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Abstract

The neighbor connectivity refers to the minimum number of vertices whose removal, along with
their neighbors, causes a previously connected graph to become disconnected. In this paper we
focus on Cayley graphs constructed from the symmetric group Sn. We investigate the bounds of
the neighbor connectivity for two cases: when the generating graph is a tree, and when it is a
unicyclic graph with a unique cycle of length m, specifically considering cases where m = 3,
m = n− 1, or m = n.
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1. This is a numbered first-level section head

An undirected graph G = (V,E) is employed to represent an interconnection network, where V
stands for the set of vertices, and E designates the set of edges. Within this framework, processors
are aligned with vertices, and communication links are depicted by edges.

The notion of graph connectivity is a subject extensively explored in graph theory and net-
work analysis. The connectivity of a graph G, denoted as κ(G), signifies the smallest number of
vertices in G that, upon removal, result in the formation of a disconnected or trivial graph. This
measure serves as a straightforward gauge of the reliability and fault-tolerance of interconnection
networks [3, 6, 18, 2].
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Gunter and Hartnell introduced the concept of neighbor connectivity in [8, 9, 10]. Their in-
novation involved extending the idea of connectivity by eliminating the closed neighborhood of a
vertex rather than just removing the vertex itself. In network terms, this corresponds to a scenario
where the failure of a vertex implies the failure of all its adjacent vertices. In the referenced paper
[8], the authors opted for the term “subversion” in lieu of “failure.” This choice was motivated
by the graph’s application in modeling an underground resistance movement, where vertices sym-
bolize agents and edges represent communication lines among them. In the context of this model,
when an agent is subverted, it results in the betrayal of all agents with whom they are in com-
munication. Consistently, this paper adopts the same terminology as used in [8] to articulate the
definition of neighbor connectivity. Let G = (V,E) be a simple connected graph. The neighbor-
hood of a vertex u of G is defined by N(u) = {v ∈ V ; uv ∈ E}, and the closed neighborhood
of u is defined by N [u] = {u} ∪ N(u). If H is a subgraph of G containing the vertex u, then
NH(u) = {v ∈ V (H); uv ∈ E(H)}. A vertex u of G is called subverted if the closed neigh-
borhood N [u] has been deleted from G. A set of vertices U = {u1, . . . , un} is called a subverted
strategy if each of the vertices u1, . . . , un has been subverted. The survival subgraph of G for U ,
denoted by G ⊖ U , is the subgraph of G induced by V − N [U ]. The neighbor connectivity of G,
denoted by κNB(G), is the size of the minimum set U , such that U ⊆ V and G⊖U is disconnected,
complete, or empty. Such set U is called a vertex-cut strategy.

Consider a finite group A and a set ∆ containing elements of A, excluding the group’s identity,
and satisfying the property that for any u ∈ ∆, its inverse u−1 is also in ∆. The vertex set of the
Cayley graph Cay(A,∆) consists of all elements of A, with two vertices u and v being adjacent
if and only if there exists an s ∈ ∆ such that u = vs. Let Sn denote the symmetric group,
representing permutations on [n] = 1, 2, . . . , n, and let T be a set of transpositions. We define
G(T ) as the transposition generating graph, where the vertex set of G(T ) is [n], and its edge set
is {(i, j); (i, j) ∈ T }.

In this paper, the focus is on determining the neighbor connectivity of Cay(Sn, T ), where
G(T ) represents either a tree with n vertices or a graph with n vertices containing a unique cycle
of length m = 3 or m = n− 1. The examined graph families include well-known networks, such
as the star graph, the bubble-sort graph, and the modified bubble-sort graph [15, 12, 7, 13, 20, 11].
The main results are provided in Theorem 3.2 and Theorem 4.2.

The paper’s structure unfolds as follows: Section 2 presents various definitions. In Section 3,
we explore the neighbor connectivity of Cayley graphs generated by trees, subsequently deducing
the neighbor connectivity of the star graph and the bubble-sort graph. Moving on to Section 4, we
determine the neighbor connectivity of Cayley graphs generated by unicyclic graphs and deduce
the neighbor connectivity of the modified bubble-sort graph. Section 5 serves as the conclusion,
where we summarize our findings and propose a conjecture regarding the neighbor connectivity of
the Cayley graph when the generating graph is a graph with n vertices and contains a unique cycle
of length m where 4 ≤ m ≤ n− 2.

2. Preliminaries

We will follow usual graph terminology, which can be found in [16]. Let G = (V,E) be a
graph with vertex set V = V (G) and edge set E = E(G). The neighborhood of u ∈ V , denoted
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N(u), is the set of vertices adjacent to u. The closed neighborhood of u ∈ V is defined by
N [u] = N(u) ∪ {u}. If H is a subset of V (G), we denote by N [H] =

⋃
x∈H N [x]. The degree of

a vertex v is the number of vertices of G adjacent to v. The minimum degree is denoted by δ(G)
and the maximum degree by ∆(G). A set of edges are called independent if no two of them have a
common endpoint. The graph G is k-regular if the degree of every vertex is k. A vertex-cut in G is
a set X of vertices of G such that G−X is disconnected. The connectivity of a graph G, denoted
by κ(G), is the least number of vertices of G whose removal results in a disconnected or trivial
graph. We say that the graph G is maximum connected if κ(G) = δ(G); and G is superconnected if
it is maximum connected and every minimum vertex-cut is composed of the neighborhood NG(u)
of a vertex u ∈ V .

Let A be a finite group, and let ∆ be a set of elements of A such that the identity of the
group does not belong to ∆. The Cayley graph Cay(A,∆) is the directed graph with vertex set
consisting of the elements of G, and an arc is directed from u to v if and only if there is an
s ∈ ∆ such that u = vs. One of the main advantages of using Cayley graphs as models for
interconnection networks is their vertex-transitivity, meaning that a graph viewed from any vertex
looks the same; however, its vertex connectivity may be low. If whenever u ∈ ∆, we also have
its inverse u−1 ∈ ∆, then for every arc, the reverse arc is also in the graph, hence we can treat
this Cayley graph as an undirected graph by replacing each pair of arcs by an edge. In this paper,

we use [p1p2 · · · pn] to denote the permutation
[
1 2 · · · n
p1 p2 · · · pn

]
. For example, the permutation

α = [31254] can be expressed in array form as α =

[
1 2 3 4 5
3 1 2 5 4

]
and its corresponding cycle

notation is α = (1, 3, 2)(4, 5). A cycle (i, j) of length two is called transposition, and it swaps the
numbers at positions i and j. For example, [p1p2p3 · · · pn−1pn](2, n) = [p1pnp3 · · · pn−1p2]. Let Sn

be the symmetric group, which is the set of permutations on [n] = {1, 2, . . . , n}, and let T be a set
of transpositions. We call G(T ) the transposition generating graph, where the vertex set of G(T )
is [n] and its edge set is {(i, j); (i, j) ∈ T }. We call G(T ) a transposition tree if G(T ) is a tree.

3. Neighbor connectivity of Cayley graphs generated by trees

Let Γn denote the Cayley graph Cay(Sn, T ), where G(T ) represents a transposition tree with
n vertices. As G(T ) has n − 1 edges, Γn is naturally (n − 1)-regular and consists of n! vertices.
This family of Cayley graphs encompasses well-known examples, such as the star graph when
G(T ) is isomorphic to K1,n−1, and the bubble-sort graph when G(T ) is isomorphic to Pn, a path
with n vertices.

For a clearer understanding of Γn’s structure, let’s simplify by assuming, without loss of gen-
erality, that n is a leaf in G(T ). In the following proposition, we outline some fundamental char-
acteristics of Γn.

Proposition 3.1. [4, 17, 11] Let Γn = Cay(Sn, T ), where n ≥ 4 and n is a leaf in G(T ).

(I) Γn consists of n vertex-disjoint subgraphs H1, H2, . . . , Hn, where Hi is the subgraph in-
duced by the vertex set {[p1p2 · · · pn−1i]; pj ∈ [n]− {i}, for j = 1, . . . , n− 1}.
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(II) Hi
∼= Γn−1, where Γn−1 = Cay(Sn−1, T ′) and G(T ′) is a transposition tree of n−1 vertices.

(III) If n is adjacent to t in G(T ), then (t, n) ∈ T and every vertex u ∈ V (Hi) has exactly one
neighbor, u′ = u(t, n), outside Hi. The edge uu′ is called a cross edge and the vertex u′ is
called outside neighbor of u.

(IV) Two distinct vertices in Hi have different outside neighbors.

(V) There are exactly (n− 2)! cross edges between Hi and Hj , for 1 ≤ i < j ≤ n.

(VI) Γn is bipartite.

Lemma 3.1. [17] Let u and v be two distinct vertices of Γn, then u and v have at most two common
neighbors.

Lemma 3.2. Let u be a vertex in Hk for some k ∈ [n]. The maximum number of cross edges
between Hi and Hj that are incident to NHi

[u] is n− 1.

Proof. Consider the graph Cay(Sn, T ), where G(T ) is a tree on n vertices. Let (j, n) be an edge
of this tree, where n is a leaf. Without loss of generality, let u = () be in Hn, then the outside
neighbor of u is in Hj . Since n is a leaf, then j is a vertex of the tree and it is adjacent to another
vertex k, hence (j, k) is a vertex in NHn [u], the closed neighborhood of u in Hn. Moreover,
(j, k)(j, n) = (j, n, k) which is a vertex in Hk. As a result, u and the vertex (j, k) have different
outside neighbors. Since NHn [u] contains n vertices, then the maximum number of cross edges
between Hn and Hm that are incident to NHn [u] is less than n, for m ∈ [n]− {m}.

Theorem 3.1. [5] Let n ≥ 3, and let G be a Cayley graph obtained from a transposition generating
graph A with m edges on {1, 2, . . . , n}. Then G is maximally connected.

Theorem 3.1 leads to the following useful lemma.

Lemma 3.3. For n ≥ 3, κ(Γn) = n− 1.

Lemma 3.4. Let n ≥ 4 and U ⊆ V (Γn), such that 1 ≤ |U | ≤ ⌊n
2
⌋ − 1. Then Γn ⊖ U is

(n− 1− 2|U |)-connected.

Proof. For n = 4, we find that |U | = 1, and Γ4 can be generated by either P4 or K1,3. We employed
MathSage [1] to confirm that, in both scenarios, Γ4 −N [u] remains connected. Since Γ4 is vertex
transitive, we only had to remove the closed neighborhood of the vertex () = [1234] and examine
the resulting graph’s connectivity. For instance, in the case of the generating tree being K1,3, we
utilized the following code:

G=SymmetricGroup(4)
S=[(1,2),(1,3),(1,4)]
C=G.cayley_graph(generators=S, simple=True)
U=C.to_undirected()
A=list(U.neighbor_iterator(G(’()’), closed=True))
U.delete_vertices(A)
U.is_connected()
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We proceed with mathematical induction on n. Assume that Γn−1 ⊖ W is (n − 2 − 2|W |)-
connected for every set W ⊆ V (Γn−1), where 1 ≤ |W | ≤ ⌊n−1

2
⌋ − 1. Let U ⊆ V (Γn), such

that 1 ≤ |U | ≤ ⌊n
2
⌋ − 1, and let F ⊆ V (Γn ⊖ U), such that |F | ≤ n − 2 − 2|U |. Our aim is to

demonstrate that (Γn ⊖U)−F is connected. Define Ui = U ∩V (Hi), ki = |N [U −Ui]∩V (Hi)|,
and Fi = F ∩ V (Hi) for i ∈ [n]. We will consider cases based on the distribution of the vertices
in U .

Case 1. |U | = |Ui|, for some i ∈ [n]. Without loss of generality, suppose that i = 1. Then all
the vertices of U are in H1 and |Ui| = 0 for i ∈ [n]−{1}. By Lemma 3.3, Hi is (n− 2)-connected
and the maximum number of vertices in Hi ∩ (N [U ] ∪ F ) is |U | + |F |, for i ∈ [n] − {1}. Since
|F | ≤ n− 2− 2|U | and |U | ≥ 1, then |U |+ |F | ≤ n− 3, then by Lemma 3.3 Hi −N [U ]− F is
connected for i ∈ [n] − {1}. Let i, j ∈ [n] − {1} such that i ̸= j, then the number of cross edges
between Hi − F and Hj − F is greater than (n − 2)! − (|U | + |F |) ≥ (n − 2)! − (n − 3) ≥ 1,
for n ≥ 5. Therefore, there is a cross edge between Hi − F and Hj − F , hence the subgraph
C induced by

⋃n
i=2(V (Hi) − N [U ]) − F is connected. If (H1 − N [U ]) − F is connected, then

(Γn −N [U ])−F is connected, since there are enough cross edges between (H1 −N [U ])−F and
C. In fact, when n ≥ 5, using the inequality (n − 2)! − |U | ≥ (n − 2)! − (⌊n/2⌋ − 1) ≥ 5 for
n ≥ 5, the number of these cross edges between (H1 −N [U ])− F and C is at least

(n− 1)!− (n− 1)|U | − |F | ≥ (n− 1)[(n− 2)!− |U |]− |F |
≥ 5(n− 1)− |F |
≥ 5n− 5 + 2|U |+ 2− n

≥ 4n− 3 + 2|U |
≥ 4n− 1

≥ 19.

Suppose that (H1 −N [U ])− F is not connected. Let C1 be a connected component of (H1 −
N [U ])− F . We want to show that there is a cross edge between C and C1.

Subcase 1.1. |V (C1)| = 1. Let V (C1) = {x}, then x is an isolated vertex in (H1−N [U ])−F .
This can only happen if all the neighbors of x in H1 are adjacent to vertices of N [U1] ∪ F1. By
Lemma 3.1, a vertex of U can share at most two common neighbors with x, then degH1(x) ≤
2|U |+ |F1|, then n−2 ≤ 2|U |+ |F1|, so |F1| ≥ n−2−2|U |. Then |F | = |F1| and all the elements
of F are in H1. By Proposition 3.1, the outside neighbor of x does not belong to N [U ], and since
|Fi| = 0 for i ∈ [n]− {1}, then the outside neighbor of x is in C.

Subcase 1.2. |V (C1)| ≥ 2. Let x and y be two adjacent vertices of C1. Since Γn−1 is bipartite,
then it contains no odd cycles, then |NC1(x) ∩ NC1(y)| = 0. The maximum number of vertices
in N [x] ∪ N [y] adjacent to N [U ] is 2|U |; in fact, if u ∈ U , then u can be adjacent to at most two
vertices of x, and u cannot be adjacent to a vertex in N(x) and to a vertex in N [y] because this
would create an odd cycle and this is not possible because Γn is bipartite. The number of vertices
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in the subgraph induced by (N [x] ∪N [y])−N [U ] is at least

2 + 2(n− 3)− 2|U | = 2n− 4− 2|U |
= (n− 2) + (n− 2− 2|U |)
≥ (n− 2) + |F |

each of these (n − 2) + |F | vertices has an outside neighbor, then there are at least n − 2 outside
neighbors in C adjacent to vertices in NH1 [x] or NH1 [y]. As a result, there is always an edge
between C1 and C, thus (Γn ⊖ U)− F is connected.

Case 2. |Ui| ≤ |U | − 1, for every i ∈ [n]. By the induction hypothesis, the subgraph induced
by V (Hi) − N [Ui] is (n − 2 − 2|Ui|)-connected. We claim that (Hi − N [U ]) − F is connected,
because if not, then ki + |Fi| ≥ n− 2− 2|Ui|, and since every vertex outside Hi may be adjacent
to at most one vertex of Hi, then the maximum value of ki is |U | − |Ui|, and the maximum value
of |Fi| is n− 2− 2|U |, then we have the inequality n− 2− 2|Ui| ≤ |U | − |Ui|+n− 2− 2|U |, and
this implies that |U | ≤ |Ui|, which is a contradiction. In addition, since |U | ≤ ⌊n

2
⌋ − 1, then there

exists j ∈ [n] such that |Uj| = 0. By Lemma 3.2, when n ≥ 5, the number of cross edges between
(Hi −N [U ])− F and (Hj −N [U ])− F is at least

(n− 2)!− |F | − (n− 1)|Ui| ≥ (n− 2)!− (n− 2− 2|U |)− (n− 1)(|U | − 1)

≥ (n− 2)!− n+ 2− (n− 3)|U |+ (n− 1)

≥ (n− 2)! + 1− (n− 3)|U |
≥ 1

Therefore, there is always a cross edge between (Hi − N [U ]) − F and (Hj − N [U ]) − F for
every i ∈ [n]− {j}. The maximum number of vertices of N [U ]∪ F removed from Hj is less than
n − 2; in fact |U | + |F | ≤ n − 2 − |U | ≤ n − 3. Then by Lemma 3.3, the subgraph induced by
(Hj −N [U ])− F is connected. Therefore (Γn ⊖ U)− F is connected.

By the previous lemma, we conclude that κNB(Γn) ≥ ⌊n
2
⌋. We now give an upper bound for

κNB(Γn).

Lemma 3.5. Let n ≥ 4, then κNB(Γn) ≤ n− 1.

Proof. Let x ∈ V (Γn), and let N(x) = {x1, x2, . . . , xn−1}. Let U = {y1, y2, . . . , yn−1} ⊆
V (Γn) − N [x] such that xiyi ∈ E(Γn), and yi ̸= yj , for i, j ∈ [n − 1] and i ̸= j. Γn does
not contain odd cycles because it is bipartite, therefore x is not adjacent to yi for i ∈ [n− 1]. Then
Γn −N [U ] is disconnected because x is an isolated vertex in it.

From the previous two lemmas, we deduce the following theorem.

Theorem 3.2. Let n ≥ 4, then ⌊n
2
⌋ ≤ κNB(Γn) ≤ n− 1. Moreover, the bounds are tight.
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Proof. In [14], the authors proved that κNB(Sn) = n − 1, where Sn is the star graph. Consider
the bubble-sort graph Bn = Cay(Sn, Pn) where Pn is the path with vertex set V (Pn) = [n] and
edge set E(Pn) = {(i, i + 1); i ∈ [n − 1]}. Without loss of generality, let u = () be the identity
permutation, then N(u) = {(i, i + 1); i ∈ [n − 1]}. If n is even, then the set of vertices U =
{(i, i+1)(n− i, n− i+1); i = 1, . . . , n

2
−1}∪{(n

2
, n
2
+1)(1, 2)} is a vertex-cut strategy of size n

2
.

Then U is a vertex-cut strategy. If n is odd, let U = {(i, i+1)(⌊n
2
⌋+i, ⌊n

2
⌋+i+1); i = 1, . . . , ⌊n

2
⌋}

is a vertex-cut strategy of size ⌊n
2
⌋. Then κNB(Bn) ≤ ⌊n

2
⌋, therefore κNB(Bn) = ⌊n

2
⌋.

4. Neighbor connectivity of Cayley graphs generated by unicyclic graphs

In this section we consider Cayley graphs UGn = Cay(Sn, T ), where G(T ) is a unicyclic
graph with vertex set [n]. Let Cn be the cycle of n vertices, and let Hn,p be the graph obtained by
appending the cycle Cp to a pendant vertex of a path Pn−p. Hn,p is called lollipop graph. The graph
Hn,n−1 consists of the cycle Cn−1 and one pendant vertex. When G(T ) = Cn, then UGn becomes
the modified bubble-sort graph MBn, and when G(T ) = Hn,n−1, then we will denote such graph
by LGn.

4.1. Neighbor Connectivity of Modified Bubble-Sort Graph MBn

Suppose that the generating graph of MBn, G(T ) is Cn = (1, 2, . . . n, 1). Let T ′ = T −
{(1, n), (n − 1, n)}, then G(T ′) is a path of length n − 1, and Cay(Sn−1, T ′) is the (n − 1)-
dimensional bubble-sort graph Bn−1. Let Bi

n−1 be the subgraph of MBn induced by the vertex set
{[p1p2 . . . pn−1i]; pk ∈ [n] − {i}, for k = 1, . . . , n − 1}, then Bi

n−1
∼= Bn−1. Therefore, MBn

can be decomposed into n vertex disjoint subgraphs B1
n−1, . . . , B

n
n−1. The following proposition

includes some useful topological properties of MBn.

Proposition 4.1. [19] Let MBn be the n-dimensional modified bubble-sort graph, and let B1
n−1,

. . . , Bn
n−1 be the subgraphs defined above.

(I) MBn is n-regular bipartite graph.

(II) If u ∈ V (Bi
n−1), then u has exactly two neighbors outside Bi

n−1, called the outside neighbors
of u.

(III) The outside neighbors of Bi
n−1 are all different.

(IV) The outside neighbors of a vertex are located in different Bi
n−1 subgraphs.

(V) There are exactly 2(n − 2)! independent edges between Bi
n−1 and Bk

n−1, for i, k ∈ [n] and
i ̸= k. Such edges are called cross edges.

Lemma 4.1. Let u ∈ V (Bi
n−1) for some i ∈ [n], and let u′ and u′′ be its outside neighbors. Then

u′ and u′′ have no common neighbor in MBn other than u.
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Proof. Without loss of generality, assume that u = (), then u ∈ V (Bn
n−1). Let u′ = (1, n) and

u′′ = (n − 1, n) be the outside neighbors of u. If there is a common neighbor for u′ and u′′, then
there exist two transpositions (a, b) and (c, d) such that (1, n)(a, b) = (n−1, n)(c, d), equivalently
(1, n − 1, n)(a, b) = (c, d). This situation occurs only if a, b ∈ {1, n − 1, n}, which means when
(a, b) = (1, n) or (a, b) = (n − 1, n). If (a, b) = (1, n), then (c, d) = (n − 1, n) and the common
vertex will be u = (). If (a, b) = (n − 1, n), then (c, d) = (1, n − 1), but this is not possible as
(1, n− 1) is not in the set of generating transpositions.

In the following lemma, we give an upper bound for κNB(MBn).

Lemma 4.2. Let n ≥ 4, then κNB(MBn) ≤ ⌈n
2
⌉.

Proof. Suppose that n is even, then the set of vertices U = {(i, i + 1)(n − i, n − i + 1); i =
1, . . . , n

2
−1}∪{(n

2
, n
2
+1)(1, n)} is a vertex-cut strategy of size n

2
because the vertex corresponding

to the identity permutation () is isolated in MBn ⊖ U . Similarly, if n is odd, then U = {(i, i +
1)(n−i, n−i+1); i = 1, . . . , ⌊n

2
⌋−1}∪{(⌊n

2
⌋, ⌊n

2
⌋+1)(1, n), (⌊n

2
⌋+1, ⌊n

2
⌋+2)(⌊n

2
⌋+2, ⌊n

2
⌋+3)}

is a vertex-cut strategy of size ⌊n
2
⌋+1 = ⌈n

2
⌉, because () becomes an isolated vertex in MBn⊖U .

Therefore, κNB(MBn) ≤ ⌈n
2
⌉.

Lemma 4.3. Let n ≥ 4 and u ∈ V (MBn). Then MBn ⊖ {u} is connected.

Proof. If u ∈ V (Bn−1), then by Theorem 3.2 the graph Bn−1 ⊖{u} is connected, for n ≥ 4. Now
let v ∈ V (MBn), then v ∈ V (Bi

n−1) for some i ∈ [n]. Since Bi
n−1

∼= Bn−1, then the graph induced
by the vertices of Bi

n−1−N [v] is connected. By Proposition 4.1, v has two outside neighbors v′ and
v′′ in Bj

n−1 and Bk
n−1 respectively, where j, k ∈ [n]− {i} and j ̸= k. By Lemma 3.3, Bj

n−1 − {v′}
and Bk

n−1 − {v′′} are connected. Since there are 2(n − 2)! cross edges between every pair of the
Bi

n−1-subgraphs, then MBn ⊖ {u} is connected.

Lemma 4.4. Let u ∈ V (MBn). Suppose u ∈ V (Bi
n−1) for some i ∈ [n]. If u has its outside

neighbors u′ and u′′ in Bj
n−1 and Bk

n−1 for some j and k in [n]−{i}, then exactly (n− 3) vertices
of NMBi

n−1
(u) have their outside neighbors in Bi

n−1.

Proof. Since MBn is vertex transitive, then without loss of generality assume that u = () ∈
V (Bn

n−1). Then the outside neighbors of u are u′ = (1, n) ∈ V (B1
n−1) and u′′ = (n − 1, n) ∈

V (Bn−1
n−1). The vertices corresponding to (2, 3), . . . , (n− 2, n− 1) are in NBn

n−1
(u) and they have

their outside neighbors, (2, 3)(1, n), (3, 4)(1, n), . . . , (n− 2, n− 1)(1, n), in B1
n−1.

Lemma 4.5. Let n ≥ 5 and U ⊆ V (MBn), such that 2 ≤ |U | ≤ ⌈n
2
⌉ − 1. Then MBn ⊖ U is

(n− 2|U |)-connected.

Proof. Let F ⊆ V (MBn), such that |F | ≤ n− 1− 2|U |. Our aim is to show that (MBn⊖U)−F
is connected. We consider cases depending on the distribution of the elements of U . Let Ui =
U ∩ V (Bi

n−1), ki = |N [U − Ui] ∩ V (Bi
n−1)|, and Fi = F ∩ V (Bi

n−1), for i ∈ [n].
Case 1. |U | = |U1|. For i ∈ [n]−{1}, |Fi|+ki ≤ (n−1−2|U |)+ |U | ≤ n−3 < deg(Bi

n−1),
then by Lemma 3.3, the subgraph induced by the vertices of (Bi

n−1−N [U ])−F is connected. The
number of cross edges between the subgraphs induced by (Bi

n−1−N [U ])−F and (Bj
n−1−N [U ])−
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F , for 2 ≤ i < j ≤ n, is greater than 2(n− 2)!− [(n− 1− 2|U |)+2|U |] ≥ 2(n− 2)!−n+1 ≥ 1,
hence there is always a cross edge between these two subgraphs. Then the subgraph C induced by
the vertices of

⋃n
i=2 V (Bi

n−1)− (N [U ]∪F ) is connected. If (B1
n−1−N [U ])−F is connected, then

the graph (MBn ⊖ U)− F becomes connected since there is at least one cross edge connecting a
vertex from (B1

n−1 − N [U ]) − F and a vertex from C. Suppose that (B1
n−1 − N [U ]) − F is not

connected. Let C1 be a connected component in (B1
n−1 −N [U ])− F .

• If C1 contains exactly one vertex u, then u must have an outside neighbor in C. In fact, the
maximum number of vertices in N [U ] ∪ F adjacent to u is 2|U | + |F | = n − 1, and since
degMBn(u) = n, then u must have at least one outside neighbor in C.

• If |C1| ≥ 2, then let u and v be two adjacent vertices in C1. Since MBn contains no odd
cycles, then |N(u)∩N(v)| = 0. The subgraph induced by (NB1

n−1
[u]∪NB1

n−1
[v])− (N [U ]∪

F ) contains at least 2n−4−2|U |−|F | vertices. Since −2|U |−|F | ≥ 1−n, then this subgraph
contains at least n − 3 vertices. On the other hand, |F | ≤ n − 1 − 2|U |, so |F | ≤ n − 5.
Therefore, there must be a cross edge between C1 and C, and hence (MBn ⊖ U) − F is
connected.

Case 2. |Ui| ≤ |U | − 1, for every i ∈ [n].
Subcase 2.1. Assume that (Bi

n−1 − N [U ]) − F is connected for every i ∈ [n]. Since |U | ≤
⌈n
2
⌉ − 1, then at least half of the subgraphs Bk

n−1, for k ∈ [n], contain no elements of U , and
therefore each such subgraph contains at most |U |+(n− 1)− 2|U | ≤ n− 3 vertices of N [U ]∪F ,
then by Theorem 3.1 these subgraphs are connected. Without loss of generality, suppose that B1

n−1

contains no elements of U , then U1 = ∅. For every i ∈ [n] − {1}, we want to show that there is a
cross edge between (B1

n−1 −N [U ])− F and (Bi
n−1 −N [U ])− F , and hence (MBn ⊖ U)− F is

connected. By Lemma 4.4, a vertex of Ui and its neighbors in Bi
n−1 contribute to a maximum of

n − 1 cross edges between B1
n−1 and Bi

n−1. Then the maximum number of cross edges between
B1

n−1 and Bi
n−1 that are incident to elements of N [U ] ∪ F is |F |+ (n− 2)|U |,

|F |+ (n− 2)|U | ≤ n− 1− 2|U |+ (n− 2)|U |
≤ n− 1− (n− 4)|U |
≤ n− 1− (n− 4)(⌈n/2⌉ − 1)

Given that the total number of cross edges is 2(n−2)! and it is greater than n−1−(n−4)(⌈n/2⌉−1)
for n ≥ 5, it follows that, for every i in [n] − {1}, there always exists a cross edge between
(B1

n−1 −N [U ])− F and (Bi
n−1 −N [U ])− F . Consequently, (MBn ⊖ U)− F is connected.

Subcase 2.2. Assume that there exists i ∈ [n] for which (Bi
n−1 − N [U ]) − F is disconnected.

Without loss of generality, assume i = 1. We have |U1| ≤ ⌈n
2
⌉−2, and since ⌈n

2
⌉−2 = ⌊n−1

2
⌋−1,
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then by Lemma 3.4, B1
n−1 −N [U1] is (n− 2− 2|U1|)-connected, therefore

|F1|+ k1 ≥ n− 2− 2|U1|
|F1|+ |U | − |U1| ≥ n− 2− 2|U1|

|F1|+ |U | ≥ n− 2− |U1|
|F1|+ |U | > n− 2− |U |

|F1| > n− 2− 2|U |
|F1| > |F |

this is a contradiction, therefore (Bi
n−1 − N [U ]) − F is connected for every i ∈ [n], hence by

Subcase 2.1, (MBn ⊖ U)− F is connected.

Theorem 4.1. Let n ≥ 4, then κNB(MBn) = ⌈n
2
⌉.

Proof. Lemma 4.3 and Lemma 4.5 imply that κNB(MBn) is greater than ⌈n
2
⌉−1, then κNB(MBn) ≥

⌈n
2
⌉. By Lemma 4.2, we have κNB(MBn) ≤ ⌈n

2
⌉, therefore κNB(MBn) = ⌈n

2
⌉.

4.2. Neighbor Connectivity of LGn

Suppose that the generating graph of LGn is G(T ) = Hn,n−1, which consists of the vertex set
[n] and edge set {(i, i+1), (1, n−1), (1, n); i = 1, . . . , n−2}. Let T ′ = T −{(1, n)}, then G(T ′)
is a cycle of length n−1, and Cay(Sn−1, T ′) is the (n−1)-dimensional modified bubble-sort graph
MBn−1. Let MBi

n−1 be the subgraph of LGn induced by the vertex set {[p1p2 . . . pn−1i]; pk ∈
[n] − {i}, for k = 1, . . . , n − 1}, then MBi

n−1
∼= MBn−1. Therefore, LGn can be decomposed

into n vertex disjoint subgraphs, MB1
n−1, . . . ,MBn

n−1, such that each one of them is isomorphic
to MBn−1.

Proposition 4.2. [19] Let LGn be the n-dimensional Cayley graph Cay(Sn, Hn,n−1).

(I) LGn is n-regular bipartite graph.

(II) If u ∈ V (MBi
n−1), then u has exactly one neighbor outside MBi

n−1, called the outside
neighbor of u.

(III) The outside neighbors of MBi
n−1 are all different.

(IV) There are exactly (n − 2)! independent edges between MBi
n−1 and MBk

n−1, for i, k ∈ [n]
and i ̸= k. Such edges are called cross edges.

Lemma 4.6. Let u ∈ V (LGn), for n ≥ 4. Suppose u ∈ V (MBi
n−1) for some i ∈ [n]. If u has its

outside neighbor u′ in MBj
n−1 for some j ∈ [n]−{i}, then exactly (n− 3) vertices of NMBi

n−1
(u)

have their outside neighbors in MBj
n−1.

Proof. Since LGn is vertex transitive, then without loss of generality assume that u = (). Then the
outside neighbor of u. u′ = (1, n), is in MB1

n−1. The vertices corresponding to (2, 3), . . . , (n −
2, n− 1) are in NMBn

n−1
(u) and they have their outside neighbors in MB1

n−1.
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Lemma 4.7. Let n ≥ 4 and U ⊆ V (LGn), such that 1 ≤ |U | ≤ ⌈n
2
⌉ − 1. Then LGn ⊖ U is

(n− 2|U |)-connected.

Proof. Let F ⊆ V (LGn), such that |F | ≤ n− 1− 2|U |. Our aim is to show that (LGn ⊖ U)− F
is connected. We consider cases depending on the distribution of the elements of U . Let Ui =
U ∩ V (MBi

n−1), ki = |N [U − Ui] ∩ V (Bi
n−1)|, and Fi = F ∩ V (MBi

n−1), for i ∈ [n].
Case 1. |U | = |U1|. For i ∈ [n]−{1}, |Fi|+ki ≤ (n−1−2|U |)+|U | ≤ n−2 < deg(MBi

n−1),
then by Theorem 3.1, the subgraph induced by the vertices of (MBi

n−1−N [U ])−F is connected.
The number of cross edges between the subgraphs induced by (MBi

n−1−N [U ])−F and (MBj
n−1−

N [U ])−F , for 2 ≤ i < j ≤ n, is greater than (n− 2)!− [(n− 1− 2|U |)] ≥ (n− 2)!−n+1 ≥ 1,
for n ≥ 4, hence there is always a cross edge between these two subgraphs. Then the subgraph C
induced by the vertices of

⋃n
i=2 V (MBi

n−1)− (N [U ]∪F ) is connected. If (MB1
n−1 −N [U ])−F

is connected, then the graph (LGn ⊖ U) − F becomes connected since there is at least one cross
edge connecting a vertex from (MB1

n−1 − N [U ]) − F and a vertex from C. In fact, there are
(n− 1)(n− 2)! cross edges incident to vertices in MB1

n−1, if the closed neighborhood of a vertex
is removed from the graph, then this contributes to at most (n− 2) cross edges. Then the number
of cross edges between (MB1

n−1 −N [U ])− F and C is

(n− 1)(n− 2)!− (|F |+ (n− 2)|U |) ≥ (n− 1)!− (n− 1− 2|U |+ (n− 2)|U |)
≥ (n− 1)!− n+ 1− (n− 4)|U |

≥ (n− 1)!− n+ 1− (n− 4)
n

2
≥ 3.

Suppose that (MB1
n−1 − N [U ]) − F is not connected. Let C1 be a connected component in

(MB1
n−1 −N [U ])− F .

Subcase 1.1. C1 contains exactly one vertex u. The maximum number of vertices in N [U ]∪F
adjacent to u is 2|U | + |F | = n − 1 = degMB1

n−1
(u), then all the vertices of F must be in

MB1
n−1. By Lemma 4.2, a vertex of U cannot be adjacent to the outside neighbor of u, and since

degLGn(u) = n, then the outside neighbor of u must be in C.
Subcase 1.2. C1 contains at least two vertices. Let u and v be two adjacent vertices in C1. Since

LGn contains no odd cycles, then |N(u) ∩ N(v)| = 0. The subgraph induced by (NMB1
n−1

[u] ∪
NMB1

n−1
[v])−(N [U ]∪F ) contains at least 2n−2−2|U |−|F | vertices. Since −2|U |−|F | ≥ 1−n,

then this subgraph contains at least n− 1 vertices. A vertex in U can not have an outside neighbor
that belongs to N [U ]. On the other hand, |F | ≤ n − 1 − 2|U |, so |F | ≤ n − 5. Therefore, there
must be a cross edge between C1 and C, and hence (LGn ⊖ U)− F is connected.

Case 2. |Ui| ≤ |U | − 1, for every i ∈ [n].
Subcase 2.1. Assume that (MBi

n−1 − N [U ]) − F is connected for every i ∈ [n]. Since
|U | ≤ ⌈n

2
⌉ − 1, then at least half of the subgraphs MBk

n−1, for k ∈ [n], contain no elements of
U . Suppose that U1 = U2 = ∅, it is easy to see that the subgraph C induced by V (MB1

n−1) ∪
V (MB2

n−1) is connected. We want to show that there is always an edge between MBi
n−1 and C,

for i ∈ [n]− {1, 2}. The number of cross edges between MBi
n−1 and MB1

n−1 is (n− 2)!− (n−
1 − 2|U | + (n − 2)|Ui| + |U | − |Ui|). We are removing all cross edges incident to vertices of F ,

353



www.ejgta.org

Bounds of neighbor connectivity of Cayley graphs | M. Abdallah

N [Ui], and U − Ui. This number is equal to (n− 2)!− (n− 1− |U |+ (n− 3)|Ui|). We have

(n− 2)!− (n− 1− |U |+ (n− 3)|Ui|) ≥ (n− 2)!− (n− 1− |U |+ (n− 3)(|U | − 1))

≥ (n− 2)!− (2 + (n− 4)|U |)
≥ 2

then there is a an edge between C and MBi
n−1 for every i ∈ [n]−{1, 2}, therefore (LGn⊖U)−F

is connected.
Subcase 2.2. Assume that there exists i ∈ [n] for which (MBi

n−1−N [U ])−F is disconnected.
Without loss of generality, assume i = 1. We have |U1| ≤ ⌈n

2
⌉−2, and since ⌈n

2
⌉−2 ≤ ⌈n−1

2
⌉−1,

then by Lemma 4.5, MB1
n−1 −N [U1] is (n− 1− 2|U1|)-connected, therefore

|F1|+ k1 ≥ n− 1− 2|U1|
|F1|+ |U | − |U1| ≥ n− 1− 2|U1|

|F1|+ |U | ≥ n− 1− |U1|
|F1|+ |U | > n− 1− |U |

|F1| > n− 1− 2|U |
|F1| > |F |

this is a contradiction, therefore (MBi
n−1 − N [U ]) − F is connected for every i ∈ [n], hence by

Subcase 2.1, (LGn ⊖ U)− F is connected.

In the following lemma, we determine the value of κNB(LGn).

Lemma 4.8. Let n ≥ 4, then κNB(LGn) = ⌈n
2
⌉.

Proof. From Lemma 4.7, we conclude that κNB(LGn) ≥ ⌈n
2
⌉. To show that κNB(LGn) ≤ ⌈n

2
⌉, we

will construct a vertex-cut strategy of size ⌈n
2
⌉. Assume n is even, then the set of vertices U = {(i+

2, i+3)(n−2−i, n−1−i); i = 1, . . . , n
2
−3}∪{(n

2
, n
2
+1)(1, n), (1, 2)(n−2, n−1), (2, 3)(1, n−1)}

is a vertex-cut strategy of size n
2

because the vertex corresponding to the identity permutation ()
is isolated in LGn ⊖ U . Similarly, if n is odd, then U = {(i, i + 1)(n − 1 − i, n − i); i =
2, . . . , n−1

2
− 1} ∪ {(1, 2)(n+1

2
, n+1

2
+ 1), (1, n − 1)(n−1

2
, n−1

2
+ 1), (1, n)(1, 2)} is a vertex-cut

strategy of size n+1
2

= ⌈n
2
⌉, because () becomes an isolated vertex in LGn ⊖ U . Therefore,

κNB(LGn) ≤ ⌈n
2
⌉.

4.3. Neighbor Connectivity of Un

Let Un = Cay(Sn, T ) where G(T ) is not Cn nor Hn,n−1, then the generating graph G(T )
has always a vertex of degree 1, without loss of generality, let n be such vertex, and let j be the
neighbor of n in G(T ). Let T ′ = T − {(j, n)}, then T ′ is a set of transpositions of Sn−1, and
G(T ′) is a unicyclic graph on the vertex set [n − 1]. Let Ui

n−1 be the subgraph of Un induced by
the set of vertices {[p1p2 . . . pn−1i]; pk ∈ [n] − {i} for k = 1, . . . , n − 1}, then Ui

n−1
∼= Un−1.

Therefore, Un can be decomposed into n vertex disjoint subgraphs U1
n−1, . . . ,Un

n−1. The following
proposition includes useful topological properties of Un.
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Proposition 4.3. [19] Let Un = Cay(Sn, T ) where G(T ) is a unicyclic graph of vertex set [n]
different from Cn and Hn,n−1, and let U1

n−1, . . . ,Un
n−1 be the subgraphs defined previously.

(I) Un is n-regular bipartite graph.

(II) If u ∈ V (Ui
n−1), then u has exactly one neighbor, u′, outside Ui

n−1. u
′ is called the outside

neighbor of u, and u′ = u(j, n).

(III) The outside neighbors of the vertices in Ui
n−1 are all different.

(IV) There are exactly (n − 2)! independent edges between Ui
n−1 and Uk

n−1, for i, k ∈ [n] and
i ̸= k. Such edges are called cross edges.

Lemma 4.9. [19] Let m be the length of the unique cycle in G(T ). Let u and v be two distinct
vertices of Un = Cay(Sn, T ). Then |N(u) ∩ N(v)| ≤ 3 if m = 3, and |N(u) ∩ N(v)| ≤ 2 if
m ≥ 4.

Lemma 4.10. Let n ≥ 4 and let Un = Cay(Sn, T ), where G(T ) is a unicyclic graph on the vertex
set [n] and the length of its cycle is 3. Suppose u ∈ V (Ui

n−1) for some i ∈ [n]. If u has its outside
neighbor u′ in Uj

n−1 for some j ∈ [n] − {i}, then at most n − 3 vertices in NUi
n−1

(u) have their

outside neighbors in Uj
n−1.

Proof. Since Un is vertex transitive, then without loss of generality assume that u = (). The gener-
ating graph G(T ) consists of a 3-cycle with edges corresponding to the transpositions (1, 2), (2, 3),
and (3, 1). At least one of the vertices 1, 2 or 3 belongs to a tree that does not include the other
two vertices. It is possible to have the following scenario; (1, n) is an edge of G(T ) and vertices 2
and 3 are vertices that belong to disjoint trees. Then every vertex of NUn−1 [u], except the vertices
corresponding to (1, 2) and (1, 3) have their outside neighbors in U1

n−1.

Lemma 4.11. Let n ≥ 4 and let Un = Cay(Sn, T ), where G(T ) is a unicyclic graph on the vertex
set [n] and the length of its cycle is 3. Let U ⊆ V (Un), such that 1 ≤ |U | ≤ ⌊n

2
⌋− 1. Then Un⊖U

is (n− 1− 2|U |)-connected.

Proof. When n = 4, then U4 is the same as LG4, then by Lemma 4.7 the result holds. We proceed
by mathematical induction on n. Suppose that Un−1⊖W is (n−2−2|W |)-connected, for every set
W ⊆ V (Un−1) such that 1 ≤ |W | ≤ ⌊n−1

2
⌋−1. Let U ⊆ V (Un), such that 1 ≤ |U | ≤ ⌊n

2
⌋−1 and

let F ⊆ V (Un), such that |F | ≤ n− 2− 2|U |. Our aim is to show that (Un⊖U)−F is connected.
We consider cases depending on the distribution of the elements of U . Let Ui = U ∩ V (Ui

n−1),
ki = |N [U − Ui] ∩ V (Ui

n−1)|, and Fi = F ∩ V (Ui
n−1), for i ∈ [n].

Case 1. |U | = |U1|. For i ≥ 2, |Fi|+ ki ≤ (n− 2− 2|U |) + |U | ≤ n− 3 < δ(Ui
n−1), then by

Theorem 3.1, the subgraph induced by the vertices of (Ui
n−1−N [U ])−F is connected. The number

of cross edges between the subgraphs induced by (Ui
n−1 − N [U ]) − F and (Uj

n−1 − N [U ]) − F ,
for 2 ≤ i < j ≤ n, is greater than (n − 2)! − [(n − 2 − 2|U |) + |U |] ≥ (n − 2)! − (n − 3) ≥ 1,
for n ≥ 5, hence there is always a cross edge between these two subgraphs. Then the subgraph C
induced by the vertices of

⋃n
i=2 V (Ui

n−1) − (N [U ] ∪ F ) is connected. If (U1
n−1 − N [U ]) − F is

355



www.ejgta.org

Bounds of neighbor connectivity of Cayley graphs | M. Abdallah

connected, then the graph (Un ⊖ U)− F becomes connected since there is at least one cross edge
connecting a vertex from (U1

n−1 − N [U ]) − F and a vertex from C. In fact, the number of cross
edges between (U1

n−1 −N [U ])− F and C is

(n− 1)(n− 2)!− (|F |+ (n− 2)|U |) ≥ (n− 1)!− (n− 2− 2|U |+ (n− 2)|U |)
≥ (n− 1)!− n+ 2− (n− 4)|U |

≥ (n− 1)!− n+ 2− (n− 4)
n

2
≥ 4.

Suppose that (U1
n−1 −N [U ])− F is not connected. Let C1 be a connected component in (U1

n−1 −
N [U ])− F .

Subcase 1.1. C1 contains exactly one vertex u, then u is isolated in U1
n−1. The maximum

number of vertices of NU1
n−1

(u) that are adjacent to N [U1] is 3 + 2(|U | − 1), then

3 + 2(|U | − 1) + |F1| ≥ degU1
n−1

(u)

2|U |+ 1 + |F1| ≥ n− 1

|F1| ≥ n− 2− 2|U |
|F1| ≥ |F |

In this situation |Fi| = 0 for every i ∈ [n] − {1}, then the outside neighbor of u is a vertex in C,
therefore there is an edge between C1 and C.

Subcase 1.2. C1 contains more than one vertex. Let u, v ∈ V (C1) such that u and v are
adjacent in C1. Since Un is bipartite, then it does not contain an odd cycle, therefore u and v have
no common neighbors. The subgraph induced by (N [u]∪N [v])∩V (U1

n−1) contains 2n−2 vertices.
A vertex of U can not be adjacent to a neighbor of u and a neighbor of v at the same time because
this would create an odd cycle. Then the maximum number of vertices of NU1

n−1
[u]∪NU1

n−1
[v] that

are in N [U1] is 3+3+2(|U |−2) = 2|U |+2. Then there are at least (2n−2)−(2|U |+2) = 2n−2|U |
vertices in the subgraph induced by [(N [u] ∪N [v]) ∩ V (U1

n−1)]−N [U ]. Since |F | < 2n− 2|U |,
then there exists at least one cross edge incident to a vertex of C1 and a vertex of C.

Case 2. |Ui| ≤ |U | − 1, for i ∈ [n]. We have |Ui| ≤ ⌊n
2
⌋ − 2, then at least two of the

Ui
n−1 subgraphs contain no elements of U , for i ∈ [n]. Let U1

n−1 and U2
n−1 be these subgraphs.

By Theorem 3.1, U1
n−1 and U2

n−1 are (n − 1)-connected. The maximum number of vertices of
N [U ] ∪ F in U1

n−1 is |U | + |F | ≤ n − 2 − |U | ≤ n − 2, then (U1
n−1 ⊖ U) − F is connected.

Since |U i
n−1| ≤ ⌊n

2
⌋ − 2 ≤ ⌊n−1

2
⌋ − 1, for n ≥ 5, then by the induction hypothesis, Ui

n−1 is
(n− 2− 2|Ui|)-connected. On the other hand,

|F |+N [U − Ui] ≤ n− 2− 2|U |+ |U | − |Ui|
≤ n− 2− |U | − |Ui|
≤ n− 2− |Ui| − 1− |Ui|
≤ n− 3− 2|Ui|
< n− 2− 2|Ui|
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then (Ui
n−1 ⊖ U) − F is connected, for i ∈ [n] − {1, 2}. By Proposition 4.3, there are (n − 2)!

cross edges between Ui
n−1 and U1

n−1, for i ∈ [n]−{1, 2}. If x ∈ Ui, then by Lemma 4.10 NUi
n−1

[x]

contributes to at most n− 2 cross edges between Ui
n−1 and U1

n−1. When n ≥ 5, we have

(n− 2)!− (n− 2)|Ui| − |F | ≥ (n− 2)!− (n− 2)(|U | − 1)− (n− 2− 2|U |)
≥ (n− 2)!− n|U |
≥ (n− 2)!− n(⌊n/2⌋ − 1)

≥ 1

then there exists at least one cross edge between (Ui
n−1 ⊖ U) − F and (U1

n−1 ⊖ U) − F for
i ∈ [n]−{1, 2}, and since there are enough edges between (U1

n−1 ⊖U)−F and (U2
n−1 ⊖U)−F ,

then (Un ⊖ U)− F is connected.

The previous lemma implies that when the length of the cycle in G(T ) is 3, then the value of
κNB(Un) is greater than ⌊n

2
⌋ − 1. The next lemma provides an upper bound for κNB(Un) when

the length of the cycle in G(T ) is 3.

Lemma 4.12. Let n ≥ 4 and let Un = Cay(Sn, T ), where G(T ) is a unicyclic graph on the vertex
set [n], where the length of the cycle in G(T ) is 3. Then ⌊n

2
⌋ ≤ κNB(Un) ≤ n− 2.

Proof. By Lemma 4.11, we have κNB(Un) ≥ ⌊n
2
⌋. Let {(1, 2), (2, 3), (3, 1)} be the edges of the 3-

cycle of G(T ). The vertex () is adjacent to (1, 2), (2, 3), (3, 1) and n−3 other vertices correspond-
ing to the remaining edges of G(T ). Let u1, . . . , un−3 be these vertices, and let u′

i be a vertex adja-
cent to ui such that u′

i ̸= (), for i = 1, . . . , n−3. If U consists of {(1, 2, 3), u′
i; for i = 1, . . . n−3}

then the vertex () is isolated in Un ⊖ U because (1, 2, 3) is adjacent to (1, 2), (1, 3), (2, 3), and u′
i

is adjacent to ui for i = 1, . . . n− 3. Therefore κNB(Un) ≤ n− 2.

Now we will show that bounds of κNB(Un) are tight. In the next lemma, we find a generating
graph for which the lower bound of κNB(Un) is attained.

Lemma 4.13. Let n ≥ 4 and let Un = Cay(Sn, T ), where G(T ) is the graph consisting of vertex
set [n] and edge set {(1, 2), (2, 3), (1, 3), (i, i+ 1); for i = 3, . . . , n− 1}. Then κNB(Un) = ⌊n

2
⌋.

Proof. We want to construct a vertex-cut strategy U such that |U | ≤ ⌊n
2
⌋.

Case 1. n is even. Let U = {(1, 2, 3),
(
n
2
+ 1, n

2
+ 2

)
(1, 2), (i+3, i+4)(n−1−i, n−i); for i =

0, . . . , n
2
− 3}. The vertex () is isolated in Un ⊖ U , and |U | = 2 + n

2
− 2 = n

2
.

Case 2. n is odd. Let U = {(1, 2, 3), (i + 3, i + 4)
(
n+3
2

+ i, n+5
2

+ i
)
; for i = 0, . . . , n−5

2
}.

The vertex () is isolated in Un ⊖ U , and |U | = 1 + n−5
2

+ 1 = n−1
2

= ⌊n
2
⌋. Then κNB(Un) = ⌊n

2
⌋

when G(T ) is the graph of vertex set [n] and edge set {(1, 2), (2, 3), (1, 3), (i, i + 1); for i =
3, . . . , n− 1}.

Lemma 4.14. Let n ≥ 4 and let Un = Cay(Sn, T ), where G(T ) is the graph consisting of
vertex set [n] and edge set {(2, 3), (1, i); for i = 2, . . . , n}. Let x ∈ V (Ui

n−1), for some i ∈ [n].
Then NUi

n−1
(x) = {x1, . . . , xi−1, xi+1, . . . , xn}, where xj has its outside neighbor x′

j in Uj
n−1, for

j ∈ [n] − {i}. Moreover, if the outside neighbor of x, x′, is in Uk
n−1, for k ∈ [n] − {i}, then

(x, x′, x′
k, xk, x) is a 4-cycle.
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Proof. Since Un is a Cayley graph, then it is vertex transitive. Without loss of generality, assume
that x = () is a vertex in Un

n−1, then NU1
n−1

(x) = {(2, 3), (1, 2), (1, 3), . . . , (1, n − 1)}. Let
x1 = (2, 3) and xi = (1, i), for i ∈ [n − 1] − {1}. The outside neighbor of x1 is x′

1 and it
corresponds to the permutation (2, 3)(1, n) which is a vertex in U1

n−1. The outside neighbor of xi

is x′
i and it corresponds to the permutation (1, i)(1, n) = (1, n, i) which is a vertex in Ui

n−1, for
i ∈ [n]− {1}. In addition, the outside neighbor of x is the vertex x′ in U1

n−1, and x′ = (1, n). It is
easy to see that (x, x′, x′

1, x1, x) is a 4-cycle.

Lemma 4.15. Let n ≥ 4 and let Un = Cay(Sn, T ), where G(T ) is the graph consisting of vertex
set [n] and edge set {(2, 3), (1, i); for i = 2, . . . , n}. Let U ⊆ V (Un), such that 1 ≤ |U | ≤ n− 3.
Then Un ⊖ U is (n− 2− |U |)-connected.

Proof. When n = 4, then |U | = 1 and the case is the same as the base case of the proof of
Lemma 4.11. We proceed using mathematical induction. Suppose that Un−1⊖U ′ is (n−3−|U ′|)-
connected, where Un−1 = Cay(Sn−1, T ′), and G(T ′) is the graph consisting of vertex set [n− 1]
and edge set {(2, 3), (1, i); for i = 2, . . . , n− 1}, and U ′ ⊆ V (Un−1) such that 1 ≤ |U ′| ≤ n− 4.
Let F ⊆ V (Un), such that |F | ≤ n− 3− |U |. We want to show that (Un ⊖ U)− F is connected.
We consider cases depending on the distribution of the elements of U . Let Ui = U ∩ V (Ui

n−1),
ki = |N [U − Ui] ∩ V (Ui

n−1)|, and Fi = F ∩ V (Ui
n−1), for i ∈ [n].

Case 1. |U1| = |U |. For i ∈ [n] − {1}, |Fi| + ki ≤ n − 3 − |U | + |U | ≤ n − 3. Then
(Ui

n−1 −N [U ])−F is connected for i ∈ [n]−{1}. The number of cross edges between Ui
n−1 and

Uj
n−1 is (n − 2)!, for i, j ∈ [n] − {1} and i ̸= j, at most |F | + |U | of these edges are incident to

vertices of F or to vertices of N [U ]. Since |F |+ |U | ≤ n− 3 and (n− 2)! > n− 3 for n ≥ 5, then
there is always a cross edge between (Ui

n−1−N [U ])−F and (Uj
n−1−N [U ])−F . Let C be the graph

induced by
⋃n

i=2(V (Ui
n−1)−N [U ])−F , then C is connected. If (U1

n−1−N [U ])−F is connected,
then the number of cross edges between (U1

n−1−N [U ])−F and C is (n−1)(n−2)!−(n|U |+|F |);
for n ≥ 5, we have

n|U |+ |F | ≤ n|U |+ n− 3− |U |
≤ (n− 1)|U |+ (n− 3)

≤ (n− 1)(n− 3) + (n− 3)

≤ n(n− 3)

< (n− 1)!

then there is always a vertex in (U1
n−1 − N [U ]) − F having its outside neighbor in C, therefore

(Un −N [U ])− F is connected. Suppose that (U1
n−1 −N [U ])− F is not connected, we will show

that there is a cross edge between every connected component of (U1
n−1 −N [U ])− F and C. Let

C1 be a connected component in (U1
n−1 −N [U ])− F .

Subcase 1.1. |V (C1)| = 1. C1 consists of one vertex u that is isolated in (U1
n−1 −N [U ])− F ,

then

|U |+ 2 + |F1| ≥ degU1
n−1

(u)

|F1| ≥ n− 3− |U |
|F1| ≥ |F |
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then |F | = |F1|, therefore the outside neighbor of u is not in F and by Lemma 4.3 u is not in N [U ],
then it must be in C, and hence there is a cross edge between C1 and C.

Subcase 1.2. |V (C1)| > 1. Let x and y be two adjacent vertices in C1. Since Un is bipartite,
then it does not contain odd cycles, therefore x and y have no common neighbor in Un. The
subgraph induced by NU1

n−1
[x] ∪ NU1

n−1
[y] contains 2n − 2 vertices. A vertex of N [U ] can not be

adjacent to a vertex in NU1
n−1

(x) and a vertex in NU1
n−1

(y) since this will create an odd cycle. The
maximum number of vertices in U1

n−1 adjacent to x that are adjacent to vertices of N [U ] is |U |+2.
Similarly, the maximum number of vertices in U1

n−1 adjacent to y that are adjacent to vertices of
N [U ] is |U | + 2. There is at most two vertices in U such that, one of them is adjacent to three
neighbors of x and the other is adjacent to three neighbors of y, and every other element of U
can be adjacent to at most one neighbor of x or to at most one neighbor of y. Then the maximum
number of vertices of NU1

n−1
[x]∪NU1

n−1
[y] that are in N [U ] is 6+(|U |−2) = |U |+4 ≤ n+1. Then

the subgraph induced by (NU1
n−1

[x]∪NU1
n−1

[y])−N [U ] contains at least 2n− 2− (n+1) = n− 3

vertices, and since |F | < n− 3, then there is always a vertex in C1 that has an outside neighbor in
C, hence there is a cross edge between C and C1 in (Un−N [U ])−F . As a result (Un−N [U ])−F
is connected.

Case 2. |Ui| < |U | for every i ∈ [n]. By the induction hypothesis, Ui
n−1 ⊖Ui is (n− 3− |Ui|)-

connected, for i ∈ [n]. If (Ui
n−1−N [U ])−F is connected for every i ∈ [n], then (Un−N [U ])−F

is connected. Suppose that (Ui
n−1 −N [U ])− F is disconnected for some i ∈ [n]. Without loss of

generality, suppose that i = 1, then |F1|+ (|U | − |U1|) ≥ n− 3− |U1|, then |F1|+ |U | ≥ n− 3,
then |F1| ≥ n− 3− |U | ≥ |F |, therefore |F1| = |F |. Then all the elements of F are in U1

n−1 and
|Fi| = 0 for i ∈ [n]− {1}. Let C1 be a connected component of (U1

n−1 −N [U ])− F .
Subcase 2.1. |C1| = 1. Let C1 = {x}, where x is an isolated vertex in U1

n−1 − (N [U ] ∪ F ).
Then,

|F1|+ (|U1|+ 2) + k1 ≥ n− 1

k1 ≥ n− 1− |F1| − |U1| − 2

k1 ≥ n− 3− |F1| − |U1|
k1 ≥ |U | − |U1|

then k1 = |U | − |U1|, which means that every element of U − U1 has its outside neighbor in
NU1

n−1(x)
. However, By Lemma 4.14 this can only happen if no two vertices of U − U1 belong

to the same Ui
n−1-subgraph. Then |Ui| ≤ 1 for i ∈ [n] − {1}, and by the induction hypothesis

Ui
n−1 ⊖ Ui is (n − 4)-connected. Since |U1| < |U |, then |U1| ≤ n − 4. There could be at most

one subgraph of Ui
n−1 ⊖ Ui for i ∈ [n] − {1} , say U2

n−1 ⊖ U2, that is disconnected. Let C be the
subgraph induced by the vertices of

⋃n
i=3(Ui

n−1 −N [U ]) − F , then C is connected. Let x′ be the
outside neighbor of x. If x′ is in C, then the case is done. Suppose that x′ is in U2

n−1−N [U ], since
|U2| ≤ 1, then U2 contains at most one vertex a which has its outside neighbor in NU1

n−1
(x), and

a cannot be adjacent to a neighbor of x′, because if this is the case then we will have a 5-cycle.
By Lemma 4.14, all the neighbors of x′ except one (which is x′

2, the outside neighbor of x2) are
in (U2

n−1 − N [U ]) − F , then x′ has a neighbor that has its outside neighbor in C, therefore there
exists a path from x to C in (Un ⊖ U)− F .
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Subcase 2.2. |C1| > 1. let x and y be two vertices of C1 such that x and y are adjacent.
Let H be the subgraph induced by the vertices of (NU1

n−1
[x] ∪ NU1

n−1
[y]) − (N [U ] ∪ F ). H has

at least (2n − 2) − (|U1| + 4) − |F | vertices. Suppose that there exists i ∈ [n] − {1} such that
(Ui

n−1−N [U ])−F is not connected. Without loss of generality, suppose that (U2
n−1−N [U ])−F

is not connected, then k2 ≥ n − 3 − |U2|, then |U | − |U2| ≥ n − 3 − |U2|, then |U | ≥ n − 3,
hence |U | = n − 3 and |F | = 0. We have the following inequalities k1 ≥ n − 3 − |U1| and
k2 ≥ n− 3− |U2|, then

k1 + k2 ≥ 2(n− 3)− (|U1|+ |U2|)
≥ 2|U | − |U |
≥ |U |

this means that k1 + k2 = |U |, and ki = 0 for i ∈ [n] − {1, 2}. Let C be the graph induced
by the

⋃n
i=3 V (Ui

n−1) − (N [U ] ∪ F ). Since |Fi| + ki = 0, then by the induction hypothesis
(Ui

n−1 − N [U ]) − F is connected for i ∈ [n] − {1, 2}, and hence C is connected. Since |F | = 0,
then H has at least n− 2 vertices because

(2n− 2)− (|U1|+ 4)− |F | > (2n− 2)− (|U |+ 4)− |F |
≥ 2n− 2− |U | − 4

≥ 2n− 6− (n− 3)

≥ n− 3.

For n ≥ 5, H contains at least three vertices and by Lemma 4.14 at most two of them can be in
U2

n−1, then a vertex of H has outside neighbor in C. The same approach can be used to show that
for every connected component of (Un−2 −N [U ])− F there exists an edge (or path) connecting a
vertex of C1 with a vertex in C.

Lemmas 4.11, 4.13, and 4.15 provide the following result.

Theorem 4.2. Let n ≥ 4 and let Un = Cay(Sn, T ), where G(T ) is a unicyclic graph on n where
the length of the cycle in G(T ) is 3. Then ⌊n

2
⌋ ≤ κNB(Un) ≤ n − 2. Moreover, the bounds are

tight.

5. Conclusion

In this paper, we determined the neighbor connectivity of Cay(Sn, T ), where G(T ) is a tree
with n vertices, a unicyclic graph with n vertices where the unique cycle is of length 3, n − 1,
or n. The methods employed to derive the outcomes presented in this paper can be extended to
determine the neighbor connectivity in cases where the length of the cycle in a unicyclic graph
falls between 3 and n− 1. We put forth the following conjecture.

Conjecture 1. Let n ≥ 6 and let Un = Cay(Sn, T ), where G(T ) is a unicyclic graph on the
vertex set [n]. Let m be the length of the cycle in G(T ) such that 4 ≤ m ≤ n− 1.
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1. If n ≥ 2m− 4, then ⌈n/2⌉ ≤ κNB(Un) ≤ n−m+ 2

2. If n < 2m− 4, then ⌈n/2⌉ ≤ κNB(Un) ≤ n−m+ 2 + ⌈2m−n−4
2

⌉

Moreover, the bounds are tight.

References

[1] W. Al, Sage Mathematics Software (Version 9.6). (The Sage Development Team).

[2] Y. Chen, J. Tan, L. Hsu, and S. Kao, Super-connectivity and super-edge-connectivity for some
interconnection networks, Applied Mathematics And Computation 140 (2003), 245–254.

[3] E. Cheng, M. Lipman, and H. Park, Super connectivity of star graphs, alternating group
graphs and split-stars. ARS Combinatoria 59 (2001), 107–116.

[4] E. Cheng, and L. Lipták, Linearly many faults in Cayley graphs generated by transposition
trees, Information Sciences 177 (2007), 4877–4882.

[5] E. Cheng and L. Lipták, Fault resiliency of Cayley graphs generated by transpositions, Inter-
national Journal Of Foundations Of Computer Science 18 (2007), 1005–1022.

[6] W. Chiue and B. Shieh, On connectivity of the Cartesian product of two graphs, Journal Of
Applied Mathematics And Computation 102 (1999),129–137.

[7] J. Fu, Conditional fault-tolerant hamiltonicity of star graphs, Parallel Computing 33 (2007),
488–496.

[8] G. Gunther, Neighbour-Connectibity in Regular Graphs Discrete Applied Mathematics 11
(1985).

[9] G. Gunther and B. Hartnell, On minimizing the effects of betrayals in a resistance movement,
Proc. 8th Manitoba Conf. Numer. Math. Comp. (1978), 285–386.

[10] G. Gunther and B. Hartnell, Optimal k-secure graphs, Discrete Applied Mathematics 2
(1980), 241–247.

[11] S. Lakshmivarahan, J. Jwo, and S. Dhall, Symmetry in interconnection networks based on
Cayley graphs of permutation groups: A survey, Parallel Computing 19 (1993), 361–407.

[12] C. Li, S., Lin, and S. Li, Structure connectivity and substructure connectivity of star graphs,
Discrete Applied Mathematics 284 (2020), 472–480.

[13] S. Li, J. Tu, and C. Yu, The generalized 3-connectivity of star graphs and bubble-sort graphs,
Applied Mathematics And Computation 274 (2016), 41–46.

[14] Y. Shang, R. Hao, and M. Gu, Neighbor connectivity of two kinds of Cayley graphs, Acta
Mathematicae Applicatae Sinica, English Series 34 (2018), 386–397.

361



www.ejgta.org

Bounds of neighbor connectivity of Cayley graphs | M. Abdallah

[15] N. Wang, J. Meng, and Y. Tian, Reliability evaluation of modified bubble-sort graph networks
based on structure fault pattern, Applied Mathematics and Computation 430 (2022), 127257.

[16] D. West, Introduction to Graph Theory, Prentice Hall,1996.

[17] W. Yang, H. Li, and J. Meng, Conditional connectivity of Cayley graphs generated by trans-
position trees, Information Processing Letters, 110 (2010), 1027–1030.

[18] C. Yang, J. Wang, J. Lee, and F. Boesch, Graph theoretic reliability analysis for the Boolean
n cube networks, IEEE Transactions on Circuits and Systems 35 (1988), 1175–1179.

[19] X. Yu, X. Huang, and Z. Zhang, A kind of conditional connectivity of Cayley graphs gener-
ated by unicyclic graphs Information Sciences 243 (2013), 86–94.

[20] H. Zhang, S. Zhou, X. Liu, and Z. Yu, Extra (component) connectivity and diagnosability of
bubble sort networks, Theoretical Computer Science, 940 (2023), 180–189.

362


