Electronic Journal of Graph Theory and Applications

On the spectrum of a class of distance-transitive graphs

Seyed Morteza Mirafzal, Ali Zafari
Department of Mathematics
Lorestan University, Khoramabad, Iran

morteza_mirafzal@yahoo.com, mirafzal.m@lu.ac.ir, zafari.math.pu@gmail.com

Abstract

Let $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{n}, S_{k}\right)$ be the Cayley graph on the cyclic additive group $\mathbb{Z}_{n}(n \geq 4)$, where $S_{1}=$ $\{1, n-1\}, \ldots, S_{k}=S_{k-1} \cup\{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_{n}-\{0\}$ for any $k \in \mathbb{N}$, $1 \leq k \leq\left[\frac{n}{2}\right]-1$. In this paper, we will show that $\chi(\Gamma)=\omega(\Gamma)=k+1$ if and only if $k+1 \mid n$. Also, we will show that if n is an even integer and $k=\frac{n}{2}-1$ then $\operatorname{Aut}(\Gamma) \cong \mathbb{Z}_{2} w r_{I} \operatorname{Sym}(k+1)$ where $I=\{1, \ldots, k+1\}$ and in this case, we show that Γ is an integral graph.

Keywords: Cayley graph, distance-transitive, wreath product
Mathematics Subject Classification : 05C15, 05C50
DOI:10.5614/ejgta.2017.5.1.7

1. Introduction

In this paper, a graph $\Gamma=(V, E)$ always means a simple connected graph with n vertices (without loops, multiple edges and isolated vertices), where $V=V(\Gamma)$ is the vertex set and $E=$ $E(\Gamma)$ is the edge set. The size of the largest clique in the graph Γ is denoted by $\omega(\Gamma)$ and the size of the largest independent sets of vertices by $\alpha(\Gamma)$. A graph Γ is called a vertex-transitive graph if for any $x, y \in V$ there is some π in $\operatorname{Aut}(\Gamma)$, the automorphism group of Γ, such that $\pi(x)=y$. Let Γ be a graph, the complement $\bar{\Gamma}$ of Γ is the graph whose vertex set is $V(\Gamma)$ and whose edges are the pairs of nonadjacent vertices of Γ. It is well known that for any graph $\Gamma, \operatorname{Aut}(\Gamma)=A u t(\bar{\Gamma})$

Received: 8 September 2016, Revised: 15 January 2017, Accepted: 7 February 2017.
[8]. If Γ is a connected graph and $\partial(u, v)$ denotes the distance in Γ between the vertices u and v, then for any automorphism π in $\operatorname{Aut}(\Gamma)$ we have $\partial(u, v)=\partial(\pi(u), \pi(v))$.

Let k be a positive integer, a k-colouring of a graph Γ is a mapping $f: V(\Gamma) \longrightarrow\{1, \ldots, k\}$ such that $f(x) \neq f(y)$ for any two adjacent vertices x and y in Γ, and if such a mapping exists we say that Γ is k-colorable. The chromatic number $\chi(\Gamma)$ of Γ is the minimum number k such that Γ is k-colorable. Let Γ be a graph and $\mathcal{I}(\Gamma)$ denote the set of all independent sets of the graph Γ. A fractional colouring of a graph Γ is a weight function $\mu: \mathcal{I}(\Gamma) \longrightarrow[0,1]$ such that for any vertex x of $\Gamma, \sum_{x \in I \in \mathcal{I}(\Gamma)} \mu(I) \geq 1$, and if such a weight function exists we say that Γ is fractional colouring. The fractional chromatic number of a graph Γ is denoted by $\chi_{f}(\Gamma)$ and defined in [9, Page 134]. Also a fractional clique of a graph Γ is denoted by $\psi_{f}(\Gamma)$ and defined in [9, Page 134].

Let $\Upsilon=\left\{\gamma_{1}, \ldots, \gamma_{k+1}\right\}$ be a set and K be a group then we write $F u n(\Upsilon, K)$ to denote the set of all functions from Υ into K, we can turn $\operatorname{Fun}(\Upsilon, K)$ into a group by defining a product:

$$
(f g)(\gamma)=f(\gamma) g(\gamma) \quad \text { for all } \quad f, g \in \operatorname{Fun}(\Upsilon, K) \quad \text { and } \quad \gamma \in \Upsilon,
$$

where the product on the right is in K. Since Υ is finite, the group $\operatorname{Fun}(\Upsilon, K)$ is isomorphic to K^{k+1} (a direct product of $k+1$ copies of K) via the isomorphism $f \rightarrow\left(f\left(\gamma_{1}\right), \ldots, f\left(\gamma_{k+1}\right)\right)$. Let H and K be groups and suppose H acts on the nonempty set Υ. Then the wreath product of K by H with respect to this action is defined to be the semidirect product $F u n(\Upsilon, K) \rtimes H$ where H acts on the group $F u n(\Upsilon, K)$ via

$$
f^{x}(\gamma)=f\left(\gamma^{x^{-1}}\right) \quad \text { for all } \quad f \in F u n(\Upsilon, K), \gamma \in \Upsilon \quad \text { and } \quad x \in H
$$

We denote this group by $K w r_{\Upsilon} H$. Consider the wreath product $G=K w r_{\Upsilon} H$. If K acts on a set Δ then we can define an action of G on $\Delta \times \Upsilon$ by

$$
(\delta, \gamma)^{(f, h)}=\left(\delta^{f(\gamma)}, \gamma^{h}\right) \quad \text { for all } \quad(\delta, \gamma) \in \Delta \times \Upsilon
$$

where $(f, h) \in \operatorname{Fun}(\Upsilon, K) \rtimes H=K w r_{\Upsilon} H$ [6].
Eigenvalues of an undirected graph Γ are the eigenvalues of an arbitrary adjacency matrix of Γ. Harary and Schwenk [10] defined Γ to be integral, if all of its eigenvalues are integers. For a survey of integral graphs see [3]. In [2] the number of integral graphs on n vertices is estimated. Known characterizations of integral graphs are restricted to certain graph classes, see [1].

Let G be a finite group and S a subset of G that is closed under taking inverses and does not contain the identity. A Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ is a graph whose vertex-set and edge-set are defined as follows:

$$
V(\Gamma)=G ; \quad E(\Gamma)=\left\{\{x, y\} \mid x^{-1} y \in S\right\} .
$$

It is well known that every Cayley graph is vertex-transitive.
For any graph $\Gamma, \omega(\Gamma) \leq \chi(\Gamma)$ [8]. Also it is well known that for bipartite graphs $\omega(\Gamma)=$ $\chi(\Gamma)=2$. Let Γ be the $\operatorname{Cay}\left(\mathbb{Z}_{n}, S_{k}\right)$ where $\mathbb{Z}_{n}(n \geq 4)$, is the cyclic additive group with identity $\{0\}$, and for any $k \in \mathbb{N}, 1 \leq k \leq\left[\frac{n}{2}\right]-1, S_{1}=\{1, n-1\}, \ldots, S_{k}=S_{k-1} \cup\{k, n-k\}$ are inverseclosed subsets of $\mathbb{Z}_{n}-\{0\}$. In this paper we will show that $\chi(\Gamma)=\omega(\Gamma)=k+1$ if and only if $k+1 \mid n$, also we show that if n is an even integer and $k=\frac{n}{2}-1$ then $\operatorname{Aut}(\Gamma) \cong \mathbb{Z}_{2} w r_{I} \operatorname{Sym}(k+1)$, where $I=\{1, \ldots, k+1\}$.

On the spectrum of a class of distance-transitive graphs \quad Seyed Morteza Mirafzal, Ali Zafari

2. Definitions and Preliminaries

Proposition 2.1. [11] For any graph Γ we have

$$
\omega(\Gamma) \leq \omega_{f}(\Gamma) \leq \chi_{f}(\Gamma) \leq \chi(\Gamma)
$$

Proposition 2.2. [8] If Γ is vertex transitive graph, then we have

$$
\omega_{f}(\Gamma)=\frac{|V(\Gamma)|}{\alpha(\Gamma)}
$$

Definition 1. [4] Let Γ be a graph with automorphism group Aut (Γ). We say that Γ is symmetric if, for all vertices u, v, x, y of Γ such that u and v are adjacent, also, x and y are adjacent, there is an automorphism π such that $\pi(u)=x$ and $\pi(v)=y$. We say that Γ is distance-transitive if, for all vertices u, v, x, y of Γ such that $\partial(u, v)=\partial(x, y)$, there is an automorphism π such that $\pi(u)=x$ and $\pi(v)=y$.

Remark 2.1. [4] Let Γ be a graph. It is clear that we have a hierarchy of conditions:

distance-transitive \Rightarrow symmetric \Rightarrow vertex-transitive

Definition 2. [4], [5] For any vertex v of a connected graph Γ we define

$$
\Gamma_{r}(v)=\{u \in V(\Gamma) \mid \partial(u, v)=r\}
$$

where r is a non-negative integer not exceeding d, the diameter of Γ. It is clear that $\Gamma_{0}(v)=\{v\}$, and $V(\Gamma)$ is partitioned into the disjoint subsets $\Gamma_{0}(v), \ldots, \Gamma_{d}(v)$, for each v in $V(\Gamma)$. The graph Γ is called distance-regular with diameter d and intersection array $\left\{b_{0}, \ldots, b_{d-1} ; c_{1}, \ldots, c_{d}\right\}$, if it is regular of valency k and for any two vertices u and v in Γ at distance r we have $\left|\Gamma_{r+1}(v) \cap \Gamma_{1}(u)\right|=$ b_{r}, and $\left|\Gamma_{r-1}(v) \cap \Gamma_{1}(u)\right|=c_{r},(0 \leq r \leq d)$. The numbers c_{r}, b_{r} and a_{r}, where

$$
a_{r}=k-b_{r}-c_{r} \quad(0 \leq r \leq d),
$$

is the number of neighbours of u in $\Gamma_{r}(v)$ for $\partial(u, v)=r$, are called the intersection numbers of Γ. Clearly $b_{0}=k, b_{d}=c_{0}=0$ and $c_{1}=1$.

Remark 2.2. [4] It is clear that if Γ is distance-transitive graph then Γ is distance-regular.
Lemma 2.1. [4] A connected graph Γ with diameter d and automorphism group $G=A u t(\Gamma)$ is distance-transitive if and only if it is vertex-transitive and the vertex-stabilizer G_{v} is transitive on the set $\Gamma_{r}(v)$, for each $r \in\{0,1, \ldots, d\}$, and $v \in V(\Gamma)$.

Theorem 2.1. [5] Let Γ be a distance-regular graph which the valency of each vertex as k, with diameter d, adjacency matrix A and intersection array,

$$
\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, c_{2}, \ldots, c_{d}\right\}
$$

Then the tridiagonal $(d+1) \times(d+1)$ matrix

On the spectrum of a class of distance-transitive graphs \quad Seyed Morteza Mirafzal, Ali Zafari

$$
\jmath(\Gamma)=\left[\begin{array}{cccccccc}
a_{0} & b_{0} & 0 & 0 & \ldots & & & \\
c_{1} & a_{1} & b_{1} & 0 & \ldots & & & \\
0 & c_{2} & a_{2} & b_{2} & & & & \\
& & & \ldots & & & & \\
& & & & c_{d-2} & a_{d-2} & b_{d-2} & 0 \\
& & & \ldots & 0 & c_{d-1} & a_{d-1} & b_{d-1} \\
& & & \ldots & 0 & 0 & c_{d} & a_{d}
\end{array}\right]
$$

determines all the eigenvalues of Γ.
Theorem 2.2. [7] Let Γ be a graph such that contains $k+1$ components $\Gamma_{1}, \ldots, \Gamma_{k+1}$. If for any $i \in I=\{1, \ldots, k+1\}, \Gamma_{i} \cong \Gamma_{1}$ then $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut}\left(\Gamma_{1}\right) w r_{I} \operatorname{Sym}(k+1)$.

3. Main Results

Proposition 3.1. Let $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{n}, S_{k}\right)$ be the Cayley graph on the cyclic group $\mathbb{Z}_{n}(n \geq 4)$, where $S_{1}=\{1, n-1\}, \ldots, S_{k}=S_{k-1} \cup\{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_{n}-\{0\}$ for any $k \in \mathbb{N}, 1 \leq k \leq\left[\frac{n}{2}\right]-1$. Then $\chi(\Gamma)=\omega(\Gamma)=k+1$ if and only if $k+1 \mid n$.

Proof. By definition of $S_{i}, 1 \leq i \leq k$ clearly $\left|S_{i}\right|=2 i$, hence $\left|S_{k}\right|=2 k$. Let $\Gamma=C a y\left(\mathbb{Z}_{n}, S_{k}\right)$ be the Cayley graph on the cyclic group \mathbb{Z}_{n} and S_{k} be the set of inverse-closed subset of $\mathbb{Z}_{n}-\{0\}$ which is defined as before. By definition of Γ clearly $\omega(\Gamma)=k+1$. So, if $\chi(\Gamma)=\omega(\Gamma)=k+1$ then by Proposition 2.1, $\chi_{f}(\Gamma)=\omega_{f}(\Gamma)=k+1$. Also we know that Γ is a vertex transitive graph, so by Proposition $2.2, k+1=\omega_{f}(\Gamma)=\frac{|V(\Gamma)|}{\alpha(\Gamma)}$ therefore $k+1 \mid n$. Conversely, if $k+1 \mid n$ then $\chi(\Gamma)=k+1$, because Γ is a vertex transitive graph and the size of every clique in the graph Γ is $k+1$, therefore $\chi(\Gamma)=\omega(\Gamma)=k+1$.

Example 1. Suppose $\Gamma_{1}=\operatorname{Cay}\left(\mathbb{Z}_{12}, S_{2}\right)$ and $\Gamma_{2}=\operatorname{Cay}\left(\mathbb{Z}_{12}, S_{3}\right)$ are two Cayley graphs, then $\chi\left(\Gamma_{1}\right)=\omega\left(\Gamma_{1}\right)=3$ and $\chi\left(\Gamma_{2}\right)=\omega\left(\Gamma_{2}\right)=4$.

Figure 1: $\chi\left(\Gamma_{1}\right)=\omega\left(\Gamma_{1}\right)=3$ Figure 2: $\chi\left(\Gamma_{2}\right)=\omega\left(\Gamma_{2}\right)=4$

Proposition 3.2. Let $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{n}, S_{k}\right)$ be the Cayley graph on the cyclic group $\mathbb{Z}_{n}(n \geq 4)$, where $S_{1}=\{1, n-1\}, \ldots, S_{k}=S_{k-1} \cup\{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_{n}-\{0\}$ for any $k \in \mathbb{N}, 1 \leq k \leq\left[\frac{n}{2}\right]-1$. If n is an even integer and $k=\frac{n}{2}-1$ then $\operatorname{Aut}(\Gamma) \cong \mathbb{Z}_{2} w r_{I} \operatorname{Sym}(k+1)$, where $I=\{1, \ldots, k+1\}$.

Proof. Let $V(\Gamma)=\{1, \ldots, n\}$ be the vertex set of Γ. By assumptions and Proposition 2.2, the size of the largest independent set of vertices in the Γ is 2 , because Γ is a vertex transitive graph and the size of every clique in the graph Γ is $k+1$. Thus, the size of the every independent set of vertices in the Γ is 2 . Therefore for any $x \in V(\Gamma)$, there is exactly one $y \in V(\Gamma)$ such that $x^{-1} y=k+1$. Hence, if $x^{-1} y=k+1$ then two vertices x and y adjacent in the complement $\bar{\Gamma}$ of Γ, so $\bar{\Gamma}$ contains $k+1$ components $\Gamma_{1}, \ldots, \Gamma_{k+1}$ such that for any $i \in I=\{1, \ldots, k+1\}, \Gamma_{i} \cong \Gamma_{1} \cong K_{2}$, where K_{2} is the complete graph of 2 vertices. Therefore $\bar{\Gamma} \cong(k+1) K_{2}$, hence by Theorem 2.2, $\operatorname{Aut}(\bar{\Gamma}) \cong \operatorname{Aut}\left(K_{2}\right) w r_{I} \operatorname{Sym}(k+1)=\mathbb{Z}_{2} w r_{I} \operatorname{Sym}(k+1)$, so $\operatorname{Aut}(\Gamma) \cong \mathbb{Z}_{2} w r_{I} \operatorname{Sym}(k+1)$.

Example 2. Let $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{12}, S_{5}\right)$ be the Cayley graph on the cyclic group \mathbb{Z}_{12}, then $\chi(\Gamma)=$ $\omega(\Gamma)=6$, and $\operatorname{Aut}(\Gamma)=\mathbb{Z}_{2} w r_{I} \operatorname{Sym}(6)$, where $I=\{1, \ldots, 6\}$.

Figure 3: $\chi(\Gamma)=\omega(\Gamma)=6$

Proposition 3.3. Let $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{n}, S_{k}\right)$ be the Cayley graph on the cyclic group $\mathbb{Z}_{n}(n \geq 4)$, where $S_{1}=\{1, n-1\}, \ldots, S_{k}=S_{k-1} \cup\{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_{n}-\{0\}$ for any $k \in \mathbb{N}, 1 \leq k \leq\left[\frac{n}{2}\right]-1$. If n is an even integer and $k=\frac{n}{2}-1$ then Γ is a distance-transitive graph.

Proof. By Lemma 2.1, it is sufficient to show that vertex-stabilizer G_{v} is transitive on the set $\Gamma_{r}(v)$ for every $r \in\{0,1,2\}$ and $v \in V(\Gamma)$, because of Γ is a vertex-transitive graph. We know $V(\Gamma)=$ $\left\{1,2, \ldots, \frac{n}{2}-1, \frac{n}{2}, \frac{n}{2}+1, \ldots, n\right\}$ is the vertex set of Γ. Let $G=\operatorname{Aut}(\Gamma)$. Consider the vertex $v=1$ in the $V(\Gamma)$, then $\Gamma_{0}(v)=\{1\}, \Gamma_{1}(v)=\left\{2, \ldots, \frac{n}{2}-1, \frac{n}{2}, \frac{n}{2}+2, \ldots, n\right\}$ and $\Gamma_{2}(v)=\left\{\frac{n}{2}+1\right\}$. Let $\rho=\left(2,3, \ldots, \frac{n}{2}, \frac{n}{2}+2, \ldots, n\right)$ be the cyclic permutation of the vertex set of Γ. It is an easy task to show that ρ is an automorphism of Γ. We can show that $H=\left\langle\left(2,3, \ldots, \frac{n}{2}, \frac{n}{2}+2, \ldots, n\right)\right\rangle$ acts transitively on the set $\Gamma_{r}(v)$ for each $r \in\{0,1,2\}$, because H is a cyclic group. Note that if $1 \neq v \in V(\Gamma)$ then, we can show that vertex-stabilizer G_{v} is transitive on the set $\Gamma_{r}(v)$ for each $r \in\{0,1,2\}$, because Γ is a vertex-transitive graph.

Proposition 3.4. Let $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{n}, S_{k}\right)$ be the Cayley graph on the cyclic group $\mathbb{Z}_{n}(n \geq 4)$, where $S_{1}=\{1, n-1\}, \ldots, S_{k}=S_{k-1} \cup\{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_{n}-\{0\}$ for any $k \in \mathbb{N}, 1 \leq k \leq\left[\frac{n}{2}\right]-1$. If n is an even integer and $k=\frac{n}{2}-1$ then Γ is an integral graph.

Proof. By Remark 2.2, it is clear that Γ is distance-regular, because Γ is a distance-transitive graph. Let $V(\Gamma)=\{1,2, \ldots, n\}$ be the vertex set of Γ. Consider the vertex $v=1$ in the $V(\Gamma)$, then $\Gamma_{0}(v)=\{1\}, \Gamma_{1}(v)=\left\{2, \ldots, \frac{n}{2}-1, \frac{n}{2}, \frac{n}{2}+2, \ldots, n\right\}$ and $\Gamma_{2}(v)=\left\{\frac{n}{2}+1\right\}$. Let be u in the $V(\Gamma)$ such that $\partial(u, v)=0$ then $u=v=1$ and $\left|\Gamma_{1}(v) \cap \Gamma_{1}(u)\right|=2 k$, hence $b_{0}=2 k$ and by Definition 2, $a_{0}=2 k-b_{0}=0$. Also, if u in the $V(\Gamma)$ and $\partial(u, v)=1$ then two vertices u, v are adjacent in Γ, so $\left|\Gamma_{0}(v) \cap \Gamma_{1}(u)\right|=1$ and $\left|\Gamma_{2}(v) \cap \Gamma_{1}(u)\right|=1$, hence $c_{1}=1, b_{1}=1$ and $a_{1}=2 k-b_{1}-c_{1}=2 k-2$. Finally, if u in the $V(\Gamma)$ and $\partial(u, v)=2$ then two vertices u, v are not adjacent in Γ, so $\left|\Gamma_{1}(v) \cap \Gamma_{1}(u)\right|=2 k$, hence $c_{2}=2 k$ and $a_{2}=2 k-c_{2}=0$. So the intersection array of Γ is $\{2 k, 1 ; 1,2 k\}$. Therefore by Theorem 2.1, the tridiagonal (3) $\times(3)$ matrix,

$$
\left[\begin{array}{ccc}
a_{0} & b_{0} & 0 \\
c_{1} & a_{1} & b_{1} \\
0 & c_{2} & a_{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 2 k & 0 \\
1 & 2 k-2 & 1 \\
0 & 2 k & 0
\end{array}\right],
$$

determines all the eigenvalues of Γ. It is clear that all the eigenvalues of Γ are $2 k, 0,-2$ and their multiplicities are $1, k+1, k$, respectively. So Γ is an integral graph.

References

[1] A. Abdollahi and E. Vatandoost, Which Cayley graphs are integral?, Electron. J. Comb. 16 (1) (2009), r122, 1-17.
[2] O. Ahmadi, N. Alon, L.F. Blake and I.E. Shparlinski, Graphs with integral spectrum, Linear Alg. Appl. 430 (2009), 547-552.
[3] K. Balinska, D. Cvetković, Z. Rodosavljević, S. Simić and D.Ste-vanović, A survey on integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. 13 (2002), 42-65.
[4] N.L. Biggs, Algebraic Graph Theory, New York, NY, Cambridge University Press, Cambridge, 1993.
[5] A.E. Brower, A.M. Cohen and A. Neumaier, Distance Regular Graphs, Springer, Berlin, 1989.
[6] J. D. Dixon and B. Mortimer, Permutation Groups, Math. Proc, Cambridge Phil. Soc, 1996.
[7] R. Frucht, On the groups of repeated graphs, Bulletin of the American Mathematical Society 55 (1949), 418-420.
[8] C. Godsil and G. Royle, Algebraic graph theory, Springer, New York, 2001.
[9] Geňa Hahn and Claude Tardif, Graph homomorphisms: structure and symmetry, Mathematical and Physical Sciences 497 (1997), 107-166.
[10] F. Harary and A. Schwenk, Which graphs have integral spectra?, Lect. Notes Math., Springer Verlag 406 (1974), 45-50.
[11] E.R. Scheinerman and D.H. Ullman, Fractional graph theory, Springer-Verlag, New York, 2008.

