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Abstract

Let G = (V,E) be an undirected multigraph without loops. The maximum cycle packing problem
is to find a collection Z∗ = {C1, ..., Cs} of edge-disjoint cycles Ci ⊂ G of maximum cardinality
ν(G). In general, this problem is NP-hard. An approximation algorithm for computing ν(G) for
2-connected graphs is presented, which is based on splits ofG. It essentially uses the representation
of the 3-connected components ofG by its SPR-tree. It is proved that for generalized series-parallel
multigraphs the algorithm is optimal, i.e. it determines a maximum cycle packingZ∗ in linear time.
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1. Introduction

Let G = (V (G), E(G)) be a finite and undirected graph with vertex set V (G) and edge set
E(G) which may contain multiple edges but no loops. A graph G′ = (V ′, E ′) is a subgraph of G
(G′ ⊆ G), if V ′ ⊆ V and E ′ ⊆ E. A subgraph G′ = (V ′, E ′) ⊂ G is induced by E ′ ⊂ E (G′ =
G|E′) if V ′ consists of all vertices that are incident with edges in E ′. Similarly, G′ = (V ′, E ′) ⊂ G
is induced by V ′ ⊂ V (G′ = G|V ′) if E ′ consists of all edges e ∈ E, that have both endvertices
in V ′. We will write G \ V ′ := G|V \V ′ and G \ E ′ := G|E\E′ , respectively. For u ∈ V the
degree δG(u) is the number of its incident edges in G. A path P of length r ≥ 0 is a sequence of
distinct edges (e1, . . . , er) such that ei = (vi−1, vi) ∈ E(G) where the vertices v0, . . . , vr ∈ V (G)
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are distinct. We sometimes say P is a v0-vr-path to emphasize the first and the last vertex of a
path. A cycle C of length r ≥ 2 is a sequence (e1, . . . , er−1, er) such that (e1, . . . , er−1) is a
path of length r − 1 and er = (vr−1, v0). Since P can be considered as a subgraph of G we
sometimes say that P is induced by its edgeset E(P ). A graph G is connected if for each pair of
vertices v, w ∈ V there is a v-w-path in G. A set S ⊂ V is called a k-separator of G (k ≥ 0,
|S| = k) if G|V \S is not connected. A connected graph G is called k-connected if there is no
(k − 1)-separator in G. The maximum 1-connected subgraphs of G are called 1-components. The
maximum 2-connected subgraphs of G are called blocks. We say G is k-separable if there exist
subgraphs G1, G2 of G such that G = G1 ∪G2 with |V (G1) ∩ V (G2)| = k, E(G1) ∩ E(G2) = ∅
and |E(G1)| ≥ k, |E(G2)| ≥ k. The pair {G1, G2} is then called a k-separation of G. Two
subgraphs G′ = (V ′, E ′) and G′′ = (V ′′, E ′′) are called edge-disjoint if E ′ ∩ E ′′ = ∅. A packing
of edge-disjoint cycles of cardinality s in G is a set Z = {C1, . . . , Cs} of cycles that are mutually
edge-disjoint. A cycle packing Z∗ of maximum cardinality is called a maximum cycle packing.
Its cardinality |Z∗| is denoted by ν(G).

Packing edge-disjoint cycles in graphs is a classical graph-theoretical problem. There is a large
amount of literature concerning cycle packing problems for example [12], [11], [10], [1], [20],
[7], [6], [19], [18]. In [14], [2] and [8] simple approximation algorithms are described since cycle
packing problems are typically hard [14].

The basic idea of this paper is to decompose G into suitable subgraphs Gi and relate maximum
cycle packings Zi of the Gi to a maximum cycle packing Z∗ of G. In the case that Gi are the
1-components it holds that Z∗ =

⋃
Zi and ν(G) =

∑
ν(Gi). If G is decomposed into blocks

Bi it holds that ν(G) =
∑
ν(Bi). If G is 2-connected an appropriate tool to represent G by its

3-connected components is the SPR-tree [5]. In Section 2 this tool is used to obtain an algorithm
that provides an approximation of a maximum cycle packing of G. The proof of optimality of the
algorithm for general series-parallel graphs is given in Section 3.

2. Cycle packing by using SPR-trees

In [2] a greedy type algorithm was suggested for the determination of a large number of edge-
disjoint cycles in an arbitrary graph G (see also [14]). Its basic idea is to search for the shortest
cycle C in G, then delete it from G and delete also edges that cannot be contained in a cycle of
G \ C. This procedure is continued until there are no edges left. The set of successively deleted
cycles finally provides the approximation of a maximum cycle packing of G (Algorithm 1). The
algorithm has approximation ratio O(log n) (see [2]).

In the special case that G is 2-connected we, additionally, will exploit the splits of G into 3-
components during the algorithmic procedure. By this we can relate the edge-disjoint cycles within
each of these components to cycles in a cycle packing of G. Let G be a 2-connected multigraph
and let {G1, G2} be a 2-separation of G. If {u, v} = V (G1) ∩ V (G2), we call the 2-separation a
split, ifG1 orG2 has no 0- or 1-separator andG1\{u, v} orG2\{u, v} is non-empty and connected
[16]. In [21] it was proved that 2-connected graphs that have no splits are either 3-connected or
cycles of length ≥ 3 or a bundle of parallel edges between two vertices, respectively. For a split
{G1, G2} let G′1 and G′2 be the graphs obtained from G1 and G2 by adding an edge (u, v) to each
of them where (u, v) is determined by the common vertices {u, v} = V (G1) ∩ V (G2). The added
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Algorithm 1 Greedy algorithm for the maximum cycle packing problem
Require: Biconnected multigraph G = (V,E) without loops.
Ensure: Cycle packing C of size ν(G).
1: C ← ∅ and ν(G)← 0
2: while G 6= ∅ do
3: for all vertices v ∈ V with δ(v) ≤ 1 do
4: delete v
5: end for
6: for all vertices v ∈ V with δ(v) = 2 do
7: replace e′ = (u, v) and e′′ = (v, w) by e = (u,w)
8: end for
9: search for a shortest cycle C ∈ G

10: C ← C ∪ C
11: ν(G)← ν(G) + 1
12: for all edges e ∈ C do
13: delete e ∈ G
14: end for
15: end while
16: return Cycle packing C and lower bound ν(G) of ν(G).

edges are called virtual edges. Since G′1 and G′2 are 2-connected one may repeat the split process
as long as the obtained graphs admit splits. Each of the resulting graphs finally constructed in this
way is called a split component of G. A split component contains edges from E and some virtual
edges determined by its consecutive split operations. In [15] and [21] it was shown, that split
components of G are uniquely determined and independent of the sequence in which consecutive
split operations were performed.

By this G can be represented using the SPR-tree T (G) = (M,A) of G as defined in [3], which
is an alternative to the definition of [5, 9]. If no ambiguity is possible we write T for short. A
SPR-tree T of a 2-connected multigraph G is the smallest tree with the following properties

1. To every node1 µ ∈M a multigraph Gµ = (Vµ, Eµ) (called skeleton of µ) is associated.
2. Depending on their skeletons the nodes of T are of one of the following three types

• µ is a S-node if Gµ is a cylce of length ≥ 3,

• µ is a P-node if Gµ is a bundle of parallel edges,

• µ is a R-node if Gµ is a simple 3-connected graph.

3. There is an edge (µ, µ′) ∈ A if and only if there is u, v ∈ V such that Gµ and Gµ′ have
ē(µ,µ′) := (u, v) as a common virtual edge.

4. The graph G can be recovered by applying the following operation on the nodes of T : for
(µ, µ′) ∈ A set G(µ,µ′) := (Gµ \ ē(µ,µ′)) ∪ (Gµ′ \ ē(µ,µ′)) and merge the two nodes µ, µ′ to a
new single node.

In [3] it was proved that a SPR-tree T of a 2-connected multigraph G exists and is unique.
Moreover, it has neither two adjacent S-nodes nor two adjacent P-nodes. Since there is a strong

1The vertices in T are usually called nodes.
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relation between SPR-trees and SPQR-trees introduced in [4], its size as well as the complexity of
its determination is linear (in O(|V |+ |E|)) (cf. [3]).

In the sequel we assume that G is a 2-connected multigraph with no loops. Let T be the
SPR-tree of G and µ be a leaf in T (i.e. a node in T such that δT (µ) = 1). The following
approximation procedure applies Algorithm 1 in some of the iterations. It essentially exploits the
SPR-tree representation of G and uses property 4 of T for an iterative construction of a large cycle
packing Z in G. These cycles will be constructed from paths Pµ for µ ∈ T . We initialize the sets
Pµ by Pµ = {P (e) | e is a real edge in Eµ} with P (e) := e and Z = ∅.

During the procedure leaf nodes µ and the corresponding set Pµ are successively inspected.
Leaf nodes of S-type are always processed first, followed by R-leaves and P-leaves. Note, that for
a leaf node µ ∈ M there is a unique node µ′ ∈ M such that (µ, µ′) ∈ A and the edge set Eµ
contains exactly one virtual edge ē(µ,µ′) = (u, v). Within the procedure we set pred(µ) := µ′ the
predecessor of µ. An inspection looks for the existence of edge-disjoint cycles on the real edges
in Eµ. Such cycles correspond to edge-disjoint cycles in G. If there still remains an u-v-path on
the real edges in Eµ there remains a corresponding u-v-path Puv in G. In this case the virtual edge
ē(µ,µ′) in Eµ′ is replaced by the real edge (u, v) and P ((u, v)) is set to Puv. If the virtual edge can
not be replaced in such a way, it is deleted from Eµ′ .

Depending on the type of leaf node µ and its edge set Eµ the edge set Eµ′ of pred(µ) is treated
differently according to the following rules:

1S µ is S-node: If the real edges in Eµ induce an u-v-path in Eµ, replace ē(µ,µ′) ∈ Eµ′ by the
real edge (u, v). Assign the u-v-path induced by

⋃
{E(P ) | P ∈ Pµ} to P ((u, v)). Set

Pµ′=Pµ′ ∪ P ((u, v)), νµ = 0 and delete µ from T .

2R µ is R-node: Determine cycle packings C1 and C2 for the graphs induced by Eµ and Eµ \
ē(µ,µ′), respectively. Set νµ = |C2|, add the corresponding edge-disjoint cycles in G to Z and
delete the related paths from Pµ. If |C1| = |C2| delete ē(µ,µ′) ∈ Eµ′ . If |C1| > |C2|, there
is an u-v-path in Eµ, not contained in any of the cycles of C2. Replace ē(µ,µ′) ∈ Eµ′ by the
real edge (u, v). Assign the u-v-path Puv induced by

⋃
{E(P ) | P ∈ Pµ} to P ((u, v)). Set

Pµ′=Pµ′ ∪ P ((u, v)) and delete µ from T .

3P µ is P-node:

(i) If |Eµ| is even, there is a cycle packing CP with νµ = |Eµ|
2
− 1 cycles of length 2.

Add the corresponding edge-disjoint cycles in G to C. Then delete the related paths
from Pµ. There remains an real edge e in Eµ, not contained in any of the cycles of CP .
Replace ē(µ,µ′) ∈ Eµ′ by the real edge (u, v) and assign the u-v-path Puv induced by e
to P ((u, v)). Set Pµ′=Pµ′ ∪ P ((u, v)) and delete µ from T .

(ii) If |Eµ| is odd, there is a cycle packing CP with νµ = |Eµ|−1
2

cycles of length 2. Add the
induced edge-disjoint cycles in G to C. Further delete ē(µ,µ′) ∈ Eµ′ and delete µ from
T .

The procedure terminates inspecting the final node:
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Algorithm 2 Approximation algorithm for the maximum cycle packing problem
Require: Biconnected multigraph G without loops.
Ensure: Lower bound ν(G) for the maximum cycle packing number ν(G).
1: TG ← SPR(G)
2: C ← ∅, ν(G)← 0 and Pµ ← ∅ ∀µ ∈M
3: while ∃ SPR-node µ in T do
4: for all S-leaves µ do
5: µ′ := pred(µ)
6: if δ(v) = 2 ∀v ∈ Vµ then
7: replace ē(µ,µ′) ∈ Eµ′ by real edge
8: Pµ′ ← Pµ′∪ P (ē(µ,µ′))
9: end if

10: νµ ← 0 and T ← T \ µ
11: ν(G)← ν(G) + νµ
12: end for
13: for all R-leaves µ do
14: µ′ := pred(µ)
15: C1 ← Algorithm 1(Gµ)
16: C2 ← Algorithm 1(Gµ \ ē(µ,µ′))
17: if |C1| == |C2| then
18: delete ē(µ,µ′) ∈ Eµ′

19: else if |C1| > |C2| then
20: replace ē(µ,µ′) ∈ Eµ′ by real edge
21: Pµ′ ← Pµ′∪ P (ē(µ,µ′))
22: end if
23: νµ ← |C2| and T ← T \ µ
24: ν(G)← ν(G) + νµ and C ← C ∪ C2
25: end for
26: for all P-leaves µ do
27: µ′ := pred(µ)
28: if |Eµ| is not even then
29: νµ ← |Eµ|−1

2
30: delete ē(µ,µ′) in Eµ′

31: else if |Eµ| is even then
32: νµ ← |Eµ|

2 − 1
33: replace ē(µ,µ′) in Eµ′ by real edge
34: Pµ′ ← Pµ′ ∪ P (ē(µ,µ′))
35: end if
36: ν(G)← ν(G) + νµ and T ← T \ µ
37: C ← C ∪ {{P (2i−1), P (2i)} | P (i) ∈ Pµ∀i = 1, . . . , νµ}
38: end for
39: for the final node µ do
40: if µ is S-leaf and δ(v) = 2 ∀v ∈ Vµ then
41: νµ ← 1 and C ← C ∪ P |E(

⋃
e∈Eµ P (e))

42: else if µ is R-leaf then
43: C1 ← Algorithm 1(Gµ), νµ ← |C∞| and C ← C ∪ C1
44: else if µ is P-leaf then
45: νµ ← b |Eµ|2 c and C ← C ∪ {{P (2i−1), P (2i)} | P (i) ∈ Pµ∀i = 1, . . . , νµ}
46: end if
47: ν(G)← ν(G) + νµ and T ← T \ µ
48: end for
49: end while
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F If µ is the final node, determine a cycle packing CF in the graph induced byEµ. Set νµ = |CF |
and add the induced edge-disjoint cycles in G to C.

Theorem 2.1. Algorithm 2 determines a cycle packing Z of G of cardinality

|Z| =
∑
µ∈T

νµ.

Proof. Let T be the SPR-tree of G.
When inspecting a S-node µ, the real edges in Eµ never induce a cycle, hence, νµ = 0. If

the real edges induce an u-v-path in Eµ the corresponding u-v-path Puv in G may contribute to
an additional cycle C in Z . Therefore, the virtual edge ē(µ,µ′) in Eµ′ is replaced by the real edge
(u, v), P ((u, v)) is set to Puv and µ is deleted from T . The possible cycle C might be determined
when inspecting µ′.

When inspecting a R-node µ, two cycle packings C1 and C2 are determined for Eµ and Eµ \
ē(µ,µ′), respectively. Eµ induces at least a cycle packing of cardinality νµ = |C2| inG. If |C1| > |C2|,
P ((u, v)) may also contribute to one more cycle C in Z . Therefore the virtual edge ē(µ,µ′) is
replaced in Eµ′ by (u, v) and a C might be determined when inspecting µ′.

When inspecting a P-node µ, different pairs of real edges in Eµ always induce edge-disjoint
cycles in G. If |Eµ| is even, there are νµ = |Eµ|

2
− 1 of such pairs. The path Puv induced by the

remaining real edge may contribute to an additional cycle C in Z . For this reason the virtual edge
ē(µ,µ′) is replaced in Eµ′ by (u, v) and C might be determined when inspecting µ′. If |Eµ| is odd,
there are νµ = |Eµ|−1

2
pairs of real edges inducing the same number of additional cycles in Z .

Algorithm 2 has approximation ratio O(log n), the same as Algorithm 1. If the SPR-tree T of
G has no R-nodes we next proof in Section 3 that Algorithm 2 is optimal.

3. Proof of optimality for General Series-Parallel Graphs

LetG be a multigraph without loops. G is called generalized series-parallel, if it can be reduced
to the K2 by performing a sequence of simple operations:

(a) Replace two parallel edges by a single edge;

(b) replace two edges with a common incident node of degree 2 by a single edge;

(c) delete vertices of degree 1.

If there is no vertex of degree 1 to delete, G is called series-parallel. It is known that outerplanar
graphs are generalized series-parallel [13]. A 2-connected generalized series-parallel multigraph
G is reducable to K2 by only performing operations (a) and (b). We will assume the input graph
is 2-connected, since the algorithm could be launched on each block of G. The SPR-tree T of G
has no R-nodes (cf. [17]). In this case the iterations of Algorithm 2 reflect a systematic sequence
of operations of type (a) and (b) for the reduction of G. It leads to optimality of Z .
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Theorem 3.1. LetG be a 2-connected, generalized series-parallel multigraph without loops. Then

ν(G) =
∑
µ∈T

νµ,

i.e. Algorithm 2 determines a maximum cycle packing of G.

Proof. For the proof we will use induction on the number N of nodes in the SPR-tree T (G) of G.
Let N = 1, i.e. T (G) is either a P-node or a S-node, respectively. Hence, the series-parallel

multigraph G is either a set of r parallel edges (r ≥ 3) or a cycle of length ≥ 3. In the first case
ν(G) = b r

2
c, in the second case ν(G) = 1. In both cases ν(G) is the output of Algorithm 2 (step F).

Let N ≥ 2 and let us assume that Algorithm 2 determines ν(G′) for all series-parallel multi-
graphs G′ such that T (G′) has at most N − 1 nodes. Let G be a series-parallel multigraph such
that T (G) has N nodes. Now, we apply Algorithm 2. When selecting the first node µ ∈ T (G) for
inspection, the following cases can occur.

(a) µ is a S-leaf. Then Algorithm 2 treats µ according (1S). The multigraph G′ = G \ (Eµ \
ē(µ,µ′)) ∪ (u, v) is series-parallel and T (G′) = T (G) \ µ, i.e. T (G′) has N − 1 nodes.
Moreover, ν(G′) = ν(G). By hypothesis ν(G′) =

∑
µ̃∈T (G′) νµ̃ and therefore

∑
µ̃∈T (G) νµ̃ =∑

µ̃∈T (G′) νµ̃ + νµ = ν(G′) + 0 = ν(G).

(b) µ is a P-leaf in T (G), then all leaf nodes are P-nodes.

(b1) There exists at least one leaf µ with an odd number of real edges, i.e. |Eµ| is even. Its
predecessor µ′ is a S-node. Algorithm 2 treats µ according (3P , (i)). The multigraph
G′ = G\ (Eµ \ ē(µ,µ′))∪ (u, v) is series-parallel and T (G′) = T (G)\µ, i.e. T (G′) has
N−1 nodes. Moreover ν(G′) = ν(G)−( |Eµ|

2
−1). By hypothesis ν(G′) =

∑
µ̃∈T (G′) νµ̃

and, therefore,
∑

µ̃∈T (G) νµ̃ =
∑

µ̃∈T (G′) νµ̃ + νµ = ν(G′) + ( |Eµ|
2
− 1) = ν(G).

(b2) All P-leaves have an even number of real edges. Then a leaf µ is treated accord-
ing (3P , (ii)). Let µ′ = pred(µ). We assume that µ′ is adjacent to k ≥ 1 P-leaves
µ1, . . . , µk (let µ1 = µ). Let Ê be the set of real edges in

⋃
i∈{1,...,k}Eµi ∪Eµ′ . Then for

the subgraph Ĝ induced by Ê we get ν(Ĝ) =
∑

i∈{1,...,k} νµi . If E \ Ê = ∅, T (G) =

T (Ĝ) and ν(G) =
∑

i∈{1,...,k} νµi =
∑

µ̃∈T (G) νµ̃. IfE\Ê 6= ∅ then for the graphG′ in-
duced byE\Ê we have ν(G′) = ν(G)−

∑
i∈{1,...,k} νµi . Now we show thatG′ is series-

parallel. In T (G)\ (
⋃
i∈{1,...,k} µi∪µ′) µ′ must have a predecessor µ′′ = pred(µ). µ′′ is

a P-node and must contain at least two parallel edges with endvertices, say u′′, v′′. One
of them corresponds to the subgraph Ĝ when recovering G from T (G) (according to
property 4). SinceG is series-parallel, G′′ = G′∪(u′′, v′′) is series-parallel. Since there
is at least one more virtual edge parallel to (u′′, v′′) in Eµ′′ , there must be a subgraph
G̃ ⊂ G such that G̃ is reducible to a parallel edge of (u′′, v′′) and E(G̃) ∩ E(Ĝ) = ∅.
According to property (b) of definitionG′′\(u′′, v′′) = G′ must be series-parallel. Obvi-
ously T (G′) = T (G)\(

⋃
i∈{1,...,k} µi∪µ′). T (G′) hasN−(k+1) nodes. By hypothesis

ν(G′) =
∑

µ̃∈T (G′) νµ̃ and ν(G) =
∑

µ̃∈T (G′) νµ̃ +
∑

i∈{1,...,k} νµi =
∑

µ̃∈T (G) νµ̃.
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The SPQR-tree of a 2-connected multigraph can be determined in linear time [9]. This holds
also for the SPR-tree (see [3]) and we immediately get:

Corollary 3.1. If G is a 2-connected, generalized series-parallel multigraph without loops, then a
maximum cycle packing of G can be determined in linear time.
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