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Abstract

The Alon-Tarsi number of a graph G is the smallest k so that there exists an orientation D of G
with max outdegree k − 1 satisfying the number of even Eulerian subgraphs different from the
number of odd Eulerian subgraphs. This paper is devoted to the study of the Alon-Tarsi number of
cupolarotundas and gyroelongated rotunda.
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1. Introduction

We only consider simple and finite graphs in this paper. The chromatic number of a graph G,
denoted by χ(G), is the least positive integer k such that G has a proper vertex coloring using
k colors. List coloring is a well-known variation on vertex coloring. For list coloring, a k-list
assignment of a graph G is a mapping L which assigns to each vertex v of G a set L(v) of k
permissible colors. An L-coloring of G is a coloring f of G such that f(v) ∈ L(v) for each vertex
v. We say G is L-colorable if there exists a proper L-coloring of G. A graph G is k-choosable if G
is L-colorable for every k-list assignment L. The choice number of a graph G is the least positive
integer k such that G is k-choosable, denoted by ch(G).

A subdigraph H of a directed graph D is called Eulerian if V (H) = V (G) and the indegree
d−H(v) of every vertex v of H in H is equal to its outdegree d+H(v). We do not assume that H
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is connected. H is even if it has an even number of edges, otherwise, it is odd. Let Ee(D) and
Eo(D) denote the family of even and odd Eulerian subgraphs of D, respectively. Let diff(D) =
|Ee(D)| − |Eo(D)|. We say that D is Alon-Tarsi if diff(D) ̸= 0. If an orientation D of G yields an
Alon-Tarsi digraph, then we say D is an Alon-Tarsi orientation (AT -orientation, for short) of G
[1].

The Alon-Tarsi number of G (AT (G), for short) is the smallest k so that there exists an orien-
tation D of G with max outdegree k − 1 satisfying the number of Eulerian subgraphs with even
edges different from the number of Eulerian subgraphs with odd edges. It was proposed by Alon
and Tarsi [4], subsequently, they used algebraic methods to prove that χ(G) ≤ ch(G) ≤ AT (G).
The graph G is called chromatic-choosable if χ(G) = ch(G). The graph G is called chromatic-
AT choosable if χ(G) = AT (G). There are some results concerning the Alon-Tarsi number of
planar graphs. Zhu [10] showed that every planar graph G has AT (G) ≤ 5. Grytczuk and Zhu
proved that every planar graph G has a matching M such that AT (G − M) ≤ 4 in [3]. Zhu and
Kim also showed that every planar graph G has a forest F such that AT (G − E(F )) ≤ 3 in [6].
Zhu and Lu [9] used the discharging method to show that for l ∈ {5, 6, 7}, every graph G ∈ P4,l

has a matching M such that G − M has the Alon-Tarsi number at most 3 which P4,l means the
family of planar graphs with no cycles of length 4 and l. The first author and Ye et al proved that
a Halin graph H has the Alon-Tarsi number 4 when it is a wheel of even order and 3 otherwise in
[8].

There are also some conclusions for special graphs, Zhu and Balakrishnan [11] proved that
bipartite graph G has AT (G) = maxH⊂G⌈ |E(H)|

|V (H)|⌉ + 1, they also showed that bipartite planar
graphs G have AT (G) ≤ 3. There are some conclusions about the Cartesian product of graphs,
Kaul and Mudrock proved that the Cartesian product of any cycle with a path with at least two
vertices has the Alon-Tarsi number 3 in [5]. Suppose that G is a complete graph or an odd cycle
with |V (G)| ≥ 3. Suppose H is a graph on at least two vertices that contains a Hamilton path
ω1, ω2, . . . , ωn, such that ωi has at most k neighbors among ω1, ω2, . . . , ωi−1, Kaul, Mudrock [5]
also proved the Cartesian product of G and H has AT (G□H) ≤ ∆(G) + k. The first author and
Shao et al. proved that the Cartesian product of Cm and Cn has the Alon-Tarsi number 4 when n
and m are both odd and 3 otherwise in [7].

A graph G is a polyhedral graph if G is isomorphic to the 1-skeleton of a three-dimensional
convex polyhedron P . According to Steinitz’s theorem [2], every polyhedral graph is planar and
3-connected. Rotunda and cupola play important roles in polyhedral graphs. Moreover, they can
also extend a variety of polyhedral graphs.

A cupola is formed by joining two parallel polygons, one as the top surface, the other as the
bottom of the polygon with twice the number of edges, and its sides are formed by a combination
of triangles and quadrangles. An n-gonal cupola Qn has 3n vertices, 5n edges. The rotunda
is similar to the cupola but instead of alternating quadrangles and triangles, it is composed of
alternating pentagons and triangles. An n-gonal rotunda has 4n vertices, 7n edges.

There are some ways cupola and rotunda can be combined. The first cupolarotunda RI
Qn

is an
infinite set of polyhedra, constructed by adjoining an n-gonal cupola to a 2n-gonal rotunda (see
Figure 1 (a) for n = 3). For n ≥ 3, a RI

Qn
has 5n triangles, n squares, 2n pentagons, an n-gonal

and a 4n-gonal as faces. We use |V (G)| and |E(G)| for the number of vertices and edges in graph
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G, it is easy to see |V (RI
Qn

)| = 9n and |E(RI
Qn

)| = 17n. The second cupolarotunda RII
Qn

is an
infinite set of polyhedra, constructed by adjoining an n-gonal rotunda to a 2n-gonal cupola (see
Figure 1 (b) for n = 3). For n ≥ 3, a RII

Qn
has 4n triangles, 2n squares, n pentagons, an n-gonal

and a 4n-gonal as faces, and |V (RII
Qn

)| = 8n, |E(RII
Qn

)| = 15n.

Figure 1. (a) A cupolarotunda RI
Q3

and (b) a cupolarotunda RII
Q3

.

Antiprism also plays an important role in polyhedral graphs. The gyroelongated rotunda GRn

is an infinite set of polyhedra, constructed by adjoining an n-gonal rotunda to a 2n-gonal antiprism
(see Figure 2 for n = 3). For n ≥ 3, a gyroelonged rotunda has 6n triangles, n pentagons, an
n-gonal and a 2n-gonal as faces, and |V (GRn)| = 6n, |E(GRn)| = 13n.

Figure 2. Gyroelongated rotunda GR3
.

Lemma 1.1. Given an orientation D of graph G, if D has no odd directed cycle, then D is an
AT -orientation of G.

Our goal is to compute the exact value of the Alon-Tarsi number of cupolarotundas RI
Qn

, RII
Qn

,
and gyroelongated rotunda GRn . The main results are the following theorems:
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Theorem 1. For cupolarotundas RI
Qn

and RII
Qn

, we have

AT (RI
Qn

) = AT (RII
Qn

) = 3.

Theorem 2. For a gyroelongated rotunda GRn , we have

AT (GRn) = 4.

2. The Proof of the Theorem 1

Assume V (RI
Qn

) = {u1, u2, . . . , un, v1, v2, . . . , v2n, v
′
1, v

′
2, . . . , v

′
2n, w1, w2, . . . , w4n}. The top

cycle u1u2 · · ·unu1 is called C1, the middle cycle v1v2 · · · v2nv1 is called C2 and the bottom cy-
cle w1w2 · · ·w4nw1 is called C3; the vertices v′1, v

′
2, . . . , v

′
2n are points located between C2 and

C3. For i = 1, . . . , n, the vertices uiv2iv2i−1 form a triangle and uiui+1v2i+1v2i form a quadran-
gle. For j = 1, . . . , 2n, the vertices v

′
jvjvj+1 form a triangle, v′

jw2jw2j−1 form a triangle and
v

′
jvj+1v

′
j+1w2j+1w2j form a pentagon (see Figure 3).

The proof of Theorem 1 will be completed by the following lemmas.

Lemma 2.1. For a cupolarotunda RI
Qn

,

χ(RI
Qn

) = 3.

Proof. It is easily seen that RI
Qn

contains a triangle as its subgraph, hence χ(RI
Qn

) ≥ 3. It remains
to show that χ(RI

Qn
) ≤ 3. It suffices to show that ϕ: V (RI

Qn
) → {0, 1, 2} is a proper 3-coloring of

RI
Qn

.
Case 1. n is even.
For the vertices in C1, let ϕ(u1) = 2. For i = 2, . . . , n, let ϕ(ui) = 1 when i is an odd number

and ϕ(ui) = 0 when i is an even number.
For the vertices in C2, for j = 1, . . . , 2n, let ϕ(vj) = 0 or 1 when j is an even number.

Therefore, for i = 2, . . . , n, if ϕ(ui) = 1, then ϕ(v2i) = 0, ϕ(v2i−1) = 2; if ϕ(ui) = 0, then
ϕ(v2i) = 1, ϕ(v2i−1) = 2. Since n is even, we have ϕ(un) = 0, ϕ(v2n) = 1; the neighbours of v1
are u1, v2n, and u1v1v2 form a triangle, it is easy to know that ϕ(v1) = 0, ϕ(v2) = 1.

Then ϕ(v′j) can be determined in a unique way.
For the vertices in C3, for j = 1, . . . , 2n, the neighbours of v′j are vj, vj+1, w2j, w2j−1. Let

ϕ(vj) = ϕ(w2j), ϕ(vj+1) = ϕ(w2j−1) when j is an even number and let ϕ(vj) = ϕ(w2j−1),
ϕ(vj+1) = ϕ(w2j) when j is an odd number. We can know that ϕ is a proper coloring of RI

Qn
.

Case 2. n is odd.
This is similar to what happens in case 1. Since n is odd, we have ϕ(un) = 1, ϕ(v2n) = 0;

the neighbours of v1 are u1, v2n, and u1v1v2 form a triangle, it is easy to know that ϕ(v1) = 1,
ϕ(v2) = 0. The other points are colored in the same way in case 1, we can know that ϕ is a proper
coloring of RI

Qn
. (See Figure 3 (a) for n = 4,(b) for n = 5)

Hence χ(RI
Qn

) ≤ 3.
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Figure 3. (a) A proper 3-coloring of RI
Q4

and (b) for RI
Q5

.

Lemma 2.2. For a cupolarotunda RI
Qn

,

AT (RI
Qn

) = 3.

Proof. By Lemma 2.1, AT (RI
Qn

) ≥ χ(RI
Qn

) = 3. What is left is to show that AT (RI
Qn

) ≤ 3. We
denote L(n) as the set of edges belonging to quadrangles connecting C1 and C2.

We give RI
Qn

an orientation D. The rules of orientation D are as follows:
R1: For the cycles C2, C3 are clockwise. For the cycle C1, u1u2 is oriented from u2 to u1,

uiui+1 is oriented from ui to ui+1 (i = 2, . . . , n).
R2: The edges belonging to L(n) are oriented from C2 to C1.
R3: For j = 1, 2, . . . , 2n, let vjv′j, vj+1v

′
j are oriented from v′j to vj, vj+1 and let the edges

v′jw2j , v′jw2j−1 are oriented from w2j, w2j−1 to v′j .
Since the orientation D has no odd directed cycle, by Lemma 1.1, D is an AT -orientation, and

it is easy to see that every vertex x ∈ V (RI
Qn

) has outdegree at most 2, so AT (RI
Qn

) ≤ 3 (see
Figure 4 (a) for n = 4,(b) for n = 5).

Assume V (RII
Qn

) = {v1, v2, . . . , vn, v′1, v′2, . . . , v′n, u1, u2, . . . , u2n, w1, w2, . . . , w4n}. The top
cycle v1v2 . . . vnv1 is called C1, the middle cycle u1u2 . . . u2nu1 is called C2 and the bottom cycle
w1w2 . . . w4nw1 is called C3; the vertices v′1, v

′
2, . . . , v

′
n are points located between C1 and C2. For

i = 1, . . . , n, the vertices v′
ivivi+1 form a triangle, v′

iu2iu2i−1 form a triangle and v
′
ivi+1v

′
i+1u2i+1u2i

form a pentagon. For j = 1, . . . , 2n, ujw2jw2j−1 form a triangle and ujuj+1w2j+1

w2j form a quadrangle (see Figure 5).

Lemma 2.3. For a cupolarotunda RII
Qn

,

χ(RII
Qn

) = 3.
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Figure 4. (a) An orientation of RI
Q4

and (b) for RI
Q5

.

Proof. It is easily seen that RII
Qn

contains a triangle as its subgraph, hence χ(RII
Qn

) ≥ 3. It remains
to show that χ(RII

Qn
) ≤ 3. It suffices to show that ϕ: V (RII

Qn
) → {0, 1, 2} is a proper 3-coloring of

RII
Qn

.
Case 1. n ≡ 0 (mod 3).
For the vertices in C3. For k = 1, 2, . . . , 4n, let ϕ(wk) = 0 if k ≡ 1 (mod 3); let ϕ(wk) = 1 if

k ≡ 2 (mod 3) and let ϕ(wk) = 2 if k ≡ 0 (mod 3). The coloring of the remaining vertices can be
uniquely determined.

For the vertices in C2. For j = 1, 2, . . . , 2n, since ujw2jw2j−1 form a triangle, we have ϕ(uj) =
2 if j ≡ 1 (mod 3); ϕ(uj) = 1 if j ≡ 2 (mod 3) and ϕ(uj) = 0 if j ≡ 0 (mod 3).

For i = 1, 2, . . . , n, since v′iu2iu2i−1 form a triangle, we have ϕ(v′i) = 0 if i ≡ 1 (mod 3);
ϕ(v′i) = 1 if i ≡ 2 (mod 3) and ϕ(v′i) = 2 if i ≡ 0 (mod 3).

For the vertices in C1. Since vi is adjacent v′i, v
′
i−1, hence ϕ(vi) = 1 if i ≡ 1 (mod 3); ϕ(vi) = 2

if i ≡ 2 (mod 3) and ϕ(vi) = 0 if i ≡ 0 (mod 3) (see Figure 5 (a) for n = 3).
Case 2. n ≡ 1 (mod 3).
For the vertices in C1, let ϕ(vn) = 1. For i = 1, 2, . . . , n − 1, let ϕ(vi) = 0 if i ≡ 1 (mod 3);

ϕ(vi) = 1 if i ≡ 2 (mod 3) and let ϕ(vi) = 2 if i ≡ 0 (mod 3).
Let ϕ(v′n−1) = 0, ϕ(v′n) = 2. For i = 1, 2, . . . , n− 2, let ϕ(v′i) = 2 if i ≡ 1 (mod 3); ϕ(v′i) = 0

if i ≡ 2 (mod 3) and let ϕ(v′i) = 1 if i ≡ 0 (mod 3).
For the vertices in C2, note that v′i is adjacent vi, vi+1, u2i, u2i−1. When n is an even number, for

i = 1, 2, . . . , n, let ϕ(vi) = ϕ(u2i), ϕ(vi+1) = ϕ(u2i−1) when i is an even number and ϕ(vi+1) =
ϕ(u2i), ϕ(vi) = ϕ(u2i−1) when i is an odd number. When n is an odd number, let ϕ(u2n) =
1, ϕ(u2n−1) = 0 and for i = 1, 2, . . . , n − 1, let ϕ(vi) = ϕ(u2i), ϕ(vi+1) = ϕ(u2i−1) when i is an
even number and ϕ(vi+1) = ϕ(u2i), ϕ(vi) = ϕ(u2i−1) when i is an odd number.

For the vertices in C3, we know that u2i is adjacent w4i, w4i−1 and u2i−1 is adjacent w4i−2, w4i−3.
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When n is an odd number, let ϕ(w4n−7) = 2, ϕ(w4n−6) = ϕ(w4n−4) = 0, ϕ(w4n−5) = 1. For
i = 1, 2, . . . , n − 2, n, let ϕ(v′i) = ϕ(w4i−1) = ϕ(w4i−3) when i is an even number and ϕ(v′i) =
ϕ(w4i) = ϕ(w4i−2) when i is an odd number. When n is an even number, for i = 1, 2, . . . , n, let
ϕ(v′i) = ϕ(w4i−1) = ϕ(w4i−3) when i is an even number and ϕ(v′i) = ϕ(w4i) = ϕ(w4i−2) when i is
an odd number (see Figure 5 (b) for n = 4, Figure 7 (a) for n = 7).

Figure 5. (a) A proper 3-coloring of RII
Q3

and (b) for RII
Q4

.

Case 3. n ≡ 2 (mod 3).
This is similar to what happens in case 2. For the vertices in C1, let ϕ(vn−1) = 1, ϕ(vn) = 2.

The other points are colored in the same way as C1 in case 2, it is easy to know that ϕ(v′i) is colored
in a unique way (i = 1, . . . , n).

For the vertices in C2, let ϕ(u2n) = 2, ϕ(u2n−1) = 0. The other points are colored in the same
way as C2 in case 2.

For the vertices in C3. When n is an even number, let ϕ(w4n−9) = 1, ϕ(w4n−8) = ϕ(w4n−10) =
0,ϕ(w4n−11) = 2 and for i = 1, 2, . . . , n − 3, n − 1, n, ϕ(w4i), ϕ(w4i−1), ϕ(w4i−2), ϕ(w4i−3) are
similar to C3 in case 2. When n is an odd number, let ϕ(w4n) = 0, ϕ(w4n−1) = ϕ(w4n−3) =
1, ϕ(w4n−2) = 2 and let ϕ(w4n−4) = ϕ(w4n−6) = 0, ϕ(w4n−5) = 2, ϕ(w4n−7) = 1 and for i =
1, 2, . . . , n − 2, ϕ(w4i), ϕ(w4i−1), ϕ(w4i−2), ϕ(w4i−3) are similar to C3 in case 2 (see Figure 6 (a)
for n = 5, Figure 7 (b) for n = 8).

Lemma 2.4. For a cupolarotunda RII
Qn

,

AT (RII
Qn

) = 3.

Proof. By Lemma 2.3, AT (RII
Qn

) ≥ χ(RII
Qn

) = 3. What is left is to show that AT (RII
Qn

) ≤ 3, the
orientation method is similar to RI

Qn
. Since the orientation D has no odd directed cycle, by Lemma

1.1, D is an AT -orientation and it is easy to see that every vertex x ∈ V (RII
Qn

) has outdegree at
most 2, so AT (RII

Qn
) ≤ 3 (see Figure 6 (b) for n = 3).
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Figure 6. (a) A proper 3-coloring of RII
Q5

and (b) an orientation of RII
Q3

.

Figure 7. (a) Local points coloring of RII
Q7

and (b) for RII
Q8

.
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Corollary 2.1. Cupolarotundas RI
Qn

and RII
Qn

are chromatic-AT choosable, where n ≥ 3.

3. The Proof of the Theorem 2

Assume V (GRn) = {u1, u2, . . . , un, u
′
1, u

′
2, . . . , u

′
n, v1, v2, . . . , v2n, v

′
1, v

′
2, . . . , v

′
2n}. The top

cycle u1u2 · · ·unu1 is called C1, the middle cycle v1v2 · · · v2nv1 is called C2 and the bottom cycle
v′1v

′
2 · · · v′2nv′1 is called C3; the vertices u′

1, u
′
2, . . . , u

′
2n are points located between C1 and C2. For

i = 1, . . . , n, the vertices u′
iuiui+1 form a triangle, u′

iv2iv2i−1 form a triangle and u
′
iui+1u

′
i+1v2i+1v2i

form a pentagon. For j = 1, . . . , 2n, vjvj+1v
′
j+1 form a triangle and vjv

′
jv

′
j+1 form a triangle (see

Figure 8).
The proof of Theorem 2 will be completed by the following lemmas.

Lemma 3.1. For a gyroelongated rotunda GRn ,

χ(GRn) =

{
3, if n ≡ 0 (mod 3);
4, otherwise.

Proof. It is easy to see that GRn contains a triangle as its subgraph, hence χ(GRn) ≥ 3. By the
Four-Color Theorem, χ(GRn) ≤ 4.

Let ϕ: V (GRn) → {0, 1, 2}. Without loss of generality, let ϕ(v′1) = 0 and ϕ(v′2) = 1, it is a sim-
ple matter to obtain the colors of v1, . . . , v2n, v′3, . . . , v

′
2n in a unique way. For q = 0, 1, . . . , ⌊2n

3
⌋,

we have ϕ(v′3q+1) = 0, ϕ(v′3q+2) = 1, ϕ(v′3q+3) = 2 and ϕ(v3q+1) = 2, ϕ(v3q+2) = 0, ϕ(v3q+3) = 1.
Case 1. n ≡ 1 (mod 3).
When n ≡ 1 (mod 3), 2n ≡ 2 (mod 3). By the above rule, we have ϕ(v′2n) = 1,ϕ(v2n) = 0.

It is easy to see that v2n is the neighbor of v′1, but ϕ(v′1) = 0, that a contradiction. Hence it is not
3-colorable (see Figure 8 (a) for n = 4).

Case 2. n ≡ 2 (mod 3).
When n ≡ 2 (mod 3), 2n ≡ 1 (mod 3). By the above rule, we have ϕ(v′2n) = 0,ϕ(v2n) = 2.

Note that v′2n is adjacent to v′1, but ϕ(v′1) = 0, that a contradiction. Hence it is not 3-colorable (see
Figure 8 (b) for n = 5).

Case 3. n ≡ 0 (mod 3).
When n ≡ 0 (mod 3), 2n ≡ 0 (mod 3), we can give a 3-coloring as follows:
For q = 0, 1, . . . , ⌊2n

3
⌋, let ϕ(v′3q+1) = 0, ϕ(v′3q+2) = 1, ϕ(v′3q+3) = 2 and let ϕ(v3q+1) = 2,

ϕ(v3q+2) = 0, ϕ(v3q+3) = 1.
For p = 0, 1, . . . , ⌊n

3
⌋, let ϕ(u′

3p+1) = 1, ϕ(u′
3p+2) = 0, ϕ(u′

3p+3) = 2 and let ϕ(u3p+1) = 0,
ϕ(u3p+2) = 2, ϕ(u3p+3) = 1. It is a proper 3-coloring (see Figure 9 for n = 3 ).

Lemma 3.2. For a gyroelongated rotunda GRn ,

AT (GRn) = 4.

Proof. The GRn has 6n vertices and 13n edges. Since
∑

x∈V (D) d
+
D(x) = |A(D)|, by the Pigeon-

hole Principle, there exists some vertices have outdegree at least 3 for any orientation D of GRn .
Hence AT (GRn) ≥ 4. What is left is to show that AT (GRn) ≤ 4.
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Figure 8. (a) An improper 3-coloring of GR4
and (b) for GR5

.

Figure 9. A proper 3-colouring of GR3
.
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We give GRn an orientation D. The rules of orientation D are given as following:
R1: For the cycles C2, C3 are clockwise. For the cycle C1, u1u2 is oriented from u2 to u1,

uiui+1 is oriented from ui to ui+1 (i = 2, . . . , n).
R2: For i = 1, 2, . . . , n, let the edges u′

iui, u
′
iui+1 are oriented from u′

i to ui, ui+1 and let u′
iv2i,

u′
iv2i−1 are oriented from v2i, v2i−1 to u′

i.
R3: For j = 1, 2, . . . , 2n, let the edges v′jvj is oriented from v′j to vj and let v′j+1vj is oriented

from v′j+1 to vj .
It is easy to see the orientation D has no odd directed cycle, by Lemma 1.1, D is an AT -orient-

ation, note that every vertex x ∈ V (GRn) has outdegree at most 3, so AT (GRn) ≤ 4 (see Figure
10 (a) for n = 4,(b) for n = 5).

Figure 10. (a) An orientation of GR4
and (b) for GR5

.

Corollary 3.1. The gyroelongated rotunda GRn is not chromatic-AT choosable, where n ≥ 3.

Corollary 3.2. For a gyroelongated rotunda GRn ,

ch(GRn) = 4.

Proof. Since χ(GRn) ≤ ch(GRn) ≤ AT (GRn), it can be conclude that ch(GRn) = 4 when
n ≡ 1 or 2 (mod 3).

When n ≡ 0 (mod 3), we can give a 3-list assignment L of GRn using colors 0, 1, 2 and 3
as follows. Let L(vj) = L(v′j) = L(u′

i) = {0, 1, 2} for i = 1, 2, . . . , n, j = 1, 2, . . . , 2n; and
L(u1) = {1, 2, 3}, L(uk) = {0, 1, 3} for k = 2, . . . , n. Without loss of generality, let ϕ(v′1) = 0,
ϕ(v′2) = 1, by Lemma 3.1, ϕ(u′

1) = 1, ϕ(u′
2) = 0 and ϕ(u′

n) = 2. Since u1 is adjacent to u′
1, u

′
n,

and u2 is adjacent to u′
1, u

′
2, we have ϕ(u1) = ϕ(u2) = 3, that a contradiction. It is an improper

L-colouring of GRn , so ch(GRn) = 4 when n ≡ 0 (mod 3) (see Figure 11 for n = 3 ).
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Figure 11. An improper 3-list colouring of GR3 .

4. Conclusion

In this article, we obtain the exact value of the Alon-Tarsi number of cupolarotundas RI
Qn

,RII
Qn

,
and gyroelongated rotunda GRn by using the AT -orientation skill. Additionally, cupolarotundas
RI

Qn
and RII

Qn
are chromatic-AT choosable, but the gyroelongated rotunda GRn is not chromatic-

AT choosable.
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