

Electronic Journal of Graph Theory and Applications

On the spectrum of a class of distance-transitive graphs

Seyed Morteza Mirafzal, Ali Zafari

Department of Mathematics Lorestan University, Khoramabad, Iran

morteza_mirafzal@yahoo.com, mirafzal.m@lu.ac.ir, zafari.math.pu@gmail.com

Abstract

Let $\Gamma = Cay(\mathbb{Z}_n, S_k)$ be the Cayley graph on the cyclic additive group \mathbb{Z}_n $(n \geq 4)$, where $S_1 = \{1, n-1\}, \ldots, S_k = S_{k-1} \cup \{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_n - \{0\}$ for any $k \in \mathbb{N}$, $1 \leq k \leq \left[\frac{n}{2}\right] - 1$. In this paper, we will show that $\chi(\Gamma) = \omega(\Gamma) = k+1$ if and only if k+1|n. Also, we will show that if n is an even integer and $k = \frac{n}{2} - 1$ then $Aut(\Gamma) \cong \mathbb{Z}_2 wr_I Sym(k+1)$ where $I = \{1, \ldots, k+1\}$ and in this case, we show that Γ is an integral graph.

Keywords: Cayley graph, distance-transitive, wreath product Mathematics Subject Classification: 05C15, 05C50 DOI:10.5614/ejgta.2017.5.1.7

1. Introduction

In this paper, a graph $\Gamma=(V,E)$ always means a simple connected graph with n vertices (without loops, multiple edges and isolated vertices), where $V=V(\Gamma)$ is the vertex set and $E=E(\Gamma)$ is the edge set. The size of the largest clique in the graph Γ is denoted by $\omega(\Gamma)$ and the size of the largest independent sets of vertices by $\alpha(\Gamma)$. A graph Γ is called a vertex-transitive graph if for any $x,y\in V$ there is some π in $Aut(\Gamma)$, the automorphism group of Γ , such that $\pi(x)=y$. Let Γ be a graph, the complement $\overline{\Gamma}$ of Γ is the graph whose vertex set is $V(\Gamma)$ and whose edges are the pairs of nonadjacent vertices of Γ . It is well known that for any graph Γ , $Aut(\Gamma)=Aut(\overline{\Gamma})$

Received: 8 September 2016, Revised: 15 January 2017, Accepted: 7 February 2017.

[8]. If Γ is a connected graph and $\partial(u,v)$ denotes the distance in Γ between the vertices u and v, then for any automorphism π in $Aut(\Gamma)$ we have $\partial(u,v) = \partial(\pi(u),\pi(v))$.

Let k be a positive integer, a k-colouring of a graph Γ is a mapping $f \colon V(\Gamma) \longrightarrow \{1,\ldots,k\}$ such that $f(x) \neq f(y)$ for any two adjacent vertices x and y in Γ , and if such a mapping exists we say that Γ is k-colorable. The chromatic number $\chi(\Gamma)$ of Γ is the minimum number k such that Γ is k-colorable. Let Γ be a graph and $\mathcal{I}(\Gamma)$ denote the set of all independent sets of the graph Γ . A fractional colouring of a graph Γ is a weight function $\mu \colon \mathcal{I}(\Gamma) \longrightarrow [0,1]$ such that for any vertex x of Γ , $\sum_{x \in I \in \mathcal{I}(\Gamma)} \mu(I) \geq 1$, and if such a weight function exists we say that Γ is fractional colouring. The fractional chromatic number of a graph Γ is denoted by $\chi_f(\Gamma)$ and defined in [9, Page 134]. Also a fractional clique of a graph Γ is denoted by $\psi_f(\Gamma)$ and defined in [9, Page 134].

Let $\Upsilon = \{\gamma_1, \dots, \gamma_{k+1}\}$ be a set and K be a group then we write $Fun(\Upsilon, K)$ to denote the set of all functions from Υ into K, we can turn $Fun(\Upsilon, K)$ into a group by defining a product:

$$(fg)(\gamma) = f(\gamma)g(\gamma)$$
 for all $f, g \in Fun(\Upsilon, K)$ and $\gamma \in \Upsilon$,

where the product on the right is in K. Since Υ is finite, the group $Fun(\Upsilon, K)$ is isomorphic to K^{k+1} (a direct product of k+1 copies of K) via the isomorphism $f \to (f(\gamma_1), \ldots, f(\gamma_{k+1}))$. Let H and K be groups and suppose H acts on the nonempty set Υ . Then the wreath product of K by H with respect to this action is defined to be the semidirect product $Fun(\Upsilon, K) \rtimes H$ where H acts on the group $Fun(\Upsilon, K)$ via

$$f^x(\gamma) = f(\gamma^{x^{-1}})$$
 for all $f \in Fun(\Upsilon, K), \gamma \in \Upsilon$ and $x \in H$.

We denote this group by $Kwr_{\Upsilon}H$. Consider the wreath product $G=Kwr_{\Upsilon}H$. If K acts on a set Δ then we can define an action of G on $\Delta \times \Upsilon$ by

$$(\delta, \gamma)^{(f,h)} = (\delta^{f(\gamma)}, \gamma^h)$$
 for all $(\delta, \gamma) \in \Delta \times \Upsilon$,

where $(f,h) \in Fun(\Upsilon,K) \rtimes H = Kwr_{\Upsilon}H$ [6].

Eigenvalues of an undirected graph Γ are the eigenvalues of an arbitrary adjacency matrix of Γ . Harary and Schwenk [10] defined Γ to be integral, if all of its eigenvalues are integers. For a survey of integral graphs see [3]. In [2] the number of integral graphs on n vertices is estimated. Known characterizations of integral graphs are restricted to certain graph classes, see [1].

Let G be a finite group and S a subset of G that is closed under taking inverses and does not contain the identity. A Cayley graph $\Gamma = Cay(G,S)$ is a graph whose vertex-set and edge-set are defined as follows:

$$V(\Gamma) = G; \quad E(\Gamma) = \{ \{x, y\} \mid x^{-1}y \in S \}.$$

It is well known that every Cayley graph is vertex-transitive.

For any graph Γ , $\omega(\Gamma) \leq \chi(\Gamma)$ [8]. Also it is well known that for bipartite graphs $\omega(\Gamma) = \chi(\Gamma) = 2$. Let Γ be the $Cay(\mathbb{Z}_n, S_k)$ where \mathbb{Z}_n $(n \geq 4)$, is the cyclic additive group with identity $\{0\}$, and for any $k \in \mathbb{N}$, $1 \leq k \leq \left[\frac{n}{2}\right] - 1$, $S_1 = \{1, n-1\}, \ldots, S_k = S_{k-1} \cup \{k, n-k\}$ are inverse-closed subsets of $\mathbb{Z}_n - \{0\}$. In this paper we will show that $\chi(\Gamma) = \omega(\Gamma) = k+1$ if and only if k+1|n, also we show that if n is an even integer and $k = \frac{n}{2} - 1$ then $Aut(\Gamma) \cong \mathbb{Z}_2wr_ISym(k+1)$, where $I = \{1, \ldots, k+1\}$.

2. Definitions and Preliminaries

Proposition 2.1. [11] For any graph Γ we have

$$\omega(\Gamma) \le \omega_f(\Gamma) \le \chi_f(\Gamma) \le \chi(\Gamma).$$

Proposition 2.2. [8] If Γ is vertex transitive graph, then we have

$$\omega_f(\Gamma) = \frac{|V(\Gamma)|}{\alpha(\Gamma)}$$

Definition 1. [4] Let Γ be a graph with automorphism group $Aut(\Gamma)$. We say that Γ is symmetric if, for all vertices u, v, x, y of Γ such that u and v are adjacent, also, x and y are adjacent, there is an automorphism π such that $\pi(u) = x$ and $\pi(v) = y$. We say that Γ is distance-transitive if, for all vertices u, v, x, y of Γ such that $\partial(u, v) = \partial(x, y)$, there is an automorphism π such that $\pi(u) = x$ and $\pi(v) = y$.

Remark 2.1. [4] Let Γ be a graph. It is clear that we have a hierarchy of conditions: distance-transitive \Rightarrow symmetric \Rightarrow vertex-transitive

Definition 2. [4], [5] For any vertex v of a connected graph Γ we define

$$\Gamma_r(v) = \{ u \in V(\Gamma) \mid \partial(u, v) = r \},$$

where r is a non-negative integer not exceeding d, the diameter of Γ . It is clear that $\Gamma_0(v) = \{v\}$, and $V(\Gamma)$ is partitioned into the disjoint subsets $\Gamma_0(v), \ldots, \Gamma_d(v)$, for each v in $V(\Gamma)$. The graph Γ is called distance-regular with diameter d and intersection array $\{b_0, \ldots, b_{d-1}; c_1, \ldots, c_d\}$, if it is regular of valency k and for any two vertices u and v in Γ at distance r we have $|\Gamma_{r+1}(v) \cap \Gamma_1(u)| = b_r$, and $|\Gamma_{r-1}(v) \cap \Gamma_1(u)| = c_r$, $(0 \le r \le d)$. The numbers c_r , b_r and a_r , where

$$a_r = k - b_r - c_r \quad (0 \le r \le d),$$

is the number of neighbours of u in $\Gamma_r(v)$ for $\partial(u,v)=r$, are called the intersection numbers of Γ . Clearly $b_0=k$, $b_d=c_0=0$ and $c_1=1$.

Remark 2.2. [4] It is clear that if Γ is distance-transitive graph then Γ is distance-regular.

Lemma 2.1. [4] A connected graph Γ with diameter d and automorphism group $G = Aut(\Gamma)$ is distance-transitive if and only if it is vertex-transitive and the vertex-stabilizer G_v is transitive on the set $\Gamma_r(v)$, for each $r \in \{0, 1, \ldots, d\}$, and $v \in V(\Gamma)$.

Theorem 2.1. [5] Let Γ be a distance-regular graph which the valency of each vertex as k, with diameter d, adjacency matrix A and intersection array,

$$\{b_0, b_1, \ldots, b_{d-1}; c_1, c_2, \ldots, c_d\}.$$

Then the tridiagonal $(d+1) \times (d+1)$ matrix

$$\jmath(\Gamma) = \begin{bmatrix} a_0 & b_0 & 0 & 0 & \dots & & & \\ c_1 & a_1 & b_1 & 0 & \dots & & & \\ 0 & c_2 & a_2 & b_2 & & & & & \\ & & & \cdots & & & & \\ & & & & \ddots & & & \\ & & & & c_{d-2} & a_{d-2} & b_{d-2} & 0 \\ & & & \dots & 0 & c_{d-1} & a_{d-1} & b_{d-1} \\ & & & \dots & 0 & 0 & c_d & a_d \end{bmatrix},$$

determines all the eigenvalues of Γ .

Theorem 2.2. [7] Let Γ be a graph such that contains k+1 components $\Gamma_1, \ldots, \Gamma_{k+1}$. If for any $i \in I = \{1, \ldots, k+1\}$, $\Gamma_i \cong \Gamma_1$ then $Aut(\Gamma) \cong Aut(\Gamma_1)wr_ISym(k+1)$.

3. Main Results

Proposition 3.1. Let $\Gamma = Cay(\mathbb{Z}_n, S_k)$ be the Cayley graph on the cyclic group \mathbb{Z}_n $(n \ge 4)$, where $S_1 = \{1, n-1\}, \ldots, S_k = S_{k-1} \cup \{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_n - \{0\}$ for any $k \in \mathbb{N}, 1 \le k \le \left[\frac{n}{2}\right] - 1$. Then $\chi(\Gamma) = \omega(\Gamma) = k+1$ if and only if k+1|n.

Proof. By definition of S_i , $1 \le i \le k$ clearly $|S_i| = 2i$, hence $|S_k| = 2k$. Let $\Gamma = Cay(\mathbb{Z}_n, S_k)$ be the Cayley graph on the cyclic group \mathbb{Z}_n and S_k be the set of inverse-closed subset of $\mathbb{Z}_n - \{0\}$ which is defined as before. By definition of Γ clearly $\omega(\Gamma) = k+1$. So, if $\chi(\Gamma) = \omega(\Gamma) = k+1$ then by Proposition 2.1, $\chi_f(\Gamma) = \omega_f(\Gamma) = k+1$. Also we know that Γ is a vertex transitive graph, so by Proposition 2.2, $k+1 = \omega_f(\Gamma) = \frac{|V(\Gamma)|}{\alpha(\Gamma)}$ therefore k+1|n. Conversely, if k+1|n then $\chi(\Gamma) = k+1$, because Γ is a vertex transitive graph and the size of every clique in the graph Γ is k+1, therefore $\chi(\Gamma) = \omega(\Gamma) = k+1$.

Example 1. Suppose $\Gamma_1 = Cay(\mathbb{Z}_{12}, S_2)$ and $\Gamma_2 = Cay(\mathbb{Z}_{12}, S_3)$ are two Cayley graphs, then $\chi(\Gamma_1) = \omega(\Gamma_1) = 3$ and $\chi(\Gamma_2) = \omega(\Gamma_2) = 4$.

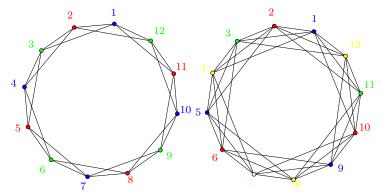


Figure 1: $\chi(\Gamma_1) = \omega(\Gamma_1) = 3$ Figure 2: $\chi(\Gamma_2) = \omega(\Gamma_2) = 4$

Proposition 3.2. Let $\Gamma = Cay(\mathbb{Z}_n, S_k)$ be the Cayley graph on the cyclic group \mathbb{Z}_n $(n \ge 4)$, where $S_1 = \{1, n-1\}, \ldots, S_k = S_{k-1} \cup \{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_n - \{0\}$ for any $k \in \mathbb{N}, 1 \le k \le \left[\frac{n}{2}\right] - 1$. If n is an even integer and $k = \frac{n}{2} - 1$ then $Aut(\Gamma) \cong \mathbb{Z}_2wr_ISym(k+1)$, where $I = \{1, \ldots, k+1\}$.

Proof. Let $V(\Gamma)=\{1,\ldots,n\}$ be the vertex set of Γ . By assumptions and Proposition 2.2, the size of the largest independent set of vertices in the Γ is 2, because Γ is a vertex transitive graph and the size of every clique in the graph Γ is k+1. Thus, the size of the every independent set of vertices in the Γ is 2. Therefore for any $x\in V(\Gamma)$, there is exactly one $y\in V(\Gamma)$ such that $x^{-1}y=k+1$. Hence, if $x^{-1}y=k+1$ then two vertices x and y adjacent in the complement $\overline{\Gamma}$ of Γ , so $\overline{\Gamma}$ contains k+1 components $\Gamma_1,\ldots,\Gamma_{k+1}$ such that for any $i\in I=\{1,\ldots,k+1\},\ \Gamma_i\cong\Gamma_1\cong K_2$, where K_2 is the complete graph of 2 vertices. Therefore $\overline{\Gamma}\cong (k+1)K_2$, hence by Theorem 2.2, $Aut(\overline{\Gamma})\cong Aut(K_2)wr_ISym(k+1)=\mathbb{Z}_2wr_ISym(k+1)$, so $Aut(\Gamma)\cong \mathbb{Z}_2wr_ISym(k+1)$. \square

Example 2. Let $\Gamma = Cay(\mathbb{Z}_{12}, S_5)$ be the Cayley graph on the cyclic group \mathbb{Z}_{12} , then $\chi(\Gamma) = \omega(\Gamma) = 6$, and $Aut(\Gamma) = \mathbb{Z}_2wr_ISym(6)$, where $I = \{1, \ldots, 6\}$.

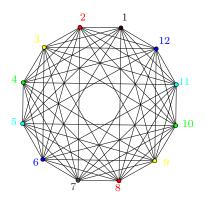


Figure 3: $\chi(\Gamma) = \omega(\Gamma) = 6$

Proposition 3.3. Let $\Gamma = Cay(\mathbb{Z}_n, S_k)$ be the Cayley graph on the cyclic group \mathbb{Z}_n $(n \ge 4)$, where $S_1 = \{1, n-1\}, \ldots, S_k = S_{k-1} \cup \{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_n - \{0\}$ for any $k \in \mathbb{N}$, $1 \le k \le \left[\frac{n}{2}\right] - 1$. If n is an even integer and $k = \frac{n}{2} - 1$ then Γ is a distance-transitive graph.

Proof. By Lemma 2.1, it is sufficient to show that vertex-stabilizer G_v is transitive on the set $\Gamma_r(v)$ for every $r \in \{0,1,2\}$ and $v \in V(\Gamma)$, because of Γ is a vertex-transitive graph. We know $V(\Gamma) = \{1,2,\ldots,\frac{n}{2}-1,\frac{n}{2},\frac{n}{2}+1,\ldots,n\}$ is the vertex set of Γ . Let $G=Aut(\Gamma)$. Consider the vertex v=1 in the $V(\Gamma)$, then $\Gamma_0(v)=\{1\}, \Gamma_1(v)=\{2,\ldots,\frac{n}{2}-1,\frac{n}{2},\frac{n}{2}+2,\ldots,n\}$ and $\Gamma_2(v)=\{\frac{n}{2}+1\}$. Let $\rho=(2,3,\ldots,\frac{n}{2},\frac{n}{2}+2,\ldots,n)$ be the cyclic permutation of the vertex set of Γ . It is an easy task to show that ρ is an automorphism of Γ . We can show that $H=\langle (2,3,\ldots,\frac{n}{2},\frac{n}{2}+2,\ldots,n)\rangle$ acts transitively on the set $\Gamma_r(v)$ for each $r \in \{0,1,2\}$, because H is a cyclic group. Note that if $1 \neq v \in V(\Gamma)$ then, we can show that vertex-stabilizer G_v is transitive on the set $\Gamma_r(v)$ for each $r \in \{0,1,2\}$, because Γ is a vertex-transitive graph.

Proposition 3.4. Let $\Gamma = Cay(\mathbb{Z}_n, S_k)$ be the Cayley graph on the cyclic group \mathbb{Z}_n $(n \ge 4)$, where $S_1 = \{1, n-1\}, \ldots, S_k = S_{k-1} \cup \{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_n - \{0\}$ for any $k \in \mathbb{N}$, $1 \le k \le \left[\frac{n}{2}\right] - 1$. If n is an even integer and $k = \frac{n}{2} - 1$ then Γ is an integral graph.

Proof. By Remark 2.2, it is clear that Γ is distance-regular, because Γ is a distance-transitive graph. Let $V(\Gamma)=\{1,2,\ldots,n\}$ be the vertex set of Γ . Consider the vertex v=1 in the $V(\Gamma)$, then $\Gamma_0(v)=\{1\}, \, \Gamma_1(v)=\{2,\ldots,\frac{n}{2}-1,\frac{n}{2},\frac{n}{2}+2,\ldots,n\}$ and $\Gamma_2(v)=\{\frac{n}{2}+1\}$. Let be u in the $V(\Gamma)$ such that $\partial(u,v)=0$ then u=v=1 and $|\Gamma_1(v)\cap\Gamma_1(u)|=2k$, hence $b_0=2k$ and by Definition 2, $a_0=2k-b_0=0$. Also, if u in the $V(\Gamma)$ and $\partial(u,v)=1$ then two vertices u,v are adjacent in Γ , so $|\Gamma_0(v)\cap\Gamma_1(u)|=1$ and $|\Gamma_2(v)\cap\Gamma_1(u)|=1$, hence $c_1=1,\,b_1=1$ and $a_1=2k-b_1-c_1=2k-2$. Finally, if u in the $V(\Gamma)$ and $\partial(u,v)=2$ then two vertices u,v are not adjacent in Γ , so $|\Gamma_1(v)\cap\Gamma_1(u)|=2k$, hence $c_2=2k$ and $a_2=2k-c_2=0$. So the intersection array of Γ is $\{2k,1;1,2k\}$. Therefore by Theorem 2.1, the tridiagonal $(3)\times(3)$ matrix,

$$\begin{bmatrix} a_0 & b_0 & 0 \\ c_1 & a_1 & b_1 \\ 0 & c_2 & a_2 \end{bmatrix} = \begin{bmatrix} 0 & 2k & 0 \\ 1 & 2k - 2 & 1 \\ 0 & 2k & 0 \end{bmatrix},$$

determines all the eigenvalues of Γ . It is clear that all the eigenvalues of Γ are 2k, 0, -2 and their multiplicities are 1, k + 1, k, respectively. So Γ is an integral graph.

References

- [1] A. Abdollahi and E. Vatandoost, Which Cayley graphs are integral?, *Electron. J. Comb.* **16** (1) (2009), r122, 1–17.
- [2] O. Ahmadi, N. Alon, L.F. Blake and I.E. Shparlinski, Graphs with integral spectrum, *Linear Alg. Appl.* **430** (2009), 547–552.
- [3] K. Balinska, D. Cvetković, Z. Rodosavljević, S. Simić and D.Ste-vanović, A survey on integral graphs, *Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat.* **13** (2002), 42–65.
- [4] N.L. Biggs, *Algebraic Graph Theory*, New York, NY, Cambridge University Press, Cambridge, 1993.
- [5] A.E. Brower, A.M. Cohen and A. Neumaier, *Distance Regular Graphs*, Springer, Berlin, 1989.
- [6] J. D. Dixon and B. Mortimer, *Permutation Groups*, Math. Proc, Cambridge Phil. Soc, 1996.
- [7] R. Frucht, On the groups of repeated graphs, *Bulletin of the American Mathematical Society* **55** (1949), 418–420.
- [8] C. Godsil and G. Royle, Algebraic graph theory, Springer, New York, 2001.
- [9] Geňa Hahn and Claude Tardif, Graph homomorphisms: structure and symmetry, *Mathematical and Physical Sciences* **497** (1997), 107–166.

- [10] F. Harary and A. Schwenk, Which graphs have integral spectra?, Lect. Notes Math., Springer Verlag 406 (1974), 45–50.
- [11] E.R. Scheinerman and D.H. Ullman, Fractional graph theory, Springer-Verlag, New York, 2008.