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Abstract

For any k ∈ N, the k−distance graph DkG has the same vertex set of G, and two vertices of DkG
are adjacent if they are exactly distance k apart in the original graph G. In this paper, we consider
the connectivity of DkG and state the conditions for graph G and integer k such that the graph
DkG is connected.
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1. introduction

We only consider the simple graphs G = (V,E) which are finite and undirected throughout
this paper. Let G be a graph and k be a positive integer. The k−power of G, denoted by Gk, is the
graph with the vertex set V (Gk) = V (G) and the edge set E(Gk) = {xy|1 ≤ d(x, y) ≤ k} where
d(x, y) is the distance between two vertices of x, y ∈ V (G) on the shortest path between them [1].
The k−subdivision of a graph G, denoted by G

1
k , is constructed by replacing each edge xy of G

with path of length k. The vertices of G in G
1
k are as the main vertices of G. The union of graphs

G1 and G2 with disjoint point sets V1 and V2 and edge sets E1 and E2 is the graph G = G1 ∪ G2

with V = V1 ∪ V2 and E = E1 ∪ E2 [5]. We refer the reader to [2-4 and 6-8] for more details.
Let G = (V,E) be a graph and k ∈ N. The k−distance graph DkG is a graph with the vertex
set of V (DkG) = V (G) and the edge set E(DkG) = {xy|d(x, y) = k}. Note that the k−power
graph Gk is the union graph ∪1≤i≤k(D

iG) and also if diam(G) is the diameter of a graph which
is maxx∈V (G){maxy∈V (G) d(x, y)}, complete graph on |V (G)| vertices is ∪diam(G)

i=1 DiG. Now the
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following question arises naturally.

Question. What happens to the connectivity of k−distance graph?

We consider the connectivity of DkG for acyclic and cyclic graphs when k is even and odd
integers, separately. The notation rad(G) is minx∈V (G){maxy∈V (G) d(x, y)} which is the radius of
G, and we use (a, b) = d with the same meaning as GCD(a, b) = d for two integers a and b. First,
we consider the connectivity of the k−distance graph of acyclic graphs.

2. The connectivity of DkG for acyclic graphs

For connectivity of DkG where G is an acyclic graph and k is an even integer, we have the
following theorem.

Theorem 2.1. Let G be an acyclic graph and k ∈ N be an even integer. Therefore, DkG is
disconnected.

Proof. Let k be an even integer. It is clear that k ≤ rad(G), because if k > rad(G), DkG is
disconnected. Take an arbitrary vertex, v ∈ V (G). Consider the rooted tree with root v. Suppose
the root v is in step zero, the vertices in distance 1 are in step 1, . . . , and vertices in distance
e(v) which is the maxu∈V (G) d(v, u) are in step e(v). Now consider the vertices in even and odd
steps. The vertices in even steps are not in even distance with the vertices in odd steps. Hence,
the vertices in even steps cannot be connected to the vertices in odd steps in DkG. Then DkG is
disconnected.

Now, we consider the connectivity of the k−distance graph of acyclic graphs when k is an odd
integer.

Definition 2.1. Let P = Pn be a path such that n > 3k − 3 and R be a labeling of the vertices
of path P with natural numbers {1, 2, . . . , n} from one vertex of degree 1 to another. The label
of vertex x is indicated with r(x). Suppose [i] where 0 6 i 6 k − 1 are the congruence classes
module k on n. P j

h where 0 6 h, j 6 n and h is the number of vertices deleted from first of P and
j is the number of vertices deleted from end of P .

The graph Tq(n, k) is P ∪ Sq where q ∈ {{
k-1 times︷ ︸︸ ︷

1, 1, . . . , 1}, {
k-2 times︷ ︸︸ ︷

1, 1, . . . , 1, 2}, . . . , {

2 times︷ ︸︸ ︷
k − 1

2
,
k − 1

2
}} and

Sq ∈ {{the set of k − 1 distinct edges e = uv such that u ∈ V (P k−1
k−1 ) and r(u) is in different

[i]}, {the set of k − 1 distinct edges e = uv and a path P3 = Puv such that u ∈ V (P k−1
k−1 ) and r(u)

is in different [i]}, . . . , { the set of 2 distinct paths P k−1
2

= Puv such that u ∈ V (P k−1
k−1 ) and r(u) is

in different [i]}}. We have |V (Tq(n, k))| = n+ k − 1. See the Figure 1.
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Figure 1. The graph T{1,1,1,1}(27, 5).

Lemma 2.1. The graph DkTq(n, k) is connected.

Proof. Consider the path Pn in Tq(n, k). DkPn is disconnected and has k components such that
the vertices which are in a component have labels from a congruence class modulo k, [i] where
0 ≤ i ≤ k − 1. The vertices of Tq(n, k) \ Pn which are k − 1 vertices connect two components
of DkPn in DkTq(n, k) and any two vertices of Tq(n, k) \Pn have at most one common connected
component such that all components are connected. Therefore, DkTq(n, k) is connected. For
example, see the Figure 1.

Lemma 2.2. Tq(3k−3, k) is the graph with minimum number of vertices such that their k−distance
is connected.

Proof. Due to Lemma 2.1, DkTq(3k − 3, k) is connected. Therefore, we prove that Tq(3k − 3, k)
is the graph with minimum number of vertices such that DkTq(3k − 3, k) is connected. Suppose
Tq(3k − 3, k) is not the graph with minimum number of vertices such that DkTq(3k − 3, k) is
connected. Therefore suppose G be an acyclic graph which has one vertex less than Tq(3k − 3, k)
and DkG is connected. Then, if this vertex belongs to V (S)\V (P n−k+1

k−1 ), then one of components
of DkP3k−3 is not connected to other k−1 components and therefore DkG is not connected. If that
vertex belongs to V (P3k−3), then one of vertices of V (S)\V (P n−k+1

k−1 ) connected to only one vertex
of V (P3k−3) and therefore again G is disconnected. Hence, the desire result is concluded.

Theorem 2.2. Let G be an acyclic graph and k 6 rad(G). The graph DkG is connected iff k is
an odd integer and G contains the subgraph Tq(n, k) where n > 3k − 3.

Proof. Suppose G is an acyclic graph. If k is an odd integer and G has the subgraph Tq(n, k),
then the subgraph DkTq(3k − 3, k) of DkG is connected. We define the set Qi = {v ∈ V (G \
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Tq(n, k))|∃x ∈ V (Tq(n, k)), d(x, v) = i} where i = 1, . . . ,max x∈V (Tq(n,k))
v∈V (G\Tq(n,k))

{d(x, v)}. Accord-

ing to the fact that n ≥ 3k − 3 in Tq(n, k), we can add the vertices of G \ Tq(n, k) which are
in Q1 to some vertices of Tq(n, k) which are in distance k. And we can add the elements of
V (G \ Tq(n, k)) \ Q2 to some elements of V (Tq(n, k)) ∪ Q1 which are in distance k. And so on.
Therefore, we can connect all vertices of G in DkG and hence DkG is connected. Now, suppose
DkG is connected. If k is an even integer then due to Theorem 2.1, DkG is disconnected. There-
fore, k must be an odd integer. Consider the longest path in G and name it Pn. Use the labeling R
for its vertices. If we consider DkPn where n ≥ 3k−3, it has k components. For connecting these
k components, we need to at least k−1 vertices to connect these components and each vertex must
be connected at least two components. Each component contains the vertices of P n−k+1

k−1 that their
labels belong to a congruence class module k. Then this structure with a path Pn with new k − 1
edges gives a Tq(n, k). Hence G has the subgraph Tq(n, k).

3. The connectivity of DkG of the cyclic graphs

Firstly, we consider the cyclic graphs and an even integer k.

Lemma 3.1. Let G be a cyclic graph and k be an even integer. If G has no odd cycle, then DkG is
disconnected.

Proof. Suppose G is a cyclic graph, k is an even integer and let G has not odd cycle. Suppose
DkG is connected. Take a vertex arbitrary and call it v. Consider the graph G as a rooted graph
with root v. Suppose the root v is in step zero, the vertices in distance 1 are in step 1, . . . , and
vertices in distance e(v) which is the maxu∈V (G) d(v, u) are in e(v) step. The remaining edges of
G are between odd and even steps since G has no odd cycle. Then the possible connected vertices
of v in DkG are among the vertices in even steps since k is the even integer. Also if we take any
other vertex in the even step as a root, then the parity of steps of vertices do not change. Then the
vertices in even steps can be connected together in DkG and also the vertices in odd steps can be
connected in DkG. Therefore, DkG is disconnected.

Now, consider the cyclic graph G with odd cycle and even integer k. We find the structure such
that the k− distance graph of an odd cycle with diameter less than k is connected.

Definition 3.1. Let k be an even integer and i ∈ {2, 3, . . . , k − 1}. The graph Hi,k is C2i+1

⋃
D

where D is one of the sets of paths with at least 2 and at most i+ 1 paths such that:

• 2i − 1 − |D| 6 m 6 2i + 3 − |D|, where m is the number of the vertices of paths which
connected to the vertices of cycle in k−distance graph. Name the set of these vertices A.

• If |D| is odd and (2i+ 1, |D|) 6= 1, the distances between consecutive paths must not all be
equal.
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The paths D connected to cycle C2i+1 from one of their endpoints. In general, the number of
vertices on paths of D are as follows:
By moving clockwise (counterclockwise), each path, P , of D has [(k − i − 1)+ the number of
vertices on cycle before P between P and its neighbor path on C2i+1 ] vertices such that second
part of summation is the number of elements of A in each path.

The inequality for m comes from that the required vertices for connecting the components of
DkC2i+1 are different in the different positions of connected paths to cycle C2i+1 in Hi,k. Also, the
general case for the number of vertices on paths are mentioned by moving clockwise or counter-
clockwise because there are some situations which we can connect the components of DkC2i+1 as
well as vertices on paths with the same number of paths with lower number of vertices. But the
value of m is again satisfied in the mentioned inequality.

Figure 2. A graph H4,6 and its 6-distance graph.

The following graph is not connected.
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Figure 3. The distances between consecutive paths are equal and k = 6.

Lemma 3.2. If C3 is the only odd cycle in cyclic graph G and 4 6 k is an even integer then DkG
is disconnected.

Proof. If k = 2, there is a graph G such that D2G is connected. See the Figure 4.

Figure 4. A cycle C3 and k = 2.

Let 4 ≤ k. For connecting the vertices of C3 in DkG, at least two paths Pk must be added
to its two vertices. If G consists of only cycle C3 and paths Pk, it is clear that DkG disconnected
because the internal vertices of paths Pk cannot be connected to vertices of C3. Therefore, those
vertices can be connected if there are some edges (paths) between vertices of C3 and paths Pk or
between vertices of distinct paths. In this case, G has the odd cycle larger than C3. Therefore the
result can be concluded.

Lemma 3.3. Let k > 4 be an even integer. We have:
1. The graph with the minimum number of vertices, such that it contains an odd cycle C2n+1 where
n > k, (2n+ 1, k) = 1 and its k−distance graph is connected, is the cycle C2n+1.
2. The graph with the minimum number of vertices, such that it contains an odd cycle C = C2i+1
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where i ∈ {2, 3, . . . , k − 1} and its k−distance graph, is :
I. if i is odd:

• When k = i+1, the graph Hi,k has the minimum number of vertices when m = 2i−1−|D|.

• When k = i + 3, the graph Hi,k has the minimum number of vertices when D has 3 paths
and m = 2i− 4.

• When k 6 i+ 5, the graph Hi,k has the minimum number of vertices when D has 2.

II. if i is even:

• When k = i + 2, the graph Hi,k has the minimum number of vertices when D has 3 paths
and m = 2i− 4.

• When k 6 i+ 4 the graph Hi,k has the minimum number of vertices when D has 2.

Proof. According to Definition 3.1 and the relation between k and diameter of cycle C2i+1, the
graphs Hi,k are the subgraph of any graphs which their k−distance graphs are connected. Other-
wise there exists a components of cycle C2i+1 that it is not connected to other components because
of the structure of Hi,k. Hence, due to k among Hi,k’s, the results can be concluded according to
the graphs with minimum number of vertices.

Definition 3.2. Let k be an even integer and C be an odd cycle such that (length(C), k) = d and
diam(c) ≥ k. The graph T ′(n, k) where n = diam(C) is the graph C∪B where B is one of the el-

ements of set A (each element of A is a set of paths). The set A is {{
d-1 times︷ ︸︸ ︷

P2, P2, . . . , P2}, {
d-2 times︷ ︸︸ ︷

P2, . . . , P2, P3},
. . . , {Pb d

2
c+1, Pd d

2
e}}. By considering a labeling of vertices of C by integers, each component of

DkC has the vertices with labels from one of the congruence classes module d on length(C). So,
the paths in B are connected to the vertices of cycle C in the different congruence class from one
of their endpoints.

Lemma 3.4. The graph DkT ′(n, k) is connected.

Proof. By Definition 3.2 and considering C as odd cycle, if the paths of B are connected to the
different vertices of distinct congruence classes, then k − 1 vertices connect all components of
DkC. Then DkT ′(n, k) is connected.

It is clear by Lemma 3.4 that DkC2n+1 is connected if k is even integer, (2n + 1, k) = 1 and
n ≥ k.

Theorem 3.1. Let G be a cyclic graph and k > 4 be an even integer. Then DkG is connected
iff G contains a subgraph T ′(n, k) where n = diam(C) (C is the cycle in T ′(n, k)), n > k and
(2n+ 1, k) = 1, or G contains a subgraph Hi,k where i ∈ {2, 3, . . . , k − 1}.
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Proof. Suppose G is a cyclic graph and k ≥ 4 is an even integer.
(⇐)Suppose G has a subgraph T ′(n, k) where n = diam(C) (C is the cycle in T ′(n, k)), n > k
and (2n+1, k) = 1, or G has a subgraph Hi,k where i ∈ {2, 3, . . . , k−1}. According to DkT ′(n, k)
and Dk(C2n+1 ∪D) which are connected and due to the procedure which is mentioned in proof of
Theorem 2.2, DkG is connected in both cases.
(⇒) Suppose DkG is connected. Then due to Lemma 3.2, G has an odd cycle Cs where s > 3.
Therefore, if k ≤ diam(Cs), then the components of DkCs are connected. Hence G contains
a subgraph of T ′(b s

2
c, k) because one of the structures of T ′(b s

2
c, k) must exist for connecting

the components of DkCs. So the first part of our desire result is concluded. If k > diam(Cs),
DkCs is disconnected. Due to Lemma 3.3, some paths must be added to Cs for connecting its
components in k−distance graph. So we must have one of the structures of H(b s

2
c, k) because one

of those structures is required for connecting the components. This subgraph gives us the graph
Hi,k. Therefore the desired results are concluded.

Now, we consider the connectivity of the k−distance graph of cyclic graphs when k is an odd
integer. The following lemma comes from the previous cases.

We define a graph T ′′(n, k) the same as the graph T ′(n, k) with an odd integer k and a cycle
C such that (length(C), k) = d and diam(c) ≥ k. In the same way of Lemma 3.6, the graph
DkT ′′(n, k) is connected.

Lemma 3.5. • Let G be a cyclic graph. If k is an odd integer, k 6 rad(G) and G contains
the subgraph Tq(n, k) where n > 3k− 3 is the length of a path in G, then the graph DkG is
connected.

• Let G be a cyclic graph and k be an odd integer. Suppose Cn is a cycle of G such that
k ≤ bn

2
c. So, if G contains a subgraph T ′′(bn

2
c, k), then the graph DkG is connected.

Proof. For the first part, we consider the spanning tree T of G which contains Tq(n, k). By Theo-
rem 2.2, DkT is connected. So, clearly, DkG is connected.
The second part can be concluded by the connectivity of DkT ′′(n, k). Since diam(c) ≥ k in
T ′′(n, k), we can add the remaining vertices of G to DkT ′′(n, k) in DkG step by step and we can
add all of the remaining vertices. Hence, DkG is connected.

Note that if G has an even cycle C2n which k < n and (k, 2n) = 1 then the graph DkG is
connected and if G has an odd cycle C2n+1 which k ≤ n and (k, 2n+1) = 1 then, the graph DkG
is connected since (length(C), k) = 1.

Now, we find the structure such that the k− distance graph of a cycle with diameter less than k
is connected.

Definition 3.3. Let k be an odd integer and i ∈ {2, 3, . . . , k − 1}. The graph H ′i,k is C2i

⋃
D′

where D′ is one of the sets of paths with at least 2 and at most 2i paths such that:
- 2i − 1 6 m 6 2i, where m is the number of the vertices of paths which connected to the

vertices of cycle in k−distance graph. Name the set of these vertices A.
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- The distances between consecutive paths must not all be equal.
The paths D′ connected to cycle C2i from one of their endpoint. In general, the number of

vertices on paths of D′ are as follows:
By moving clockwise (counterclockwise), each path, P , of D′ has [(k − i − 1)+ the number of
vertices on cycle before P between P and its neighbor path on C2i ] vertices such that the second
part of summation is the number of elements of A in each path.

For example see the following figure.

Figure 5. A graph H ′
4,5 and its 5-distance graph.

Definition 3.4. Let k be an odd integer and i ∈ {2, 3, . . . , k − 1}. The graph H ′′i,k is C2i+1

⋃
D′′

where D′′ is one of the sets of paths with at least 2 and at most i+ 2 paths such that:
- 2i − 1 − |D′′| 6 m 6 2i + 3 − |D′′|, where m is the number of the vertices of paths which

connected to the vertices of cycle in k−distance graph. Name the set of these vertices A.

- if |D′′| is odd and (2i + 1, |D′′|) 6= 1, the distances between consecutive paths must not all
be equal.

The paths D′′ connected to cycle C2i+1 from one of their endpoint. In general, the number of
vertices on paths of D′′ are as follows:
By moving clockwise (counterclockwise), each path, P , of D′′ has [(k − i − 1)+ the number of
vertices on cycle before P between P and its neighbor path on C2i+1 ] vertices such that the second
part of summation is the number of elements of A in each path.

For example see the following figure.
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Figure 6. A graph H ′′
4,5 and its 5-distance graph.

Lemma 3.6. The graphs DkH ′i,k and DkH ′′i,k are connected.

Proof. Due to their definitions, the paths which are connected to cycle C play the role of the
connectors of the components of DkC in DkH ′i,k and DkH ′′i,k. Also the structure of connected paths
(their number and the number of vertices on the paths) are such that not only all components are
connected but also the vertices on paths are connected in DkH ′i,k and DkH ′′i,k. Then clearly DkH ′i,k
and DkH ′′i,k are connected because H ′i,k and H ′′i,k constructed from cycle C and the paths.

Theorem 3.2. Let G be a cyclic graph and k > 5 be an odd integer. Then DkG is connected iff G
contains one of following subgraphs:

• Tq(n, k) where n > 3k − 3 is the length of a path in G

• H ′i,k which i < k

• H ′′i,k which i < k

• T ′′(diam(C), k) where n = length(C) and k ≤ diam(C).

Proof. (⇐) Suppose G has one of the mentioned subgraphs. According to Lemmas 3.5, 3.6 and
Definitions 3.3, 3.4, the graph DkG will be connected.
(⇒) Suppose DkG is connected. Suppose G has no Tq(n, k) where n > 3k − 3 is the length of
a path in G. Since G is cyclic graph, suppose G has cycle C such that k ≤ diam(C). Since
DkG is connected, the components of DkC are connected in DkG. We know to connect the
components of DkC, some paths must be connected to C. And since these paths are connected to
C in the different situations (their number and connecting positions to C) such that they use the
least number of vertices on paths to connecting, one copy of T ′′(diam(C), k) must exist in G such
that DkC is connected.
Now suppose G has not the cycle with diameter greater than or equal to k. So suppose G has a
cycle C such that k ≥ diam(C). Since DkG is connected, the components of DkC are connected
in DkG. We know for connecting the components of DkC, some paths must be connected to C.
And since these paths are connected to C in the different situations, one copy of H ′diam(C),k or
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H ′′diam(C),k (due to C which is an even or odd cycle) must exist in G such that DkC is connected.
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