Electronic Journal of Graph Theory and Applications

Enforced hamiltonian cycles in generalized dodecahedra

Mária Timková
Institute of Mathematics, Faculty of Science, P.J. Šafárik University
Jesenná 5, 04154 Košice, Slovak Republic
maria.timkova@student.upjs.sk

Abstract

The H -force number of a hamiltonian graph G is the smallest number k with the property that there exists a set $W \subseteq V(G)$ with $|W|=k$ such that each cycle passing through all vertices of W is a hamiltonian cycle. In this paper, we determine the H -force numbers of generalized dodecahedra.

Keywords: hamiltonian graph, H -force number, generalized dodecahedron
Mathematics Subject Classification : 05C45

Throughout this paper we consider graphs without loops or multiple edges; for terminology not defined here we refer to [3].

Let $G=(V, E)$ be a hamiltonian graph and let W be a nonempty subset of $V(G)$. A cycle in G is a W-cycle if it contains all vertices of W. The set W enforces a hamiltonian cycle in G (or, W is an H-force set) if each W-cycle of G is hamiltonian. The H-force number of G, denoted $h(G)$, is the cardinality of the smallest H -force set in G.

The H-force number of a graph was introduced in [4] as a possible tool which unifies several concepts in theory of hamiltonian graphs and allows to develop a kind of hierarchic partition in this graph family. Note that there are several different approaches which develop such a hierarchy like pancyclicity or hamiltonian-connectedness, the other way how to study the quality of a hamiltonian graph is to study the existence of hamiltonian cycles passing through particular edges, see [5], [8]. One possible approach how to classify hamiltonian graphs concerns the notion of k-hamiltonicity:

Received: 23 May 2013, Revised: 13 October 2013, Accepted: 23 October 2013.
given an n-vertex graph G and an integer $k, 1 \leq k \leq n-3, G$ is k-hamiltonian if, for all sets $U \subseteq V, 0 \leq|U| \leq k$, the graph $G-U$ (obtained from G by deleting all vertices of U) is hamiltonian. In particular, a graph is 1-hamiltonian if it is hamiltonian and the graph that results from deletion of any vertex is also hamiltonian. There are several sufficient conditions for graphs to be 1-hamiltonian, in many cases similar to the classical conditions for hamiltonicity (see [1], [2] or [7]). Note that if a graph is k-hamiltonian for $k \geq 1$, then its H -force number is equal to its order, and vice versa; thus, it is interesting to explore graphs with H -force number being less than their orders. The graphs with small H -force number were studied in [4], which provided the complete characterization of graphs with H -force number 2 (or 3 in the case of 3-connected graphs, and 4 for 3 -connected planar graphs, respectively). In general, determining the H -force number of a hamiltonian graph is a difficult problem, even for special graphs. The aim of this paper is to determine the H -force numbers of generalized dodecahedra, i.e. the 3-connected planar cubic graphs consisting of two k-gonal faces separated by the strip of $2 k$ pentagons.

Given an integer k, the graph G_{k} is constructed in the following way: take three cycles $C_{O}=v_{1} v_{2} \ldots v_{k} v_{1}, C_{M}=v_{k+1} v_{k+2} v_{k+3} \ldots v_{3 k} v_{k+1}$, and $C_{I}=v_{3 k+1} v_{3 k+2} \ldots v_{4 k} v_{3 k+1}$ drawn in the plane such that C_{M} lies in the interior of C_{O} and C_{I} lies in the interior of C_{M} (we refer to C_{O}, C_{M}, C_{I} as the outer, middle and inner cycle of G_{k}, the above described labelling of vertices will be called primary in the sequel). Next, for each $i=1, \ldots, k$, add new edges $v_{i} v_{k+2 i-1}$, $v_{k+2 i} v_{3 k+i}$. This can be done is such a way that the resulting graph G_{k} is plane; it contains two k-gons separated by two layers of $2 k$ pentagons in total, is 3 -connected and cubic, and has $4 k$ vertices and $6 k$ edges.

Theorem 1. Let G_{k} be a generalized dodecahedron, then
(i) $h\left(G_{3}\right)=9$;
(ii) $h\left(G_{5}\right)=15$;
(iii) $h\left(G_{k}\right)=\frac{11 k}{3}$ if $k \equiv 0(\bmod 3), k \geq 6$;
(iv) $h\left(G_{k}\right)=4 k-2$ if $k \equiv 1(\bmod 3)$;
(v) $h\left(G_{k}\right)=\frac{11 k-7}{3}$ if $k \equiv 2(\bmod 3), k \geq 8$.

Three edges $a, b, c \in E\left(G_{k}\right)$ are concurrent if $a \in E\left(C_{O}\right), b \in E\left(C_{M}\right), c \in E\left(C_{I}\right)$ and they belong to two adjacent pentagons with b being their common edge. This term will be also used for any two edges of a concurrent triple.

From the geometrical point of view, when constructing G_{k}, we can arrange cycles C_{M}, C_{O} and C_{I} in such a way that their drawings are regular polygons, their circumscribed circles are concentric and each half line originating from the common centre of circles intersects either no vertex (and in this case it intersects three edges, one of each polygon, that accord to a concurrent triple in G_{k}) or exactly two vertices of the polygons (according to adjacent vertices of G_{k}), see Fig. 1.

Note that, in G_{k}, there exists an automorphism that maps any vertex $v_{i} \in V\left(C_{I}\right) \cup V\left(C_{O}\right)$ to arbitrary vertex $v_{j} \in V\left(C_{I}\right) \cup V\left(C_{O}\right)$ as well as an automorphism that maps any $v_{\ell} \in V\left(C_{M}\right)$ to any $v_{m} \in V\left(C_{M}\right)$.

Fig. 1
Let $v_{r} v_{r+1}, v_{s} v_{s+1}, v_{t} v_{t+1} \in E\left(G_{k}\right)$ be three concurrent edges (for the case $v_{s} v_{t} \in E\left(G_{k}\right)$ see Fig. 2A, analogously the case $\left.v_{r} v_{s} \in E\left(G_{k}\right)\right)$. If we replace the path v_{r}, v_{r+1} by the path $v_{r}, v_{r_{1}^{*}}, v_{r+1}$, the path v_{s}, v_{s+1} by the path $v_{s}, v_{s_{1}^{*}}, v_{s_{2}^{*}}, v_{s+1}$, the path v_{t}, v_{t+1} by the path $v_{t}, v_{t_{1}^{*}}, v_{t+1}$, and add two new edges $v_{r_{1}^{*}} v_{s_{1}^{*}}, v_{s_{2}^{*}} v_{t_{1}^{*}}$ then we obtain the graph G_{k+1}. We say that we enlarge the graph G_{k} to G_{k+1} on the concurrent triple $v_{r} v_{r+1}, v_{s} v_{s+1}, v_{t} v_{t+1}$. Repeating this operation, G_{k} can be enlarged to G_{k+2}, G_{k+3}, etc. (Note that $V\left(G_{k}\right) \subseteq V\left(G_{k+1}\right) \subseteq V\left(G_{k+2}\right) \subseteq V\left(G_{k+3}\right) \subseteq \ldots$)

In the sequel, a cycle C of a graph G misses exactly the vertices of a set $S \subset V(G),|S| \leq$ $|V(G)|-3$, if $V(C)=V(G) \backslash S$. Note, that if C is nonhamiltonian cycle of G then any H-force set of G contains a vertex of $G-C$.

Fig. 2A

Fig. 2B

Lemma 2. Let a, b, c be three concurrent edges of G_{k} and let $G_{k+1}\left(G_{k+3}\right)$ be enlarged from G_{k} on this triple. If C is a cycle of G_{k} containing all three edges a, b, c (any two of them), then in G_{k+1} $\left(G_{k+3}\right)$ there is a cycle C^{*} missing exactly the same vertices as C in G_{k}; moreover, C^{*} contains three (two) concurrent edges as well.

Fig. 3A

Fig. 3B

Proof. Let C be a cycle of G_{k}, let $S \subset V\left(G_{k}\right)$ be the set of vertices missed by C, let $v_{r} v_{r+1} \in$ $E\left(C_{I}\right), v_{s} v_{s+1} \in E\left(C_{M}\right), v_{t} v_{t+1} \in E\left(C_{O}\right)$ be concurrent edges, and let G_{k+1} and G_{k+3} be enlarged from G_{k} on the mentioned triple of edges (see Fig. 2A, 2B and 3A, 3B, respectively).

1. If C contains all three concurrent edges $v_{r} v_{r+1}, v_{s} v_{s+1}, v_{t} v_{t+1}$, then replace in C the path v_{r}, v_{r+1} by the path $v_{r}, v_{r_{1}^{*}}, v_{r+1}$, the path v_{s}, v_{s+1} by the path $v_{s}, v_{s_{1}^{*}}, v_{s_{2}^{*}}, v_{s+1}$, and the path v_{t}, v_{t+1} by the path $v_{t}, v_{t_{1}^{*}}, v_{t+1}$ to create the cycle C^{*} in G_{k+1} containing all four new vertices and thus missing exactly the vertices of S (Fig. 2B). Moreover C^{*} contains three concurrent edges of G_{k+1} (for example $v_{r} v_{r_{1}^{*}}, v_{s} v_{s_{1}^{*}}, v_{t} v_{t_{1}^{*}}$).
2. (a) If C contains exactly two concurrent edges $v_{s} v_{s+1}, v_{t} v_{t+1}$ (similarly for $v_{r} v_{r+1}, v_{s} v_{s+1} \in$ $E(C)$) then replace in C the path v_{s}, v_{s+1} by the path $v_{s}, v_{s_{1}^{*}}, v_{r_{1}^{*}}, v_{r_{2}^{*}}, v_{r_{3}^{*}}, v_{s_{5}^{*}}, v_{s_{6}^{*}}, v_{s+1}$ and the path v_{t}, v_{t+1} by the path $v_{t}, v_{t_{1}^{*}}, v_{s_{2}^{*}}, v_{s_{3}^{*}}, v_{s_{4}^{*}}, v_{t_{2}^{*}}, v_{t_{3}^{*}}, v_{t+1}$ to create the cycle C^{*} in G_{k+3} containing all 12 new vertices and thus missing exactly the vertices of S (Fig. 3B). Moreover C^{*} contains two concurrent edges of G_{k+3} (for example $v_{s} v_{s_{1}^{*}}, v_{t} v_{t_{1}^{*}}$).
(b) If C contains exactly two concurrent edges $v_{r} v_{r+1}, v_{t} v_{t+1}$ then replace in C the path v_{r}, v_{r+1} by the path $v_{r}, v_{r_{1}^{*}}, v_{s_{1}^{*}}, v_{s_{2}^{*}}, v_{s_{3}^{*}}, v_{r_{2}^{*}}, v_{r_{3}^{*}}, v_{r+1}$ and the path v_{t}, v_{t+1} by the path $v_{t}, v_{t_{1}^{*}}, v_{t_{2}^{*}}, v_{s_{4}^{*}}, v_{s_{5}^{*}}, v_{s_{6}^{*}}, v_{t_{3}^{*}}, v_{t+1}$ to create the cycle C^{*} in G_{k+3} containing all 12 new vertices and thus missing exactly the vertices of S. Moreover C^{*} contains two concurrent edges of G_{k+3} (for example $v_{r} v_{r_{1}^{*}}, v_{t} v_{t_{1}^{*}}$).

Now, the vertices in G_{k+1} and G_{k+3} can be relabelled to obtain primary labelling.
In the next, $d_{H}(x, y)$ denotes the distance of x, y with respect to the graph H.
Lemma 3. Let $k \equiv 0(\bmod 3), k \geq 6$, and let $v_{i}, v_{j} \in V\left(C_{M}\right) \cap V\left(G_{k}\right)$ such that $2 \neq d_{C_{M}}\left(v_{i}, v_{j}\right) \equiv$ $\pm 2(\bmod 6)$. Then there exists a cycle in G_{k} that misses exactly the vertices v_{i}, v_{j}.

Proof. Because of symmetry of G_{k} and the condition $2 \neq d_{C_{M}}\left(v_{i}, v_{j}\right) \equiv \pm 2(\bmod 6)$ we can assume that $i=k+1$ and $k+5 \leq j \leq 2 k$. For $j-i=j-k-1 \equiv \pm 2(\bmod 6)$ we prove that there exists a cycle in G_{k} that misses exactly two vertices v_{i}, v_{j}. Note that any such cycle contains the following two pairs of concurrent edges: $v_{1} v_{2}, v_{k+2} v_{k+3}$ and $v_{k} v_{1}, v_{3 k-1} v_{3 k}$.
For $k=6$ is $i=7, j=11$ and a desired cycle in G_{6} is shown on Fig. 4.
For $k \geq 9$ we consider a cycle C^{\prime} in G_{k-3} that misses exactly two vertices $v_{k-2}, v_{j-3} \in V\left(G_{k-3}\right) \cap$ $V\left(C_{M}\right)$ with the distance (on the cycle C_{M} in $\left.G_{k-3}\right) j-3-(k-2)=j-k-1 \equiv \pm 2(\bmod 6)$ for $j \leq 2 k-2$ or distance $2 k-6-(j-k-1) \equiv \mp 2(\bmod 6)$ for $2 k-1 \leq j \leq 2 k$. The cycle C^{\prime} contains concurrent edges $v_{k-3} v_{1}, v_{3 k-10} v_{3 k-9}$ and by previous lemma we obtain a desired cycle in G_{k}.

Later we use this lemma in the following way: If W is an H -force set in $G_{k}, k \equiv 0(\bmod 3)$, that does not contain a vertex $v_{i} \in V\left(C_{M}\right)$, then every vertex $v_{j} \in V\left(C_{M}\right)$ with $2 \neq d_{C_{M}}\left(v_{i}, v_{j}\right) \equiv$ $\pm 2(\bmod 6)$ belongs to W.

Fig. 4

Fig. 5

Lemma 4. Let $k \equiv 2(\bmod 3), k \geq 8$, and let $v_{i}, v_{j}, v_{\ell} \in V\left(C_{M}\right) \cap V\left(G_{k}\right)$ such that these vertices split C_{M} into three paths of lengths at least 4 and congruent to 4,4 and 2 modulo 6 . Then there exists a cycle in G_{k} that misses exactly the vertices v_{i}, v_{j}, v_{ℓ}.

Proof. Because of symmetry of G_{k} we can assume that $k+1=i<j<\ell$. The vertices $v_{i}, v_{j}, v_{\ell} \in$ $V\left(C_{M}\right)$ split the cycle C_{M} into three paths of lengths $p_{i}:=j-i \equiv 4(\bmod 6), p_{j}:=\ell-j \equiv$ $4(\bmod 6)$, and $p_{\ell}:=3 k+1-\ell \equiv 2(\bmod 6), p_{\ell} \neq 2$.
For $k=8$ is $i=7, j=11, \ell=15$, and a desired cycle in G_{8} is shown on Fig. 5.
For $k \geq 11$ one of p_{i}, p_{j}, p_{ℓ} must be at least 10 .

1. If $p_{i} \geq 10$ then we consider a cycle C^{\prime} in G_{k-3} that misses exactly three vertices $v_{k-2}=$ $v_{i-3}, v_{j-9}, v_{\ell-9}$ splitting the middle cycle of G_{k-3} into three paths of length $p_{i}-6, p_{j}, p_{\ell}$ (congruent to 4,4 , and 2 modulo 6). The cycle C^{\prime} must contain concurrent edges $v_{1} v_{2}$ and $v_{k-1} v_{k}$. Through enlargement the graph G_{k-3} to G_{k} on the triple given by mentioned two edges we obtain, by Lemma 2, a desired cycle in G_{k}.
2. If $p_{i}=4$ and $p_{j} \geq 10$ then we consider a cycle C^{\prime} in G_{k-3} that misses exactly three vertices $v_{i-3}, v_{j-3}, v_{\ell-9}$ splitting the middle cycle of G_{k-3} into three paths of length $p_{i}, p_{j}-6, p_{\ell}$ (congruent to 4,4 , and 2 modulo 6). The cycle C^{\prime} must contain following two concurrent edges: $v_{j-2} v_{j-1}$ and the corresponding edge from the outer cycle of G_{k-3}. By Lemma 2 we obtain a desired cycle in G_{k}.
3. If $p_{i}=p_{j}=4$ and $p_{\ell} \geq 10$ then we consider a cycle C^{\prime} in G_{k-3} that misses exactly three vertices $v_{i-3}, v_{j-3}, v_{\ell-3}$ splitting the middle cycle of G_{k-3} into three paths of length $p_{i}, p_{j}, p_{\ell}-6$ (congruent to 4,4 , and 2 modulo 6). The cycle C^{\prime} must contain following two concurrent edges: $v_{\ell-2} v_{\ell-1}$ and the corresponding edge from the outer cycle of G_{k-3}. By Lemma 2 we obtain a desired cycle in G_{k}.

In a similar way, one can prove
Lemma 5. Let $k \equiv 2(\bmod 3)$ and let $R \subseteq V\left(G_{k}\right)$ be

1. the set of two vertices $v_{i} \in V\left(C_{M}\right)$ and $v_{j} \in V\left(C_{I}\right)$ where v_{i} is adjacent to a vertex on C_{O} and $2 \neq d\left(v_{i}, v_{j}\right) \not \equiv 1(\bmod 3)($ see Fig. 6), or
2. the set of three vertices $v_{i}, v_{j}, v_{\ell} \in V\left(C_{O}\right)$ such that these vertices split C_{O} into three paths of lengths congruent to 1,1 and 0 modulo 3 (see Fig. 7), or
3. the set of three vertices $v_{i}, v_{j} \in V\left(C_{O}\right)$ and $v_{\ell} \in V\left(C_{M}\right)$ where both v_{j} and v_{ℓ} are adjacent to v_{i} (see Fig. 8).
Then there exists a cycle in G_{k} that misses exactly the vertices of R.

Fig. 6

Fig. 7

Fig. 8

Lemma 6. Let $k \equiv 0(\bmod 3)$ and let $R \subseteq V\left(G_{k}\right)$ be

1. the set of one vertex of C_{O} (see Fig. 9), or
2. the set of two adjacent vertices of C_{M} (see Fig. 10).

Then there exists a cycle in G_{k} that misses exactly the vertices of R.

Fig. 9

Fig. 10

Lemma 7. Let $k \equiv 1(\bmod 3)$ and let $R \subseteq V\left(G_{k}\right)$ be

1. a cycle that misses exactly one vertex of C_{M} (see Fig. 11), and
2. a cycle that misses exactly two vertices $v_{i} \in V\left(C_{O}\right)$ and $v_{j} \in V\left(C_{I}\right)$ with $d\left(v_{i}, v_{j}\right)=4$ (see Fig. 12), and
3. a cycle that misses exactly two vertices $v_{i}, v_{j} \in V\left(C_{O}\right)$ with $d_{C_{o}}\left(v_{i}, v_{j}\right) \not \equiv 2(\bmod 3)($ see Fig. 13).

Then there exists a cycle in G_{k} that misses exactly the vertices of R.

Fig. 11

Fig. 12

Fig. 13

Lemma 8. Let $k \geq 3$ and let $R \subseteq V\left(G_{k}\right)$ be

1. the set of two vertices $v_{i} \in V\left(C_{M}\right)$ and $v_{j} \in V\left(C_{O}\right)$ where v_{i} is adjacent to a vertex of C_{O} and $d\left(v_{i}, v_{j}\right) \geq 3$ (see Fig. 14), or
2. the set of two vertices $v_{i} \in V\left(C_{O}\right)$ and $v_{j} \in V\left(C_{I}\right)$ with $d\left(v_{i}, v_{j}\right) \neq 4$ (see Fig. 15A, 15B), or
3. the set of two vertices $v_{i}, v_{j} \in V\left(C_{M}\right)$ with $1 \neq d_{C_{M}}\left(v_{i}, v_{j}\right) \equiv 1(\bmod 2)$ (see Fig. 16), or
4. the set of three vertices $v_{i}, v_{j} \in V\left(C_{M}\right)$ and $v_{\ell} \in V\left(C_{O}\right)$ where both v_{j} and v_{ℓ} are adjacent to v_{i} (see Fig. 17).
Then there exists a cycle in G_{k} that misses exactly the vertices of R.

Fig. 14

Fig. 15A

Fig. 15B

Fig. 16

Fig. 17

In the following, we will use the necessary condition for hamiltonicity of plane graphs:
Theorem 9 (Grinberg [6]). Let G be a plane hamiltonian graph and C be a hamiltonian cycle in G. Let g_{i} be the number of i-gonal faces in the exterior of C and f_{i} be the number of i-gonal faces in the interior of C. Then $\sum_{i \geq 3}(i-2)\left(f_{i}-g_{i}\right)=0$.

Proof of Theorem 1.

For $1 \leq j \leq 2 k$, denote the edges of G_{k} not belonging to the cycles C_{O}, C_{M}, or C_{I}, as follows

$$
a_{j}= \begin{cases}v_{k+j} v_{\frac{j+1}{2}}, & \text { if } j \text { odd } \\ v_{k+j} v_{3 k+\frac{j}{2}}, & \text { if } j \text { even. }\end{cases}
$$

Case (ii) The result for dodecahedron $(k=5)$ was proved in [4]. A smallest H -force set is $V\left(G_{5}\right)-\left\{v_{6}, v_{8}, v_{10}, v_{12}, v_{14}\right\}$.

Case (\mathbf{v}) Let $k \equiv 2(\bmod 3), k \geq 8$.
Let $S=\left\{v_{k+1}, v_{3 k+1}, v_{3 k+3}, v_{3 k+6}, v_{3 k+9}, \ldots, v_{3 k+k-2}, v_{4 k}\right\}$. First, we show that the set $Z=$ $V\left(G_{k}\right) \backslash S$ is an H-force set, that is, for any nonempty subset T of S, there is no cycle that misses exactly the vertices of T (i.e. there is no nonhamiltonian Z-cycle in G_{k}). In the second step we prove that Z is a smallest H-force set, which will mean $h\left(G_{k}\right)=|Z|=\frac{11 k-7}{3}$.

1. Let $T=\left\{v_{j}\right\}, v_{j} \in V\left(C_{M}\right)$. We prove that in the graph G_{k}, there is no cycle that misses exactly one vertex $v_{j} \in V\left(C_{M}\right)$. Suppose there exists such cycle. Then the graph $G_{k}-v_{j}$ is hamiltonian and, in this graph, $f_{i}+g_{i} \neq 0$ holds only for $i \in\{5,9, k\}$; moreover,

$$
f_{5}+g_{5}=2 k-3, \quad f_{9}+g_{9}=1, \quad f_{k}+g_{k}=2
$$

Then $0=\sum(i-2)\left(f_{i}-g_{i}\right)=3\left(f_{5}-g_{5}\right)+(k-2)\left(f_{k}-g_{k}\right)+7\left(f_{9}-g_{9}\right) \equiv \pm 7(\bmod 3)$, a contradiction.
2. Let $T=\left\{v_{j}\right\}, v_{j} \in V\left(C_{O}\right) \cup V\left(C_{I}\right)$. We prove that in the graph G_{k}, there is no cycle that misses exactly one vertex of C_{O} (similarly for C_{I}). Suppose that $G_{k}-v_{j}$ is hamiltonian. In this graph we have $f_{i}+g_{i} \neq 0$ only for $i \in\{5, k, k+4\}$, and furthermore,

$$
f_{5}+g_{5}=2 k-2, \quad f_{k}+g_{k}=1, \quad f_{k+4}+g_{k+4}=1
$$

Hence $0=\sum(i-2)\left(f_{i}-g_{i}\right)=3\left(f_{5}-g_{5}\right)+(k-2)\left(f_{k}-g_{k}\right)+(k+2)\left(f_{k+4}-g_{k+4}\right) \equiv$ $\pm(k+2) \equiv \pm 1(\bmod 3)$, a contradiction.
3. Let $v_{k+1} \in T$. We prove that no cycle in the graph G_{k} misses the vertex v_{k+1} and some other vertex from S. Suppose to the contrary that there is a Z-cycle C of G_{k} with $v_{k+1} \notin V(C)$.
(a) Let $v_{3 k+1} v_{4 k} \in E(C)$ and let $a_{j} \notin E(C)$, for all j with $3 \leq j \leq 2 k-1, j \equiv 0(\bmod 3)$. All edges of C are in this case uniquely determined, but ultimately we obtain two disjoined cycles, a contradiction.
(b) Let $v_{3 k+1} v_{4 k} \in E(C)$ and let j be the smallest integer with $3 \leq j \leq 2 k-1, j \equiv$ $0(\bmod 3)$ and $a_{j} \in E(C)$. The structure of layers of 5 -gons of G_{k} yields that all edges of C are uniquely determined. For j odd, C contains the path $v_{3 k-1}, v_{3 k}, v_{4 k}, v_{3 k+1}, v_{k+2}$, $v_{k+3}, v_{k+4}, v_{3 k+2}, v_{3 k+3}, v_{3 k+4}, v_{k+8}, \ldots, v_{3 k+\frac{j-1}{2}}, v_{k+j-1}, v_{k+j}, v_{\frac{j+1}{2}}, v_{\frac{j-1}{2}}, \ldots, v_{4}, v_{k+7}$, $v_{k+6}, v_{k+5}, v_{3}, v_{2}, v_{1}, v_{k}$. Subsequently C does not contain any other a_{j} with $3 \leq$ $j \leq 2 k-1, j \equiv 0(\bmod 3)$ and does not contain the edges $v_{k+j} v_{k+j+1}$ (since C contains the path $v_{k+j-1}, v_{k+j}, v_{\frac{j+1}{2}}$) and $v_{\frac{j+1}{2}} v_{\frac{j+3}{2}}$ as well (since C contains the path $v_{k+j}, v_{\frac{j+1}{2}}, v_{\frac{j-1}{2}}$. Therefore C contains the edges $v_{k+j+3} v_{k+j+2}$ (since $a_{j+1}=$ $\left.v_{k+j+3} v_{3 k+\frac{j+3}{2}} \notin E(C)\right), v_{k+j+1} v_{k+j+2}$ (since $v_{k+j} v_{k+j+1} \notin E(C)$), and $v_{k+j+2} v_{\frac{i+3}{2}}$ (since $v_{\frac{j+1}{2}} v_{\frac{i+3}{2}} \notin E(C)$), a contradiction (analogously for j even).
(c) Let $v_{3 k+1} v_{4 k} \notin E(C)$. Similarly as in the cases (a) and (b), there is no supposed Z cycle in G_{k}.
4. Let $v_{3 k+1}, v_{4 k} \in T$ and $v_{k+1} \notin T$ (i.e. $v_{k+1} \in V(C)$). Analogously to the previous case 3 , the edges of C are uniquely determined and they induce two disjoined cycles, if $a_{j} \notin E(C)$, for all j with $3 \leq j \leq 2 k-1, j \equiv 0(\bmod 3)$, a contradiction. Otherwise, for the smallest integer j with $3 \leq j \leq 2 k-1, j \equiv 0(\bmod 3)$ such that $a_{j} \in E(C)$, the cycle C does not contain the vertex $v_{\frac{j+3}{2}} \in Z$, if $j \equiv 3(\bmod 6)$, or the vertex $v_{3 k+\frac{j}{2}+1} \in Z$, if $j \equiv 0(\bmod 6)$, a contradiction.
5. Let $v_{3 k+1} \in T$ and $v_{4 k}, v_{k+1} \notin T$ (i.e. $v_{4 k}, v_{k+1} \in V(C)$). Analogously to the previous cases 3 and 4 , if $a_{j} \notin E(C)$, for all j with $3 \leq j \leq 2 k-1, j \equiv 0(\bmod 3)$, then necessarily $v_{1} v_{2}, v_{1} v_{k}, v_{1} v_{k+1} \in E(C)$, a contradiction.
Otherwise, for the smallest integer j with $3 \leq j \leq 2 k-1, j \equiv 0(\bmod 3)$ and $a_{j} \in E(C)$, the cycle C does not contain vertex v_{k+j+3} or vertex $v_{3 k-1}$ belonging to Z, a contradiction. Especially for $j=3$, let t with $t \equiv 0(\bmod 3), j<t<2 k$, be the smallest integer with $a_{t} \notin E(C)$. Then the cycle C does not contain vertex $v_{\frac{t}{2}}$ (if t even) or vertex $v_{3 k+\frac{t-1}{2}}$ or vertex v_{k+t+3} (if t odd), a contradiction. If there is no such t (i.e. if all edges a_{t} with $t \equiv 0(\bmod 3), j<t<2 k$, belong to $\mathrm{E}(\mathrm{C}))$ then $W=V(G) \backslash\left\{v_{3 k+1}\right\}$ and there is no cycle in G_{k} missing exactly one vertex, a contradiction.

Thus, we just proved that Z is an H -force set.
Now, let W be a smallest H -force set in G_{k}. We will show that $|W| \geq|Z|$.

1. Let $\left(V\left(C_{O}\right) \cup V\left(C_{I}\right)\right) \subseteq W$. Without loss of generality, let $v_{k+1} \notin W$ (otherwise, because of symmetry of G_{k}, all vertices of C_{M} belong to W, thus $W=V(G)$). As there exists (by Lemma 8 (3)) a cycle that misses exactly two vertices $v_{k+1}, v_{j} \in V\left(C_{M}\right)$ with $1 \neq$ $d_{C_{M}}\left(v_{k+1}, v_{j}\right) \equiv 1(\bmod 2)$, all these vertices v_{j} belong necessarily to W.
(a) Suppose $v_{k+2} \notin W$. Possibly except of v_{k+3} and $v_{3 k}$, the set W contains all vertices of $V\left(C_{M}\right)$ (again by Lemma 8 (3)), thus $|W| \geq 4 k-4 \geq|Z|$.
(b) Suppose $v_{k+5} \notin W$. By Lemma 8 (3), for $v_{i}=v_{5}$, the set W contains the vertices v_{k+2} and $v_{3 k}$. As there exists (by Lemma 4) a cycle that misses exactly three vertices $v_{i}, v_{j}, v_{\ell} \in V\left(C_{M}\right)$ splitting C_{M} into three paths of lengths at least 4 and congruent to 4,4 and 2 modulo 6 , the set W contains all vertices $v_{k+m} \in V\left(C_{M}\right)$ where $m \not \equiv$ $5(\bmod 6), 1 \leq m \leq 2 k$, or $m \notin\{k+1, k+3, k+7,3 k-1\}$. By repeated use of

Lemma 4 (for $v_{i}=v_{3 k-1}, v_{j}=v_{3}, v_{\ell}=v_{7}$), the set W contains at least one of these three vertices as well. Thus $|W| \geq \frac{11 k-7}{3}=|Z|$.
(c) Let $v_{k+2}, v_{3 k} \in W$ and let $v_{j} \notin W$ where $2 \neq d_{C_{M}}\left(v_{k+1}, v_{j}\right) \equiv 2(\bmod 6)$. Then by Lemma $4, v_{k+m} \in W$ for $m \equiv 5(\bmod 6), 5 \leq m \leq j-k-4$ and for $m \equiv 1(\bmod 6)$, $j-k+4 \leq m \leq 2 k-3$. For each mentioned m, the vertices v_{k+m-2} and v_{k+m+2} lie on C_{M} at distance 4, thus, one vertex of each pair v_{k+m-2}, v_{k+m+2} must belong to W (otherwise we have two vertices from C_{M} at distance 4 and not belonging to W already considered in (b)). Ultimately we have $|W| \geq \frac{11 k-4}{3} \geq|Z|$.
(d) Let $v_{k+2}, v_{3 k}, v_{k+5}, v_{3 k-3} \in W$ and let $v_{j} \in W$ for $2 \neq d_{C_{M}}\left(v_{k+1}, v_{j}\right) \equiv 2(\bmod 6)$. The vertices v_{k+m-2} and v_{k+m+2} for $m \equiv 2(\bmod 6), 9 \leq m \leq 2 k-7$ lie on C_{M} at distance 4, thus, similarly as in the previous case, one vertex of each pair v_{k+m-2}, v_{k+m+2} must belong to W. From the same reason, one of the vertices $v_{k+3}, v_{3 k-1}$ belongs to W as well. Ultimately we have $|W| \geq \frac{11 k-1}{3} \geq|Z|$.
2. Let $\left(V\left(C_{M}\right) \cup V\left(C_{I}\right)\right) \subseteq W$. Without loss of generality, let $v_{1} \notin W$ (otherwise, because of symmetry of G_{k}, all vertices of C_{O} belong to W, thus $W=V(G)$).
(a) Suppose $v_{j} \notin W$ where $d_{C_{o}}\left(v_{1}, v_{j}\right) \equiv 1(\bmod 3)$. As there exists (by Lemma 4) a cycle that misses exactly three vertices $v_{i}, v_{j}, v_{\ell} \in V\left(C_{M}\right)$ splitting C_{O} into three paths of lengths congruent to 1,1 and 0 modulo 3 , the set W contains all vertices $v_{m} \in V\left(C_{O}\right)$ where $m \not \equiv 0(\bmod 3), 1<m<j$, and all vertices $v_{m} \in V\left(C_{O}\right)$ where $m \not \equiv 1(\bmod 3), j<m<k$. Thus $|W| \geq \frac{11 k-4}{3} \geq|Z|$.
(b) Suppose that all $v_{j} \in V\left(C_{O}\right)$ with $d_{C_{O}}\left(v_{1}, v_{j}\right) \equiv 1(\bmod 3)$ belong to W. The remaining vertices of C_{O} are pairwise adjacent, thus, at least half of them belongs to W (otherwise we have two adjacent vertices from C_{O} not belonging to W - already considered in (a)) and we obtain $|W| \geq \frac{11 k-1}{3} \geq|Z|$.
3. Let $V\left(C_{M}\right) \subseteq W$ and let vertices $v_{i} \in V\left(C_{O}\right)$ and $v_{j} \in V\left(C_{I}\right)$ do not belong to W. Then by Lemma 8 (2) we have $|W| \geq 4 k-4 \geq|Z|$.
4. Let $v_{k+1} \notin W$. Then by Lemma 8 (1), $v_{3}, \ldots, v_{k-1} \in W$. Furthermore, by Lemma 8 (3), the set W contains also the vertices v_{k+m} for m even and $4 \leq m \leq 2 k-2$. Finally, by Lemma 5 (1), W contains the vertices $v_{3 k+m}$ for $m \not \equiv 0(\bmod 3)$ and $2 \leq m \leq k-1$ as well.
(a) Suppose $v_{1} \notin W$. Then using Lemma 5 (3) and Lemma 8 (1),(2),(4) we obtain $|W| \geq$ $4 k-4$.
(b) Suppose $v_{1} \in W$ and $v_{2} \notin W$. Then using Lemma 8 (1),(2) we get $|W| \geq 4 k-8$.
(c) Suppose $v_{k+2} \notin W$. Then using Lemma 8 (1),(3) we obtain $|W| \geq 4 k-8$.

Due to symmetry of G_{k}, the vertices $v_{k} \in V\left(C_{O}\right)$ and $v_{3 k} \in V\left(C_{M}\right)$ belong to W as well, i.e. $V\left(C_{O}\right) \subseteq W$.
(d) Suppose W does not contain a vertex $v_{j} \in V\left(C_{I}\right)$. Then by Lemma 5 (1), all vertices $v_{\ell} \in C_{M}$ with $2 \neq d\left(v_{j}, v_{\ell}\right) \not \equiv 1(\bmod 3)$ belong to W. The remaining vertices (i.e. $\left\{v_{3 k+m}: m \equiv 0(\bmod 3), 2 \leq m \leq k-1\right\} \cup\left\{v_{3 k+1}, v_{4 k}\right\} \backslash\left\{v_{j}\right\} \subseteq V\left(C_{I}\right)$ and $\left\{v_{k+m}: m \equiv 2 j-6 k-1+6 t(\bmod 2 k), 0 \leq t \leq \frac{2 k+2}{6}\right\} \backslash\left\{v_{k+1}\right\} \subseteq V\left(C_{M}\right)$) form pairs in the distance 5 . By Lemma 5 (1), one vertex of each pair must belong to W, thus $|W| \geq \frac{11 k-7}{3} \geq|Z|$.

We showed, that the smallest H -force set of G_{k} contains at least $\frac{11 k-7}{3}$ vertices.
Case (i) For $k=3$ it is easy to check that $h\left(G_{3}\right)=9$, the set $V\left(G_{3}\right) \backslash\left\{v_{4}, v_{6}, v_{8}\right\}$ is a smallest H -force set in G_{3}.

Case (iii) Let $k \equiv 0(\bmod 3), k \geq 6$. Let W be an arbitrary H-force set in G_{k}.
In G_{k}, there exists a cycle that misses exactly one vertex of C_{O} (by Lemma 6 (1)). Hence, all vertices of C_{I} and C_{O} belong to W.

Without loss of generality, let $v_{k+1} \notin W$. We already know, that there exist cycles in G_{k} missing exactly two vertices
(a) v_{k+1} and $v_{j} \in V\left(C_{M}\right)$ with $d_{C_{M}}\left(v_{k+1}, v_{j}\right) \equiv 1(\bmod 2)$ (by Lemma 8 (3) and 6 (2)), or
(b) v_{k+1} and $v_{j} \in V\left(C_{M}\right)$ with $2 \neq d_{C_{M}}\left(v_{k+1}, v_{j}\right) \equiv \pm 2(\bmod 6)$ (by Lemma 3).

Hence, for $S=\left\{v_{k+1}\right\} \cup\left\{v_{j}: d_{C_{M}}\left(v_{k+1}, v_{j}\right) \equiv 0(\bmod 6)\right\}$ we just found out that $V\left(G_{k}\right) \backslash S \subseteq$ W. Now we prove that $V\left(G_{k}\right) \backslash S$ is an H-force set.

In G_{k}, there is no cycle that misses exactly one vertex v_{k+1}. Assume to the contrary that the graph $G_{k}-v_{k+1}$ is hamiltonian. We have $f_{i}+g_{i} \neq 0$ only for $i \in\{5,9, k\}$, moreover

$$
f_{5}+g_{5}=2 k-3, \quad f_{9}+g_{9}=1, \quad f_{k}+g_{k}=2
$$

If $f_{k}-g_{k}=0$, then $0=\sum(i-2)\left(f_{i}-g_{i}\right)=3\left(f_{5}-g_{5}\right)+(k-2)\left(f_{k}-g_{k}\right)+7\left(f_{9}-g_{9}\right) \equiv \pm 7(\bmod 3)$, a contradiction.
Otherwise $f_{k}-g_{k}= \pm 2$ and $0=\sum(i-2)\left(f_{i}-g_{i}\right)=3\left(f_{5}-g_{5}\right) \pm 2(k-2) \pm 7$. Thus $\pm 2(k-2) \pm 7 \equiv 0(\bmod 3)$ and the equality from the Grinberg's theorem is fulfilled only if both k-gons with 9 -gon appear in the same region determined by a hamiltonian cycle of $G_{k}-v_{k+1}$. On the other hand, edges $v_{1} v_{2}, v_{k} v_{1}$ belong to any hamiltonian cycle and obviously separate one k-gon and the 9 -gon, a contradiction.

Similarly as in the case (v), there is no cycle in G_{k} missing vertex v_{k+1} and some other vertices from S.

Case $(\mathbf{i v})$ Let $k \equiv 1(\bmod 3), k \geq 4$. Let W be an arbitrary H-force set in G_{k}. In G_{k}, there exists a cycle that misses exactly one vertex of C_{M} (by Lemma 7 (1)). Hence, all vertices of C_{M} belong to W.

Without loss of generality, let $v_{1} \notin W$. In G_{k} there exist cycles missing exactly two vertices
(a) v_{1} and $v_{j} \in V\left(C_{I}\right)$ (by Lemma 7 (2) and 8 (2)), or
(b) v_{1} and $v_{j} \in V\left(C_{O}\right)$ with $d_{C_{O}}\left(v_{1}, v_{j}\right) \not \equiv 2(\bmod 3)($ by Lemma $7(3))$.

Hence, for $S=\left\{v_{1}\right\} \cup\left\{v_{j}: d_{C_{O}}\left(v_{1}, v_{j}\right) \equiv 2(\bmod 3)\right\}$ we just found out that $V\left(G_{k}\right) \backslash S \subseteq W$.
If there is some $v_{j} \in S \backslash\left\{v_{1}\right\}$ that does not belong to W, then, according to previous observations, all other vertices of $S \backslash\left\{v_{1}\right\}$ belong necessarily to W because their distance from v_{j} is congruent to 0 or 1 modulo 3 .

In G_{k}, there is no cycle that misses exactly one vertex $v_{1} \in V\left(C_{O}\right)$. Assume to the contrary that the graph $G_{k}-v_{1}$ is hamiltonian. We have $f_{i}+g_{i} \neq 0$ only for $i \in\{5, k, k+4\}$, moreover

$$
f_{5}+g_{5}=2 k-2, \quad f_{k}+g_{k}=1, \quad f_{k+4}+g_{k+4}=1
$$

then $0=\sum(i-2)\left(f_{i}-g_{i}\right)=3\left(f_{5}-g_{5}\right)+(k-2)\left(f_{k}-g_{k}\right)+(k+2)\left(f_{k+4}-g_{k+4}\right) \equiv \pm(k-2) \equiv$ $\mp 1(\bmod 3)$, a contradiction.

Moreover, there is no cycle that misses exactly the vertices v_{1} and v_{3}, because v_{2} is a pendant vertex in $G_{k}-v_{1}-v_{3}$.

Hence, the set $V\left(G_{k}\right) \backslash\left\{v_{1}, v_{3}\right\}$ is a smallest H -force set.

Acknowledgement

This work was supported by Slovak Grant VEGA 1/0652/12.

References

[1] G. Chartrand, S.F. Kapoor, D.R. Lick, n-hamiltonian graphs, J. Combin. Theory 9 (1970), 308-312.
[2] P. Erdös, V. Chvátal, A note on hamiltonian circuits, Discrete Math. 2 (1972), 111-113.
[3] R. Diestel, Graph Theory, Springer, 2000.
[4] I. Fabrici, E. Hexel, S. Jendrol', On vertices enforcing a hamiltonian cycle, Discuss. Math. Graph Theory 33 (2013), 71-89.
[5] F. Göring, J. Harant, Hamiltonian cycles through prescribed edges of at least 4-connected maximal planar graphs, Discrete Math. 310 (2010), 1491-1494.
[6] E. Grinberg, Plane homogeneous graphs of degree 3 without hamiltonian circuits, Latvian Math. Yearbook (1968), 51-58 (in Russian).
[7] D.A. Nelson, Hamiltonian Graphs, Master thesis, Vanderbilt University, 1973.
[8] D.P. Sanders, On paths in planar graphs, J. Graph Theory 24 (1997), 341-345.

