *inspected*. Leaf nodes of S-type are always processed first, followed by R-leaves and P-leaves. Note, that for a leaf node $\mu \in M$ there is a unique node $\mu' \in M$ such that $(\mu, \mu') \in A$ and the edge set E_{μ} contains exactly one virtual edge $\bar{e}_{(\mu,\mu')} = (u, v)$. Within the procedure we set $pred(\mu) := \mu'$ the predecessor of μ . An inspection looks for the existence of edge-disjoint cycles on the real edges in E_{μ} . Such cycles correspond to edge-disjoint cycles in G. If there still remains an u-v-path on the real edges in E_{μ} there remains a corresponding u-v-path P_{uv} in G. In this case the virtual edge $\bar{e}_{(\mu,\mu')}$ in $E_{\mu'}$ is replaced by the real edge (u, v) and P((u, v)) is set to P_{uv} . If the virtual edge can not be replaced in such a way, it is deleted from $E_{\mu'}$.

Depending on the type of leaf node μ and its edge set E_{μ} the edge set $E_{\mu'}$ of $pred(\mu)$ is treated differently according to the following rules:

- 1_S μ is S-node: If the real edges in E_{μ} induce an *u*-*v*-path in E_{μ} , replace $\bar{e}_{(\mu,\mu')} \in E_{\mu'}$ by the real edge (u, v). Assign the *u*-*v*-path induced by $\bigcup \{E(P) \mid P \in \mathcal{P}_{\mu}\}$ to P((u, v)). Set $\mathcal{P}_{\mu'} = \mathcal{P}_{\mu'} \cup P((u, v)), \nu_{\mu} = 0$ and delete μ from \mathcal{T} .
- $2_R \ \mu$ is R-node: Determine cycle packings C_1 and C_2 for the graphs induced by E_μ and $E_\mu \setminus \bar{e}_{(\mu,\mu')}$, respectively. Set $\nu_\mu = |\mathcal{C}_2|$, add the corresponding edge-disjoint cycles in G to \mathcal{Z} and delete the related paths from \mathcal{P}_μ . If $|\mathcal{C}_1| = |\mathcal{C}_2|$ delete $\bar{e}_{(\mu,\mu')} \in E_{\mu'}$. If $|\mathcal{C}_1| > |\mathcal{C}_2|$, there is an u-v-path in E_μ , not contained in any of the cycles of \mathcal{C}_2 . Replace $\bar{e}_{(\mu,\mu')} \in E_{\mu'}$ by the real edge (u, v). Assign the u-v-path P_{uv} induced by $\bigcup \{E(P) \mid P \in \mathcal{P}_\mu\}$ to P((u, v)). Set $\mathcal{P}_{\mu'} = \mathcal{P}_{\mu'} \cup P((u, v))$ and delete μ from \mathcal{T} .
- $3_P \ \mu$ is P-node:
 - (i) If |E_μ| is even, there is a cycle packing C_P with ν_μ = |E_μ|/2 1 cycles of length 2. Add the corresponding edge-disjoint cycles in G to C. Then delete the related paths from P_μ. There remains an real edge e in E_μ, not contained in any of the cycles of C_P. Replace ē_(μ,μ') ∈ E_{μ'} by the real edge (u, v) and assign the u-v-path P_{uv} induced by e to P((u, v)). Set P_{μ'}=P_{μ'} ∪ P((u, v)) and delete μ from T.
 - (*ii*) If $|E_{\mu}|$ is odd, there is a cycle packing C_P with $\nu_{\mu} = \frac{|E_{\mu}|-1}{2}$ cycles of length 2. Add the induced edge-disjoint cycles in G to C. Further delete $\bar{e}_{(\mu,\mu')} \in E_{\mu'}$ and delete μ from \mathcal{T} .

The procedure terminates inspecting the final node:

Require: Biconnected multigraph G without loops. **Ensure:** Lower bound $\underline{\nu}(G)$ for the maximum cycle packing number $\nu(G)$. 1: $\mathcal{T}_G \leftarrow \text{SPR}(G)$ 2: $\mathcal{C} \leftarrow \emptyset, \underline{\nu}(G) \leftarrow 0$ and $\mathcal{P}_{\mu} \leftarrow \emptyset \quad \forall \mu \in M$ 3: while \exists SPR-node μ in \mathcal{T} do for all S-leaves μ do 4: 5: $\mu' := pred(\mu)$ if $\delta(v) = 2 \ \forall v \in V_{\mu}$ then 6: 7: replace $\bar{e}_{(\mu,\mu')} \in E_{\mu'}$ by real edge $\mathcal{P}_{\mu'} \leftarrow \mathcal{P}_{\mu'} \cup P(\bar{e}_{(\mu,\mu')})$ 8: 9: end if $\nu_{\mu} \leftarrow 0 \text{ and } \mathcal{T} \leftarrow \mathcal{T} \setminus \mu$ 10: $\underline{\nu}(G) \leftarrow \underline{\nu}(G) + \nu_{\mu}$ 11: 12: end for 13: for all R-leaves μ do 14: $\mu' := pred(\mu)$ 15: $C_1 \leftarrow \text{Algorithm } 1(G_\mu)$ 16: $\mathcal{C}_2 \leftarrow \text{Algorithm } 1(G_{\mu} \setminus \bar{e}_{(\mu,\mu')})$ 17: if $|\mathcal{C}_1| == |\mathcal{C}_2|$ then 18: delete $\bar{e}_{(\mu,\mu')} \in E_{\mu'}$ 19: else if $|\mathcal{C}_1| > |\mathcal{C}_2|$ then 20: replace $\bar{e}_{(\mu,\mu')} \in E_{\mu'}$ by real edge 21: $\mathcal{P}_{\mu'} \leftarrow \mathcal{P}_{\mu'} \cup P(\bar{e}_{(\mu,\mu')})$ 22: end if 23: $\nu_{\mu} \leftarrow |\mathcal{C}_2| \text{ and } \mathcal{T} \leftarrow \mathcal{T} \setminus \mu$ 24: $\underline{\nu}(G) \leftarrow \underline{\nu}(G) + \nu_{\mu} \text{ and } \mathcal{C} \leftarrow \mathcal{C} \cup \mathcal{C}_2$ 25: end for 26: for all P-leaves μ do 27: $\mu' := pred(\mu)$ 28: if $|E_{\mu}|$ is not even then $\nu_{\mu} \leftarrow \frac{|E_{\mu}|-1}{2}$ 29: delete $\bar{e}_{(\mu,\mu')}$ in $E_{\mu'}$ 30: 31: else if $|E_{\mu}|$ is even then $\nu_{\mu} \leftarrow \frac{|E_{\mu}|}{2} - 1$ 32: replace $\vec{\bar{e}}_{(\mu,\mu')}$ in $E_{\mu'}$ by real edge 33: $\mathcal{P}_{\mu'} \leftarrow \mathcal{P}_{\mu'} \cup P(\bar{e}_{(\mu,\mu')})$ 34: 35: end if 36: $\underline{\nu}(G) \leftarrow \underline{\nu}(G) + \nu_{\mu} \text{ and } \mathcal{T} \leftarrow \mathcal{T} \setminus \mu$ $\mathcal{C} \leftarrow \mathcal{C} \cup \{\{P^{(2i-1)}, P^{(2i)}\} \mid P^{(i)} \in \mathcal{P}_{\mu} \forall i = 1, \dots, \nu_{\mu}\}$ 37: 38: end for 39: for the final node μ do if μ is S-leaf and $\delta(v) = 2 \ \forall v \in V_{\mu}$ then 40: $\nu_{\mu} \leftarrow 1 \text{ and } \mathcal{C} \leftarrow \mathcal{C} \cup P|_{E(\bigcup_{e \in E_{\mu}} P(e))}$ 41: 42: else if μ is R-leaf then $\mathcal{C}_1 \leftarrow \text{Algorithm } 1(G_\mu), \nu_\mu \leftarrow |\mathcal{C}_\infty| \text{ and } \mathcal{C} \leftarrow \mathcal{C} \cup \mathcal{C}_1$ 43: 44: else if μ is P-leaf then $\nu_{\mu} \leftarrow \lfloor \frac{|E_{\mu}|}{2} \rfloor$ and $\mathcal{C} \leftarrow \mathcal{C} \cup \{\{P^{(2i-1)}, P^{(2i)}\} \mid P^{(i)} \in \mathcal{P}_{\mu} \forall i = 1, \dots, \nu_{\mu}\}$ 45: 46: end if 47: $\underline{\nu}(G) \leftarrow \underline{\nu}(G) + \nu_{\mu} \text{ and } \mathcal{T} \leftarrow \mathcal{T} \setminus \mu$ end for 48: 49: end while

Algorithm 2 Approximation algorithm for the maximum cycle packing problem

F If μ is the final node, determine a cycle packing C_F in the graph induced by E_{μ} . Set $\nu_{\mu} = |C_F|$ and add the induced edge-disjoint cycles in G to C.

Theorem 2.1. Algorithm 2 determines a cycle packing \mathcal{Z} of G of cardinality

$$|\mathcal{Z}| = \sum_{\mu \in \mathcal{T}} \nu_{\mu}.$$

Proof. Let \mathcal{T} be the SPR-tree of G.

When inspecting a S-node μ , the real edges in E_{μ} never induce a cycle, hence, $\nu_{\mu} = 0$. If the real edges induce an *u*-*v*-path in E_{μ} the corresponding *u*-*v*-path P_{uv} in *G* may contribute to an additional cycle *C* in \mathcal{Z} . Therefore, the virtual edge $\bar{e}_{(\mu,\mu')}$ in $E_{\mu'}$ is replaced by the real edge (u, v), P((u, v)) is set to P_{uv} and μ is deleted from \mathcal{T} . The possible cycle *C* might be determined when inspecting μ' .

When inspecting a R-node μ , two cycle packings C_1 and C_2 are determined for E_{μ} and $E_{\mu} \setminus \bar{e}_{(\mu,\mu')}$, respectively. E_{μ} induces at least a cycle packing of cardinality $\nu_{\mu} = |C_2|$ in G. If $|C_1| > |C_2|$, P((u, v)) may also contribute to one more cycle C in \mathcal{Z} . Therefore the virtual edge $\bar{e}_{(\mu,\mu')}$ is replaced in $E_{\mu'}$ by (u, v) and a C might be determined when inspecting μ' .

When inspecting a P-node μ , different pairs of real edges in E_{μ} always induce edge-disjoint cycles in G. If $|E_{\mu}|$ is even, there are $\nu_{\mu} = \frac{|E_{\mu}|}{2} - 1$ of such pairs. The path P_{uv} induced by the remaining real edge may contribute to an additional cycle C in \mathcal{Z} . For this reason the virtual edge $\bar{e}_{(\mu,\mu')}$ is replaced in $E_{\mu'}$ by (u, v) and C might be determined when inspecting μ' . If $|E_{\mu}|$ is odd, there are $\nu_{\mu} = \frac{|E_{\mu}|-1}{2}$ pairs of real edges inducing the same number of additional cycles in \mathcal{Z} .

Algorithm 2 has approximation ratio $\mathcal{O}(\log n)$, the same as Algorithm 1. If the SPR-tree \mathcal{T} of G has no R-nodes we next proof in Section 3 that Algorithm 2 is optimal.

3. Proof of optimality for General Series-Parallel Graphs

Let G be a multigraph without loops. G is called generalized series-parallel, if it can be reduced to the K_2 by performing a sequence of simple operations:

- (a) Replace two parallel edges by a single edge;
- (b) replace two edges with a common incident node of degree 2 by a single edge;
- (c) delete vertices of degree 1.

If there is no vertex of degree 1 to delete, G is called *series-parallel*. It is known that outerplanar graphs are generalized series-parallel [13]. A 2-connected generalized series-parallel multigraph G is reducable to K_2 by only performing operations (a) and (b). We will assume the input graph is 2-connected, since the algorithm could be launched on each block of G. The SPR-tree \mathcal{T} of G has no R-nodes (cf. [17]). In this case the iterations of Algorithm 2 reflect a systematic sequence of operations of type (a) and (b) for the reduction of G. It leads to optimality of \mathcal{Z} .

Theorem 3.1. Let G be a 2-connected, generalized series-parallel multigraph without loops. Then

$$\nu(G) = \sum_{\mu \in \mathcal{T}} \nu_{\mu},$$

i.e. Algorithm 2 determines a maximum cycle packing of G.

Proof. For the proof we will use induction on the number N of nodes in the SPR-tree $\mathcal{T}(G)$ of G. Let N = 1, i.e. $\mathcal{T}(G)$ is either a P-node or a S-node, respectively. Hence, the series-parallel multigraph G is either a set of r parallel edges $(r \ge 3)$ or a cycle of length ≥ 3 . In the first case $\nu(G) = \lfloor \frac{r}{2} \rfloor$, in the second case $\nu(G) = 1$. In both cases $\nu(G)$ is the output of Algorithm 2 (step F).

Let $N \ge 2$ and let us assume that Algorithm 2 determines $\nu(G')$ for all series-parallel multigraphs G' such that $\mathcal{T}(G')$ has at most N-1 nodes. Let G be a series-parallel multigraph such that $\mathcal{T}(G)$ has N nodes. Now, we apply Algorithm 2. When selecting the *first* node $\mu \in \mathcal{T}(G)$ for inspection, the following cases can occur.

- (a) μ is a S-leaf. Then Algorithm 2 treats μ according (1_S) . The multigraph $G' = G \setminus (E_{\mu} \setminus \bar{e}_{(\mu,\mu')}) \cup (u,v)$ is series-parallel and $\mathcal{T}(G') = \mathcal{T}(G) \setminus \mu$, i.e. $\mathcal{T}(G')$ has N-1 nodes. Moreover, $\nu(G') = \nu(G)$. By hypothesis $\nu(G') = \sum_{\tilde{\mu} \in \mathcal{T}(G')} \nu_{\tilde{\mu}}$ and therefore $\sum_{\tilde{\mu} \in \mathcal{T}(G)} \nu_{\tilde{\mu}} = \sum_{\tilde{\mu} \in \mathcal{T}(G')} \nu_{\tilde{\mu}} + \nu_{\mu} = \nu(G') + 0 = \nu(G)$.
- (b) μ is a P-leaf in $\mathcal{T}(G)$, then all leaf nodes are P-nodes.
 - (b1) There exists at least one leaf μ with an odd number of real edges, i.e. $|E_{\mu}|$ is even. Its predecessor μ' is a S-node. Algorithm 2 treats μ according $(3_P, (i))$. The multigraph $G' = G \setminus (E_{\mu} \setminus \overline{e}_{(\mu,\mu')}) \cup (u,v)$ is series-parallel and $\mathcal{T}(G') = \mathcal{T}(G) \setminus \mu$, i.e. $\mathcal{T}(G')$ has N-1 nodes. Moreover $\nu(G') = \nu(G) (\frac{|E_{\mu}|}{2} 1)$. By hypothesis $\nu(G') = \sum_{\tilde{\mu} \in \mathcal{T}(G')} \nu_{\tilde{\mu}}$ and, therefore, $\sum_{\tilde{\mu} \in \mathcal{T}(G)} \nu_{\tilde{\mu}} = \sum_{\tilde{\mu} \in \mathcal{T}(G')} \nu_{\tilde{\mu}} + \nu_{\mu} = \nu(G') + (\frac{|E_{\mu}|}{2} 1) = \nu(G)$.
 - (b2) All P-leaves have an even number of real edges. Then a leaf μ is treated according $(3_P, (ii))$. Let $\mu' = pred(\mu)$. We assume that μ' is adjacent to $k \ge 1$ P-leaves μ_1, \ldots, μ_k (let $\mu_1 = \mu$). Let \hat{E} be the set of real edges in $\bigcup_{i \in \{1, \ldots, k\}} E_{\mu_i} \cup E_{\mu'}$. Then for the subgraph \hat{G} induced by \hat{E} we get $\nu(\hat{G}) = \sum_{i \in \{1,...,k\}} \nu_{\mu_i}$. If $E \setminus \hat{E} = \emptyset$, $\mathcal{T}(G) = \emptyset$ $\mathcal{T}(\hat{G}) \text{ and } \nu(G) = \sum_{i \in \{1,\dots,k\}} \nu_{\mu_i} = \sum_{\tilde{\mu} \in \mathcal{T}(G)} \nu_{\tilde{\mu}}. \text{ If } E \setminus \hat{E} \neq \emptyset \text{ then for the graph } G' \text{ in-}$ duced by $E \setminus \hat{E}$ we have $\nu(G') = \nu(G) - \sum_{i \in \{1,...,k\}} \nu_{\mu_i}$. Now we show that G' is seriesparallel. In $\mathcal{T}(G) \setminus (\bigcup_{i \in \{1,...,k\}} \mu_i \cup \mu') \mu'$ must have a predecessor $\mu'' = pred(\mu)$. μ'' is a P-node and must contain at least two parallel edges with endvertices, say u'', v''. One of them corresponds to the subgraph G when recovering G from $\mathcal{T}(G)$ (according to property 4). Since G is series-parallel, $G'' = G' \cup (u'', v'')$ is series-parallel. Since there is at least one more virtual edge parallel to (u'', v'') in $E_{\mu''}$, there must be a subgraph $\tilde{G} \subset G$ such that \tilde{G} is reducible to a parallel edge of (u'', v'') and $E(\tilde{G}) \cap E(\hat{G}) = \emptyset$. According to property (b) of definition $G'' \setminus (u'', v'') = G'$ must be series-parallel. Obviously $\mathcal{T}(G') = \mathcal{T}(G) \setminus (\bigcup_{i \in \{1, \dots, k\}} \mu_i \cup \mu')$. $\mathcal{T}(G')$ has N - (k+1) nodes. By hypothesis $\nu(G') = \sum_{\tilde{\mu} \in \mathcal{T}(G')} \nu_{\tilde{\mu}} \text{ and } \nu(G) = \sum_{\tilde{\mu} \in \mathcal{T}(G')} \nu_{\tilde{\mu}} + \sum_{i \in \{1,...,k\}} \nu_{\mu_i} = \sum_{\tilde{\mu} \in \mathcal{T}(G)} \nu_{\tilde{\mu}}.$

The SPQR-tree of a 2-connected multigraph can be determined in linear time [9]. This holds also for the SPR-tree (see [3]) and we immediately get:

Corollary 3.1. If G is a 2-connected, generalized series-parallel multigraph without loops, then a maximum cycle packing of G can be determined in linear time.

References

- [1] N. Alon, C. McDiarmid, and M. Molloy, Edge-disjoint cycles in regular directed graphs, *J. Graph Theory* **22** (1996), 231–237.
- [2] A. Caprara, A. Panconesi, and R. Rizzi, Packing cycles in undirected graphs, J. Algorithms 48 (2003), 239–256.
- [3] M. Chimani, Computing Crossing Numbers, PhD thesis, TU Dortmund (2008). http:// hdl.handle.net/2003/25955
- [4] G. Di Battista and R. Tamassia, Incremental planarity testing, *30th Annual Symposium on Foundations of Computer Science* (1989), 436–441.
- [5] G. Di Battista and R. Tamassia, On-line maintenance of triconnected components with SPQR-trees, *Algorithmica* **15** (1996), 302–318.
- [6] G. Dirac and P. Erdős, On the maximal number of independent circuits in a graph, *Acta Mathematica Academiae Scientiarum Hungarica* **14** (1963), 79–94.
- [7] P. Erdős and L. Pósa, On the maximal number of disjoint circuits of a graph, *Publicationes Mathematicae Debrecen* 9 (1962), 3–12.
- [8] Z. Friggstad and M.R. Salavatipour, Approximability of packing disjoint cycles, *Algorithmica* 60 (2011), 395–400.
- [9] C. Gutwenger and P. Mutzel, A linear time implementation of SPQR-trees, *Proceedings of the 8th International Symposium on Graph Drawing* (2000), 77–90.
- [10] L. Hao, Edge disjoint cycles in graphs, J. Graph Theory 13 (1989), 313–322.
- [11] J. Harant, D. Rautenbach, P. Recht, and F. Regen, Packing edge-disjoint cycles in graphs and the cyclomatic number, *Discrete Math.* **310** (2010), 1456–1462.
- [12] J. Harant, D. Rautenbach, P. Recht, I. Schiermeyer, and E.-M. Sprengel, Packing disjoint cycles over vertex cuts, *Discrete Math.* **310** (2010), 1974–1978.
- [13] N.M. Korneyenko, Combinatorial algorithms on a class of graphs, *Discrete Appl. Math.* 54 (1994), 215–217.

- [14] M. Krivelevich, Z. Nutov, M. R. Salavatipour, J. Verstraete, and R. Yuster, Approximation algorithms and hardness results for cycle packing problems, ACM Transactions on Algorithms (TALG) 3 (2007), 48.
- [15] S. Mac Lane, A structural characterization of planar combinatorial graphs, *Duke Mathematical Journal* **3** (1937), 460–472.
- [16] B. Mohar, Obstructions for the disk and the cylinder embedding extension problems, *Combinatorics, Probability and Computing* 3 (1994), 375–406.
- [17] P. Mutzel, The SPQR-tree data structure in graph drawing, *Proceedings of the 30th International Conference on Automata, Languages and Programming* (2003), 34–46.
- [18] D. Rautenbach and F. Regen, On packing shortest cycles in graphs, *Information Processing Letters* 109 (2009), 816–821.
- [19] P. Recht and E.-M. Sprengel, Packing Euler graphs with traces, Operations Research Proceedings 2011 (2012), 53–58.
- [20] P. Recht and S. Stehling, On maximum cycle packings in polyhedral graphs, *Electron. J. Graph Theory Appl.* 2 (1) (2014), 18–31.
- [21] W.T. Tutte, *Connectivity in graphs* (1966).