Electronic Journal of Graph Theory and Applications

Maximum cycle packing using SPR-trees

Christin Otto, Peter Recht
Operations Research and Business Informatics
TU Dortmund
44221 Dortmund, Germany

christin-maria.otto@tu-dortmund.de, peter.recht@tu-dortmund.de

Abstract

Let $G=(V, E)$ be an undirected multigraph without loops. The maximum cycle packing problem is to find a collection $\mathcal{Z}^{*}=\left\{C_{1}, \ldots, C_{s}\right\}$ of edge-disjoint cycles $C_{i} \subset G$ of maximum cardinality $\nu(G)$. In general, this problem is $\mathcal{N} \mathcal{P}$-hard. An approximation algorithm for computing $\nu(G)$ for 2-connected graphs is presented, which is based on splits of G. It essentially uses the representation of the 3-connected components of G by its SPR-tree. It is proved that for generalized series-parallel multigraphs the algorithm is optimal, i.e. it determines a maximum cycle packing \mathcal{Z}^{*} in linear time.


```
Keywords: maximum cycle packing, decomposition, SPR-trees, edge-disjoint cycle
Mathematics Subject Classification : 05C38, 05C70
DOI: 10.5614/ejgta.2019.7.1.11
```


1. Introduction

Let $G=(V(G), E(G))$ be a finite and undirected graph with vertex set $V(G)$ and edge set $E(G)$ which may contain multiple edges but no loops. A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G $\left(G^{\prime} \subseteq G\right)$, if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. A subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right) \subset G$ is induced by $E^{\prime} \subset E\left(G^{\prime}=\right.$ $\left.G\right|_{E^{\prime}}$) if V^{\prime} consists of all vertices that are incident with edges in E^{\prime}. Similarly, $G^{\prime}=\left(V^{\prime}, E^{\prime}\right) \subset G$ is induced by $V^{\prime} \subset V\left(G^{\prime}=\left.G\right|_{V^{\prime}}\right)$ if E^{\prime} consists of all edges $e \in E$, that have both endvertices in V^{\prime}. We will write $G \backslash V^{\prime}:=\left.G\right|_{V \backslash V^{\prime}}$ and $G \backslash E^{\prime}:=\left.G\right|_{E \backslash E^{\prime}}$, respectively. For $u \in V$ the degree $\delta_{G}(u)$ is the number of its incident edges in G. A path P of length $r \geq 0$ is a sequence of distinct edges $\left(e_{1}, \ldots, e_{r}\right)$ such that $e_{i}=\left(v_{i-1}, v_{i}\right) \in E(G)$ where the vertices $v_{0}, \ldots, v_{r} \in V(G)$

Received: 2 February 2017, Revised: 26 September 2018, Accepted: 23 December 2018.
are distinct. We sometimes say P is a $v_{0}-v_{r}$-path to emphasize the first and the last vertex of a path. A cycle C of length $r \geq 2$ is a sequence $\left(e_{1}, \ldots, e_{r-1}, e_{r}\right)$ such that $\left(e_{1}, \ldots, e_{r-1}\right)$ is a path of length $r-1$ and $e_{r}=\left(v_{r-1}, v_{0}\right)$. Since P can be considered as a subgraph of G we sometimes say that P is induced by its edgeset $E(P)$. A graph G is connected if for each pair of vertices $v, w \in V$ there is a v - w-path in G. A set $S \subset V$ is called a k-separator of $G(k \geq 0$, $|S|=k$) if $\left.G\right|_{V \backslash S}$ is not connected. A connected graph G is called k-connected if there is no ($k-1$)-separator in G. The maximum 1-connected subgraphs of G are called 1-components. The maximum 2-connected subgraphs of G are called blocks. We say G is k-separable if there exist subgraphs G_{1}, G_{2} of G such that $G=G_{1} \cup G_{2}$ with $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|=k, E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$ and $\left|E\left(G_{1}\right)\right| \geq k,\left|E\left(G_{2}\right)\right| \geq k$. The pair $\left\{G_{1}, G_{2}\right\}$ is then called a k-separation of G. Two subgraphs $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and $G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$ are called edge-disjoint if $E^{\prime} \cap E^{\prime \prime}=\emptyset$. A packing of edge-disjoint cycles of cardinality s in G is a set $\mathcal{Z}=\left\{C_{1}, \ldots, C_{s}\right\}$ of cycles that are mutually edge-disjoint. A cycle packing \mathcal{Z}^{*} of maximum cardinality is called a maximum cycle packing. Its cardinality $\left|\mathcal{Z}^{*}\right|$ is denoted by $\nu(G)$.

Packing edge-disjoint cycles in graphs is a classical graph-theoretical problem. There is a large amount of literature concerning cycle packing problems for example [12], [11], [10], [1], [20], [7], [6], [19], [18]. In [14], [2] and [8] simple approximation algorithms are described since cycle packing problems are typically hard [14].

The basic idea of this paper is to decompose G into suitable subgraphs G_{i} and relate maximum cycle packings \mathcal{Z}_{i} of the G_{i} to a maximum cycle packing \mathcal{Z}^{*} of G. In the case that G_{i} are the 1 -components it holds that $\mathcal{Z}^{*}=\bigcup \mathcal{Z}_{i}$ and $\nu(G)=\sum \nu\left(G_{i}\right)$. If G is decomposed into blocks B_{i} it holds that $\nu(G)=\sum \nu\left(B_{i}\right)$. If G is 2-connected an appropriate tool to represent G by its 3 -connected components is the SPR-tree [5]. In Section 2 this tool is used to obtain an algorithm that provides an approximation of a maximum cycle packing of G. The proof of optimality of the algorithm for general series-parallel graphs is given in Section 3.

2. Cycle packing by using SPR-trees

In [2] a greedy type algorithm was suggested for the determination of a large number of edgedisjoint cycles in an arbitrary graph G (see also [14]). Its basic idea is to search for the shortest cycle C in G, then delete it from G and delete also edges that cannot be contained in a cycle of $G \backslash C$. This procedure is continued until there are no edges left. The set of successively deleted cycles finally provides the approximation of a maximum cycle packing of G (Algorithm 1). The algorithm has approximation ratio $\mathcal{O}(\log n)$ (see [2]).

In the special case that G is 2-connected we, additionally, will exploit the splits of G into 3components during the algorithmic procedure. By this we can relate the edge-disjoint cycles within each of these components to cycles in a cycle packing of G. Let G be a 2-connected multigraph and let $\left\{G_{1}, G_{2}\right\}$ be a 2-separation of G. If $\{u, v\}=V\left(G_{1}\right) \cap V\left(G_{2}\right)$, we call the 2-separation a split, if G_{1} or G_{2} has no 0 - or 1-separator and $G_{1} \backslash\{u, v\}$ or $G_{2} \backslash\{u, v\}$ is non-empty and connected [16]. In [21] it was proved that 2-connected graphs that have no splits are either 3-connected or cycles of length ≥ 3 or a bundle of parallel edges between two vertices, respectively. For a split $\left\{G_{1}, G_{2}\right\}$ let G_{1}^{\prime} and G_{2}^{\prime} be the graphs obtained from G_{1} and G_{2} by adding an edge (u, v) to each of them where (u, v) is determined by the common vertices $\{u, v\}=V\left(G_{1}\right) \cap V\left(G_{2}\right)$. The added

```
Algorithm 1 Greedy algorithm for the maximum cycle packing problem
Require: Biconnected multigraph \(G=(V, E)\) without loops.
Ensure: Cycle packing \(\mathcal{C}\) of size \(\underline{\nu}(G)\).
    \(\mathcal{C} \leftarrow \emptyset\) and \(\underline{\nu}(G) \leftarrow 0\)
    while \(G \neq \emptyset\) do
        for all vertices \(v \in V\) with \(\delta(v) \leq 1\) do
            delete \(v\)
        end for
        for all vertices \(v \in V\) with \(\delta(v)=2\) do
            replace \(e^{\prime}=(u, v)\) and \(e^{\prime \prime}=(v, w)\) by \(e=(u, w)\)
        end for
        search for a shortest cycle \(C \in G\)
        \(\mathcal{C} \leftarrow \mathcal{C} \cup C\)
        \(\underline{\nu}(G) \leftarrow \underline{\nu}(G)+1\)
        for all edges \(e \in C\) do
            delete \(e \in G\)
        end for
    end while
    return Cycle packing \(\mathcal{C}\) and lower bound \(\underline{\nu}(G)\) of \(\nu(G)\).
```

edges are called virtual edges. Since G_{1}^{\prime} and G_{2}^{\prime} are 2-connected one may repeat the split process as long as the obtained graphs admit splits. Each of the resulting graphs finally constructed in this way is called a split component of G. A split component contains edges from E and some virtual edges determined by its consecutive split operations. In [15] and [21] it was shown, that split components of G are uniquely determined and independent of the sequence in which consecutive split operations were performed.

By this G can be represented using the SPR-tree $\mathcal{T}(G)=(M, A)$ of G as defined in [3], which is an alternative to the definition of [5, 9]. If no ambiguity is possible we write \mathcal{T} for short. A SPR-tree \mathcal{T} of a 2-connected multigraph G is the smallest tree with the following properties

1. To every node ${ }^{1} \mu \in M$ a multigraph $G_{\mu}=\left(V_{\mu}, E_{\mu}\right)$ (called skeleton of μ) is associated.
2. Depending on their skeletons the nodes of \mathcal{T} are of one of the following three types

- μ is a S-node if G_{μ} is a cylce of length ≥ 3,
- μ is a P-node if G_{μ} is a bundle of parallel edges,
- μ is a R-node if G_{μ} is a simple 3-connected graph.

3. There is an edge $\left(\mu, \mu^{\prime}\right) \in A$ if and only if there is $u, v \in V$ such that G_{μ} and $G_{\mu^{\prime}}$ have $\bar{e}_{\left(\mu, \mu^{\prime}\right)}:=(u, v)$ as a common virtual edge.
4. The graph G can be recovered by applying the following operation on the nodes of \mathcal{T} : for $\left(\mu, \mu^{\prime}\right) \in A$ set $G_{\left(\mu, \mu^{\prime}\right)}:=\left(G_{\mu} \backslash \bar{e}_{\left(\mu, \mu^{\prime}\right)}\right) \cup\left(G_{\mu^{\prime}} \backslash \bar{e}_{\left(\mu, \mu^{\prime}\right)}\right)$ and merge the two nodes μ, μ^{\prime} to a new single node.
In [3] it was proved that a SPR-tree \mathcal{T} of a 2-connected multigraph G exists and is unique. Moreover, it has neither two adjacent S-nodes nor two adjacent P-nodes. Since there is a strong

[^0]relation between SPR-trees and SPQR-trees introduced in [4], its size as well as the complexity of its determination is linear (in $\mathcal{O}(|V|+|E|)$) (cf. [3]).

In the sequel we assume that G is a 2 -connected multigraph with no loops. Let \mathcal{T} be the SPR-tree of G and μ be a leaf in \mathcal{T} (i.e. a node in \mathcal{T} such that $\delta_{\mathcal{T}}(\mu)=1$). The following approximation procedure applies Algorithm 1 in some of the iterations. It essentially exploits the SPR-tree representation of G and uses property 4 of \mathcal{T} for an iterative construction of a large cycle packing \mathcal{Z} in G. These cycles will be constructed from paths \mathcal{P}_{μ} for $\mu \in \mathcal{T}$. We initialize the sets \mathcal{P}_{μ} by $\mathcal{P}_{\mu}=\left\{P(e) \mid e\right.$ is a real edge in $\left.E_{\mu}\right\}$ with $P(e):=e$ and $\mathcal{Z}=\emptyset$.

During the procedure leaf nodes μ and the corresponding set \mathcal{P}_{μ} are successively inspected. Leaf nodes of S-type are always processed first, followed by R-leaves and P-leaves. Note, that for a leaf node $\mu \in M$ there is a unique node $\mu^{\prime} \in M$ such that $\left(\mu, \mu^{\prime}\right) \in A$ and the edge set E_{μ} contains exactly one virtual edge $\bar{e}_{\left(\mu, \mu^{\prime}\right)}=(u, v)$. Within the procedure we set $\operatorname{pred}(\mu):=\mu^{\prime}$ the predecessor of μ. An inspection looks for the existence of edge-disjoint cycles on the real edges in E_{μ}. Such cycles correspond to edge-disjoint cycles in G. If there still remains an u - v-path on the real edges in E_{μ} there remains a corresponding $u-v$-path $P_{u v}$ in G. In this case the virtual edge $\bar{e}_{\left(\mu, \mu^{\prime}\right)}$ in $E_{\mu^{\prime}}$ is replaced by the real edge (u, v) and $P((u, v))$ is set to $P_{u v}$. If the virtual edge can not be replaced in such a way, it is deleted from $E_{\mu^{\prime}}$.

Depending on the type of leaf node μ and its edge set E_{μ} the edge set $E_{\mu^{\prime}}$ of $\operatorname{pred}(\mu)$ is treated differently according to the following rules:
$1_{S} \mu$ is S-node: If the real edges in E_{μ} induce an u - v-path in E_{μ}, replace $\bar{e}_{\left(\mu, \mu^{\prime}\right)} \in E_{\mu^{\prime}}$ by the real edge (u, v). Assign the u-v-path induced by $\bigcup\left\{E(P) \mid P \in \mathcal{P}_{\mu}\right\}$ to $P((u, v))$. Set $\mathcal{P}_{\mu^{\prime}}=\mathcal{P}_{\mu^{\prime}} \cup P((u, v)), \nu_{\mu}=0$ and delete μ from \mathcal{T}.
$2_{R} \mu$ is R-node: Determine cycle packings \mathcal{C}_{1} and \mathcal{C}_{2} for the graphs induced by E_{μ} and $E_{\mu} \backslash$ $\bar{e}_{\left(\mu, \mu^{\prime}\right)}$, respectively. Set $\nu_{\mu}=\left|\mathcal{C}_{2}\right|$, add the corresponding edge-disjoint cycles in G to \mathcal{Z} and delete the related paths from \mathcal{P}_{μ}. If $\left|\mathcal{C}_{1}\right|=\left|\mathcal{C}_{2}\right|$ delete $\bar{e}_{\left(\mu, \mu^{\prime}\right)} \in E_{\mu^{\prime}}$. If $\left|\mathcal{C}_{1}\right|>\left|\mathcal{C}_{2}\right|$, there is an u-v-path in E_{μ}, not contained in any of the cycles of \mathcal{C}_{2}. Replace $\bar{e}_{\left(\mu, \mu^{\prime}\right)} \in E_{\mu^{\prime}}$ by the real edge (u, v). Assign the u - v-path $P_{u v}$ induced by $\bigcup\left\{E(P) \mid P \in \mathcal{P}_{\mu}\right\}$ to $P((u, v))$. Set $\mathcal{P}_{\mu^{\prime}}=\mathcal{P}_{\mu^{\prime}} \cup P((u, v))$ and delete μ from \mathcal{T}.
$3_{P} \mu$ is P -node:
(i) If $\left|E_{\mu}\right|$ is even, there is a cycle packing \mathcal{C}_{P} with $\nu_{\mu}=\frac{\left|E_{\mu}\right|}{2}-1$ cycles of length 2 . Add the corresponding edge-disjoint cycles in G to \mathcal{C}. Then delete the related paths from \mathcal{P}_{μ}. There remains an real edge e in E_{μ}, not contained in any of the cycles of \mathcal{C}_{P}. Replace $\bar{e}_{\left(\mu, \mu^{\prime}\right)} \in E_{\mu^{\prime}}$ by the real edge (u, v) and assign the u-v-path $P_{u v}$ induced by e to $P((u, v))$. Set $\mathcal{P}_{\mu^{\prime}}=\mathcal{P}_{\mu^{\prime}} \cup P((u, v))$ and delete μ from \mathcal{T}.
(ii) If $\left|E_{\mu}\right|$ is odd, there is a cycle packing \mathcal{C}_{P} with $\nu_{\mu}=\frac{\left|E_{\mu}\right|-1}{2}$ cycles of length 2 . Add the induced edge-disjoint cycles in G to \mathcal{C}. Further delete $\bar{e}_{\left(\mu, \mu^{\prime}\right)} \in E_{\mu^{\prime}}$ and delete μ from \mathcal{T}.

The procedure terminates inspecting the final node:

```
Algorithm 2 Approximation algorithm for the maximum cycle packing problem
Require: Biconnected multigraph \(G\) without loops.
Ensure: Lower bound \(\underline{\nu}(G)\) for the maximum cycle packing number \(\nu(G)\).
    \(\mathcal{T}_{G} \leftarrow \operatorname{SPR}(G)\)
    \(\mathcal{C} \leftarrow \emptyset, \underline{\nu}(G) \leftarrow 0\) and \(\mathcal{P}_{\mu} \leftarrow \emptyset \quad \forall \mu \in M\)
    while \(\exists\) SPR-node \(\mu\) in \(\mathcal{T}\) do
        for all S-leaves \(\mu\) do
            \(\mu^{\prime}:=\operatorname{pred}(\mu)\)
            if \(\delta(v)=2 \forall v \in V_{\mu}\) then
                replace \(\bar{e}_{\left(\mu, \mu^{\prime}\right)} \in E_{\mu^{\prime}}\) by real edge
                \(\mathcal{P}_{\mu^{\prime}} \leftarrow \mathcal{P}_{\mu^{\prime}} \cup P\left(\bar{e}_{\left(\mu, \mu^{\prime}\right)}\right)\)
            end if
            \(\nu_{\mu} \leftarrow 0\) and \(\mathcal{T} \leftarrow \mathcal{T} \backslash \mu\)
            \(\underline{\nu}(G) \leftarrow \underline{\nu}(G)+\nu_{\mu}\)
        end for
        for all R-leaves \(\mu\) do
            \(\mu^{\prime}:=\operatorname{pred}(\mu)\)
            \(\mathcal{C}_{1} \leftarrow\) Algorithm \(1\left(G_{\mu}\right)\)
            \(\mathcal{C}_{2} \leftarrow \operatorname{Algorithm} 1\left(G_{\mu} \backslash \bar{e}_{\left(\mu, \mu^{\prime}\right)}\right)\)
            if \(\left|\mathcal{C}_{1}\right|==\left|\mathcal{C}_{2}\right|\) then
                delete \(\bar{e}_{\left(\mu, \mu^{\prime}\right)} \in E_{\mu^{\prime}}\)
            else if \(\left|\mathcal{C}_{1}\right|>\left|\mathcal{C}_{2}\right|\) then
                    replace \(\bar{e}_{\left(\mu, \mu^{\prime}\right)} \in E_{\mu^{\prime}}\) by real edge
                \(\mathcal{P}_{\mu^{\prime}} \leftarrow \mathcal{P}_{\mu^{\prime}} \cup P\left(\bar{e}_{\left(\mu, \mu^{\prime}\right)}\right)\)
            end if
            \(\nu_{\mu} \leftarrow\left|\mathcal{C}_{2}\right|\) and \(\mathcal{T} \leftarrow \mathcal{T} \backslash \mu\)
            \(\underline{\nu}(G) \leftarrow \underline{\nu}(G)+\nu_{\mu}\) and \(\mathcal{C} \leftarrow \mathcal{C} \cup \mathcal{C}_{2}\)
        end for
        for all P-leaves \(\mu\) do
            \(\mu^{\prime}:=\operatorname{pred}(\mu)\)
            if \(\left|E_{\mu}\right|\) is not even then
                \(\nu_{\mu} \leftarrow \frac{\left|E_{\mu}\right|-1}{2}\)
                delete \(\bar{e}_{\left(\mu, \mu^{\prime}\right)}\) in \(E_{\mu^{\prime}}\)
            else if \(\left|E_{\mu}\right|\) is even then
                \(\nu_{\mu} \leftarrow \frac{\left|E_{\mu}\right|}{2}-1\)
                replace \(\bar{e}_{\left(\mu, \mu^{\prime}\right)}\) in \(E_{\mu^{\prime}}\) by real edge
                \(\mathcal{P}_{\mu^{\prime}} \leftarrow \mathcal{P}_{\mu^{\prime}} \cup P\left(\bar{e}_{\left(\mu, \mu^{\prime}\right)}\right)\)
            end if
            \(\underline{\nu}(G) \leftarrow \underline{\nu}(G)+\nu_{\mu}\) and \(\mathcal{T} \leftarrow \mathcal{T} \backslash \mu\)
            \(\mathcal{C} \leftarrow \mathcal{C} \cup\left\{\left\{P^{(2 i-1)}, P^{(2 i)}\right\} \mid P^{(i)} \in \mathcal{P}_{\mu} \forall i=1, \ldots, \nu_{\mu}\right\}\)
        end for
        for the final node \(\mu\) do
            if \(\mu\) is S-leaf and \(\delta(v)=2 \forall v \in V_{\mu}\) then
                \(\nu_{\mu} \leftarrow 1\) and \(\left.\mathcal{C} \leftarrow \mathcal{C} \cup P\right|_{E\left(\cup_{e \in E_{\mu}} P(e)\right)}\)
            else if \(\mu\) is R -leaf then
            \(\mathcal{C}_{1} \leftarrow \operatorname{Algorithm} 1\left(G_{\mu}\right), \nu_{\mu} \leftarrow\left|\mathcal{C}_{\infty}\right|\) and \(\mathcal{C} \leftarrow \mathcal{C} \cup \mathcal{C}_{1}\)
        else if \(\mu\) is P -leaf then
            \(\nu_{\mu} \leftarrow\left\lfloor\frac{\left\lfloor E_{\mu}\right\rfloor}{2}\right\rfloor\) and \(\mathcal{C} \leftarrow \mathcal{C} \cup\left\{\left\{P^{(2 i-1)}, P^{(2 i)}\right\} \mid P^{(i)} \in \mathcal{P}_{\mu} \forall i=1, \ldots, \nu_{\mu}\right\}\)
            end if
            \(\underline{\nu}(G) \leftarrow \underline{\nu}(G)+\nu_{\mu}\) and \(\mathcal{T} \leftarrow \mathcal{T} \backslash \mu\)
        end for
    end while
```

F If μ is the final node, determine a cycle packing \mathcal{C}_{F} in the graph induced by E_{μ}. Set $\nu_{\mu}=\left|\mathcal{C}_{F}\right|$ and add the induced edge-disjoint cycles in G to \mathcal{C}.

Theorem 2.1. Algorithm 2 determines a cycle packing \mathcal{Z} of G of cardinality

$$
|\mathcal{Z}|=\sum_{\mu \in \mathcal{T}} \nu_{\mu}
$$

Proof. Let \mathcal{T} be the SPR-tree of G.
When inspecting a S-node μ, the real edges in E_{μ} never induce a cycle, hence, $\nu_{\mu}=0$. If the real edges induce an u-v-path in E_{μ} the corresponding $u-v$-path $P_{u v}$ in G may contribute to an additional cycle C in \mathcal{Z}. Therefore, the virtual edge $\bar{e}_{\left(\mu, \mu^{\prime}\right)}$ in $E_{\mu^{\prime}}$ is replaced by the real edge $(u, v), P((u, v))$ is set to $P_{u v}$ and μ is deleted from \mathcal{T}. The possible cycle C might be determined when inspecting μ^{\prime}.

When inspecting a R-node μ, two cycle packings \mathcal{C}_{1} and \mathcal{C}_{2} are determined for E_{μ} and $E_{\mu} \backslash$ $\bar{e}_{\left(\mu, \mu^{\prime}\right)}$, respectively. E_{μ} induces at least a cycle packing of cardinality $\nu_{\mu}=\left|\mathcal{C}_{2}\right|$ in G. If $\left|\mathcal{C}_{1}\right|>\left|\mathcal{C}_{2}\right|$, $P((u, v))$ may also contribute to one more cycle C in \mathcal{Z}. Therefore the virtual edge $\bar{e}_{\left(\mu, \mu^{\prime}\right)}$ is replaced in $E_{\mu^{\prime}}$ by (u, v) and a C might be determined when inspecting μ^{\prime}.

When inspecting a P-node μ, different pairs of real edges in E_{μ} always induce edge-disjoint cycles in G. If $\left|E_{\mu}\right|$ is even, there are $\nu_{\mu}=\frac{\left|E_{\mu}\right|}{2}-1$ of such pairs. The path $P_{u v}$ induced by the remaining real edge may contribute to an additional cycle C in \mathcal{Z}. For this reason the virtual edge $\bar{e}_{\left(\mu, \mu^{\prime}\right)}$ is replaced in $E_{\mu^{\prime}}$ by (u, v) and C might be determined when inspecting μ^{\prime}. If $\left|E_{\mu}\right|$ is odd, there are $\nu_{\mu}=\frac{\left|E_{\mu}\right|-1}{2}$ pairs of real edges inducing the same number of additional cycles in \mathcal{Z}.

Algorithm 2 has approximation ratio $\mathcal{O}(\log n)$, the same as Algorithm 1. If the SPR-tree \mathcal{T} of G has no R-nodes we next proof in Section 3 that Algorithm 2 is optimal.

3. Proof of optimality for General Series-Parallel Graphs

Let G be a multigraph without loops. G is called generalized series-parallel, if it can be reduced to the K_{2} by performing a sequence of simple operations:
(a) Replace two parallel edges by a single edge;
(b) replace two edges with a common incident node of degree 2 by a single edge;
(c) delete vertices of degree 1 .

If there is no vertex of degree 1 to delete, G is called series-parallel. It is known that outerplanar graphs are generalized series-parallel [13]. A 2-connected generalized series-parallel multigraph G is reducable to K_{2} by only performing operations (a) and (b). We will assume the input graph is 2 -connected, since the algorithm could be launched on each block of G. The SPR-tree \mathcal{T} of G has no R-nodes (cf. [17]). In this case the iterations of Algorithm 2 reflect a systematic sequence of operations of type (a) and (b) for the reduction of G. It leads to optimality of \mathcal{Z}.

Theorem 3.1. Let G be a 2-connected, generalized series-parallel multigraph without loops. Then

$$
\nu(G)=\sum_{\mu \in \mathcal{T}} \nu_{\mu}
$$

i.e. Algorithm 2 determines a maximum cycle packing of G.

Proof. For the proof we will use induction on the number N of nodes in the SPR-tree $\mathcal{T}(G)$ of G.
Let $N=1$, i.e. $\mathcal{T}(G)$ is either a P-node or a S-node, respectively. Hence, the series-parallel multigraph G is either a set of r parallel edges ($r \geq 3$) or a cycle of length ≥ 3. In the first case $\nu(G)=\left\lfloor\frac{r}{2}\right\rfloor$, in the second case $\nu(G)=1$. In both cases $\nu(G)$ is the output of Algorithm 2 (step F).

Let $N \geq 2$ and let us assume that Algorithm 2 determines $\nu\left(G^{\prime}\right)$ for all series-parallel multigraphs G^{\prime} such that $\mathcal{T}\left(G^{\prime}\right)$ has at most $N-1$ nodes. Let G be a series-parallel multigraph such that $\mathcal{T}(G)$ has N nodes. Now, we apply Algorithm 2. When selecting the first node $\mu \in \mathcal{T}(G)$ for inspection, the following cases can occur.
(a) μ is a S-leaf. Then Algorithm 2 treats μ according (1s). The multigraph $G^{\prime}=G \backslash\left(E_{\mu} \backslash\right.$ $\left.\bar{e}_{\left(\mu, \mu^{\prime}\right)}\right) \cup(u, v)$ is series-parallel and $\mathcal{T}\left(G^{\prime}\right)=\mathcal{T}(G) \backslash \mu$, i.e. $\mathcal{T}\left(G^{\prime}\right)$ has $N-1$ nodes. Moreover, $\nu\left(G^{\prime}\right)=\nu(G)$. By hypothesis $\nu\left(G^{\prime}\right)=\sum_{\tilde{\mu} \in \mathcal{T}\left(G^{\prime}\right)} \nu_{\tilde{\mu}}$ and therefore $\sum_{\tilde{\mu} \in \mathcal{T}(G)} \nu_{\tilde{\mu}}=$ $\sum_{\tilde{\mu} \in \mathcal{T}\left(G^{\prime}\right)} \nu_{\tilde{\mu}}+\nu_{\mu}=\nu\left(G^{\prime}\right)+0=\nu(G)$.
(b) μ is a P-leaf in $\mathcal{T}(G)$, then all leaf nodes are P -nodes.
(b1) There exists at least one leaf μ with an odd number of real edges, i.e. $\left|E_{\mu}\right|$ is even. Its predecessor μ^{\prime} is a S-node. Algorithm 2 treats μ according ($3_{P},(i)$). The multigraph $G^{\prime}=G \backslash\left(E_{\mu} \backslash \bar{e}_{\left(\mu, \mu^{\prime}\right)}\right) \cup(u, v)$ is series-parallel and $\mathcal{T}\left(G^{\prime}\right)=\mathcal{T}(G) \backslash \mu$, i.e. $\mathcal{T}\left(G^{\prime}\right)$ has $N-1$ nodes. Moreover $\nu\left(G^{\prime}\right)=\nu(G)-\left(\frac{\left|E_{\mu}\right|}{2}-1\right)$. By hypothesis $\nu\left(G^{\prime}\right)=\sum_{\tilde{\mu} \in \mathcal{T}\left(G^{\prime}\right)} \nu_{\tilde{\mu}}$ and, therefore, $\sum_{\tilde{\mu} \in \mathcal{T}(G)} \nu_{\tilde{\mu}}=\sum_{\tilde{\mu} \in \mathcal{T}\left(G^{\prime}\right)} \nu_{\tilde{\mu}}+\nu_{\mu}=\nu\left(G^{\prime}\right)+\left(\frac{\left|E_{\mu}\right|}{2}-1\right)=\nu(G)$.
(b2) All P-leaves have an even number of real edges. Then a leaf μ is treated according $\left(3_{P},(i i)\right)$. Let $\mu^{\prime}=\operatorname{pred}(\mu)$. We assume that μ^{\prime} is adjacent to $k \geq 1 \mathrm{P}$-leaves μ_{1}, \ldots, μ_{k} (let $\mu_{1}=\mu$). Let \hat{E} be the set of real edges in $\bigcup_{i \in\{1, \ldots, k\}} E_{\mu_{i}} \cup E_{\mu^{\prime}}$. Then for the subgraph \hat{G} induced by \hat{E} we get $\nu(\hat{G})=\sum_{i \in\{1, \ldots, k\}} \nu_{\mu_{i}}$. If $E \backslash \hat{E}=\emptyset, \mathcal{T}(G)=$ $\mathcal{T}(\hat{G})$ and $\nu(G)=\sum_{i \in\{1, \ldots, k\}} \nu_{\mu_{i}}=\sum_{\tilde{\mu} \in \mathcal{T}(G)} \nu_{\tilde{\mu}}$. If $E \backslash \hat{E} \neq \emptyset$ then for the graph G^{\prime} induced by $E \backslash \hat{E}$ we have $\nu\left(G^{\prime}\right)=\nu(G)-\sum_{i \in\{1, \ldots, k\}} \nu_{\mu_{i}}$. Now we show that G^{\prime} is seriesparallel. In $\mathcal{T}(G) \backslash\left(\bigcup_{i \in\{1, \ldots, k\}} \mu_{i} \cup \mu^{\prime}\right) \mu^{\prime}$ must have a predecessor $\mu^{\prime \prime}=\operatorname{pred}(\mu)$. $\mu^{\prime \prime}$ is a P-node and must contain at least two parallel edges with endvertices, say $u^{\prime \prime}, v^{\prime \prime}$. One of them corresponds to the subgraph \hat{G} when recovering G from $\mathcal{T}(G)$ (according to property 4). Since G is series-parallel, $G^{\prime \prime}=G^{\prime} \cup\left(u^{\prime \prime}, v^{\prime \prime}\right)$ is series-parallel. Since there is at least one more virtual edge parallel to $\left(u^{\prime \prime}, v^{\prime \prime}\right)$ in $E_{\mu^{\prime \prime}}$, there must be a subgraph $\tilde{G} \subset G$ such that \tilde{G} is reducible to a parallel edge of $\left(u^{\prime \prime}, v^{\prime \prime}\right)$ and $E(\tilde{G}) \cap E(\hat{G})=\emptyset$. According to property (b) of definition $G^{\prime \prime} \backslash\left(u^{\prime \prime}, v^{\prime \prime}\right)=G^{\prime}$ must be series-parallel. Obviously $\mathcal{T}\left(G^{\prime}\right)=\mathcal{T}(G) \backslash\left(\bigcup_{i \in\{1, \ldots, k\}} \mu_{i} \cup \mu^{\prime}\right) . \mathcal{T}\left(G^{\prime}\right)$ has $N-(k+1)$ nodes. By hypothesis $\nu\left(G^{\prime}\right)=\sum_{\tilde{\mu} \in \mathcal{T}\left(G^{\prime}\right)} \nu_{\tilde{\mu}}$ and $\nu(G)=\sum_{\tilde{\mu} \in \mathcal{T}\left(G^{\prime}\right)} \nu_{\tilde{\mu}}+\sum_{i \in\{1, \ldots, k\}} \nu_{\mu_{i}}=\sum_{\tilde{\mu} \in \mathcal{T}(G)} \nu_{\tilde{\mu}}$.

$$
\text { Maximum cycle packing using SPR-trees } \quad \mid \quad C . \text { Otto and P. Recht }
$$

The SPQR-tree of a 2-connected multigraph can be determined in linear time [9]. This holds also for the SPR-tree (see [3]) and we immediately get:

Corollary 3.1. If G is a 2-connected, generalized series-parallel multigraph without loops, then a maximum cycle packing of G can be determined in linear time.

References

[1] N. Alon, C. McDiarmid, and M. Molloy, Edge-disjoint cycles in regular directed graphs, J. Graph Theory 22 (1996), 231-237.
[2] A. Caprara, A. Panconesi, and R. Rizzi, Packing cycles in undirected graphs, J. Algorithms 48 (2003), 239-256.
[3] M. Chimani, Computing Crossing Numbers, PhD thesis, TU Dortmund (2008). http:// hdl.handle.net/2003/25955
[4] G. Di Battista and R. Tamassia, Incremental planarity testing, 30th Annual Symposium on Foundations of Computer Science (1989), 436-441.
[5] G. Di Battista and R. Tamassia, On-line maintenance of triconnected components with SPQRtrees, Algorithmica 15 (1996), 302-318.
[6] G. Dirac and P. Erdős, On the maximal number of independent circuits in a graph, Acta Mathematica Academiae Scientiarum Hungarica 14 (1963), 79-94.
[7] P. Erdős and L. Pósa, On the maximal number of disjoint circuits of a graph, Publicationes Mathematicae Debrecen 9 (1962), 3-12.
[8] Z. Friggstad and M.R. Salavatipour, Approximability of packing disjoint cycles, Algorithmica 60 (2011), 395-400.
[9] C. Gutwenger and P. Mutzel, A linear time implementation of SPQR-trees, Proceedings of the 8th International Symposium on Graph Drawing (2000), 77-90.
[10] L. Hao, Edge disjoint cycles in graphs, J. Graph Theory 13 (1989), 313-322.
[11] J. Harant, D. Rautenbach, P. Recht, and F. Regen, Packing edge-disjoint cycles in graphs and the cyclomatic number, Discrete Math. 310 (2010), 1456-1462.
[12] J. Harant, D. Rautenbach, P. Recht, I. Schiermeyer, and E.-M. Sprengel, Packing disjoint cycles over vertex cuts, Discrete Math. 310 (2010), 1974-1978.
[13] N.M. Korneyenko, Combinatorial algorithms on a class of graphs, Discrete Appl. Math. 54 (1994), 215-217.

```
Maximum cycle packing using SPR-trees | C. Otto and P. Recht
```

[14] M. Krivelevich, Z. Nutov, M. R. Salavatipour, J. Verstraete, and R. Yuster, Approximation algorithms and hardness results for cycle packing problems, ACM Transactions on Algorithms (TALG) 3 (2007), 48.
[15] S. Mac Lane, A structural characterization of planar combinatorial graphs, Duke Mathematical Journal 3 (1937), 460-472.
[16] B. Mohar, Obstructions for the disk and the cylinder embedding extension problems, Combinatorics, Probability and Computing 3 (1994), 375-406.
[17] P. Mutzel, The SPQR-tree data structure in graph drawing, Proceedings of the 30th International Conference on Automata, Languages and Programming (2003), 34-46.
[18] D. Rautenbach and F. Regen, On packing shortest cycles in graphs, Information Processing Letters 109 (2009), 816-821.
[19] P. Recht and E.-M. Sprengel, Packing Euler graphs with traces, Operations Research Proceedings 2011 (2012), 53-58.
[20] P. Recht and S. Stehling, On maximum cycle packings in polyhedral graphs, Electron. J. Graph Theory Appl. 2 (1) (2014), 18-31.
[21] W.T. Tutte, Connectivity in graphs (1966).

[^0]: ${ }^{1}$ The vertices in \mathcal{T} are usually called nodes.

