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Abstract

Let t and q be positive integers that satisfy
(
t+1
2

)
≤ q <

(
t+2
2

)
and let G be a simple and finite graph

of size q. G is said to have ascending subgraph decomposition (ASD) if G can be decomposed
into t subgraphs H1, H2, . . . , Ht without isolated vertices such that Hi is isomorphic to a proper
subgraph of Hi+1 for 1 ≤ i ≤ t − 1, where {E(H1), . . . , E(Ht)} is a partition of E(G). A graph
that admits an ascending subgraph decomposition is called an ASD graph.

In this paper, we introduce a new type of magic labeling based on the notion of ASD. Let G be
an ASD graph and f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} be a bijection. The weight
of a subgraph Hi (1 ≤ i ≤ n) is w(Hi) =

∑
v∈V (Hi)

f(v) +
∑

e∈E(Hi)
f(e). If the weight of each

ascending subgraph is constant, say w(Hi) = k, ∀ 1 ≤ i ≤ t, then f is called an ASD-magic
labeling of G and G is called an ASD-magic graph. We present general properties of ASD-magic
graphs and characterize certain classes of them.
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1. Introduction

Let G and H be simple and finite graphs. If each edge of G belongs to at least one subgraph
isomorphic to H , then G admits a H-covering. In 2005, Gutiérrez and Lladó introduced the
H-magic labeling or the H-magic covering of a graph G. A bijection f : V (G) ∪ E(G) →
{1, 2, ..., |V (G)|+ |E(G)|} is called a H-magic labeling of G if there exists an integer k such that
for any subgraph H ′(V ′, E ′) of G which is isomorphic to H , the weight w(H) =

∑
v∈V ′ f(v) +∑

e∈E′ f(e) is equal to k. A graph G is said to be H-magic if it admits a H-magic labeling.
Additionally, if f(V ) = {1, 2, ..., |V |}, then G is called H-supermagic [5].

On the other hand, if each edge of G belongs to exactly one subgraph isomorphic to H , then
G is said to admit a H-decomposition. Formally, let H = {Hi, i = 1, 2, 3, ..., t} be a collection
of t subgraphs of G. If Hi

∼= Hj, i ̸= j, E(Hi) ∩ E(Hj) = ∅, and
⋃t

i=1 Hi = G, then G is
decomposable on H or G admits a H-decomposition [3]. Inayah et. al. in [6] then defined a
H-magic decomposition of a graph G as a bijection f : V (G) ∪ E(G) → {0, 1, 2, ..., |V (G)| +
|E(G)|} such that the weights of all subgraphs is constant. Recent results on H-magic covering and
decomposition include Ph-covering of graphs [10] and Kh-decomposition of some block designs
[7]. For more results, refer to Gallian’s survey [4].

Note that the two previous magic labelings require that the weights be counted in subgraphs that
are isomorphic to a certain graph. However, in 2023, Ashari et al. considered weights in subgraphs
isomorphic to two nonisomorphic subgraphs when they introduced the (F,H)-simultaneously-
magic labelings of graphs [2]. Here, we introduce a magic labeling in which all subgraphs are not
isomorphic to each other. This labeling is based on a type of graph decomposition introduced in
1987 by Alavi et. al. [1].

Definition 1.1. [1] Let t and q be two positive integers satisfying
(
t+1
2

)
≤ q <

(
t+2
2

)
. Let G be

a simple and finite graph of size q. G admits an ascending subgraph decomposition if G can be
decomposed into t subgraphs H1, H2, . . . , Ht without isolated vertices such that Hi is isomorphic
to a proper subgraph of Hi+1 for 1 ≤ i ≤ t − 1. In this case, G is called an ASD graph and
H1, H2, . . . , Ht is the ascending subgraphs of G.

It was conjectured that every graph of positive size has an ascending subgraph decomposition
[1]. Until today, the conjecture remains open, although many families of graphs have been showed
to be ASD. Refer to Liang and Fu survey [8] for some results on ASD graphs.

The definition of ascending subgraph decomposition motivates us to define a new type of magic
labeling of a graph G admitting an ascending subgraph decomposition, where the weights are
counted over the ascending subgraphs.

Definition 1.2. Let G be an ASD graph with H = {H1, H2, ..., Ht} is a collection of t ascending
subgraphs of G. Let f be a bijection which maps V (G) ∪ E(G) onto {1, 2, ..., |V (G)|+ |E(G)|}.
If there exists a constant k such that the weight of each subgraph is constant, that is w(Hi) = k
for every 1 ≤ i ≤ t, then f is called an ASD-magic labeling of G.

If a graph G admits a collection of ascending subgraphs corresponding to an ASD-magic la-
beling of G, then G is ASD-magic.
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In this paper, we characterize some classes of graphs admitting ASD-magic labeling, which
include stars (Section 3), paths (Section 4), and cycles (Section 5). Some general properties of
ASD-magic graphs are needed in characterizing the previously mentioned classes of graphs and
are presented in Section 2.

2. General Properties of ASD-Magic Graphs

We start by observing the size of the smallest subgraph of an ASD graph.

Observation 2.1. If G is an ASD graph and Hi, 1 ≤ i ≤ t are ascending subgraphs of G, then the
size of H1 is one or two.

Proof. It is clear that |E(Hi)| < |E(Hj)| for 1 ≤ i < j ≤ t. Assume that |E(H1)| ≥ 3 and
|E(Hi+1)| = |E(Hi)| + 1. Since we have t ascending subgraphs, then q =

∑t
i=1|E(Hi)| ≥∑t

i=1(i+ 2) = t(t+5)
2

≥
(
t+2
2

)
, a contradiction. It implies that |E(H1)| < 3.

In general, the decomposition of a graph in an ascending order is not unique. This is beneficial
in the sense that in proving a graph is ASD-magic, there exist alternative decompositions to be
labeled. On the other hand, this is also a drawback in verifying that a graph is not ASD-magic.
To avoid checking all possible ASDs in proving that a graph is not ASD-magic, we define the
following notions.

Let f : V (G)∪E(G) → 1, 2, ..., |V (G)|+ |E(G)| be a bijection. The maximum weight of the
smallest subgraph, wmax(H1), is the weight when the vertex and edge sets of H1 are labeled with
the largest labels, that is

wmax(H1) =

|V (H1)|+|E(H1)|∑
i=1

(|V (G)|+ |E(G)| − i+ 1) . (1)

Let H be the collection of all ascending subgraph decompositions of G. The minimum number
of vertices that belong to more than one subgraph over all possibilities of ascending subgraph
decompositions is

c = min
H∈H

{∑
i ̸=j

|V (Hi) ∩ V (Hj)

}
(2)

Next, let C = {ci | i = 1, 2, ..., c} be the set of intersection vertices with minimum cardinality.
We define the smallest average weight of G by considering the label set of C as

wmin(G) =
1

t

|V (G)|+|E(G)|∑
i=1

i+
c∑

i=1

(di − 1)f(ci)

 . (3)

where di is the number of subgraphs containing the intersection vertices ci.
The previously defined weight notions lead to the following necessary condition for an ASD-

magic graph.
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Lemma 2.1. Let G be an ASD graph and H1 be the smallest ascending subgraph of G. If G admits
an ASD-magic labeling, then wmax(H1) ≥ wmin(G).

Proof. For the contrary, suppose wmax(H1) < wmin(G). Then, there exists Hj where w(H1) ̸=
w(Hj), a contradiction.

3. ASD-Magic Labelings for Stars

An ascending subgraph decomposition of stars was studied by Ma et. al. [9], where they
proved that a star forest is an ASD graph.

Theorem 3.1. [9] Let G be a star forest of size
(
t+1
2

)
where each component has at least t edges.

Then G admits an ascending subgraph decomposition where all subgraphs are stars.

Theorem 3.2. A star K1,n−1 is ASD-magic if and only if n = 2, 3, 4, 6, 10, 15.

Proof. Let {Hi | i = 1, 2, ..., t} be a collection of t ascending subgraphs of K1,n−1. It is straight-
forward that any subgraph of a star is also a star. To prove that K1,n−1 admits an ASD-magic
labeling, we have two cases to verify H1

∼= P2 and H1
∼= P3. Since the size of K1,n−1 satisfies(

t+1
2

)
≤ n− 1 <

(
t+2
2

)
, then

t =

{
⌊−1+

√
8n−7

2
⌋, for Case 1,

⌈−3+
√
1+8n

2
⌉, for Case 2.

(4)

Case 1. H1
∼= P2

In this case, H1 needs three labels. Using the three largest label {2n − 1, 2n − 2, 2n − 3}, we
have wmax(H1) = 6n − 6. Moreover, since K1,n−1 has one center vertex which appears in each
ascending subgraph, the smallest average weight of t subgraph is

wmin(K1,n−1) =
1

t

[
2n−1∑
i=1

i+ (t− 1)(2n− 3)

]
=

2n2 − 3n+ 3

t
+ 2n− 3.

Applying Lemma 2.1 gives an inequality

6n− 6 ≥ 2n2 − 3n+ 3

t
+ 2n− 3 (5)

which has solution when n ∈ [0.875, 1)∪{2}∪[4, 4.5]. Since n must be an integer, then n ∈ {2, 4}.
So, in this case we conclude that if K1,n−1 admits an ASD-magic labeling, then n = 2, 4.

Case 2. H1
∼= P3

In this case, since H1
∼= P3 has 2 edges, then n− 1 =

(
t+2
2

)
− 1, and it needs five labels. The five

largest labels for H1 is {2n− 1, 2n− 2, 2n− 3, 2n− 4, 2n− 5}, such that wmax(H1) = 10n− 15
and

wmin(K1,n−1) =
1

t

[
2n−1∑
i=1

i+ (t− 1)(2n− 5)

]
=

2n2 − 3n+ 5

t
+ 2n− 5.
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Applying Lemma 2.1, we have an inequality

10n− 15 ≥ 2n2 − 3n+ 5

t
+ 2n− 5 (6)

that has solution when n ∈ [2.5, 3] ∪ (3, 20.13) ∪ (21, 24.15) ∪ (28, 28.16). This implies that a
star K1,n−1 is ASD-magic only if n = 3, 6, 10, 15.

For the sufficiency, Figure 1 provides the ASD-magic labelings of a star K1,n−1 of order n =
2, 3, 4, 6, 10, 15.

K1,1:
3

2

1

k = 6

;

K1,2:
1 2

4 5

3

k = 15

;

K1,3:
4 1 2

7 3 5

6

k = 17

;

K1,5:
2 6 1 3 4

9 11 5 7 8

10

k = 38

K1,9:

19

6

16

1

7

10

2

3

4

5

17
18

12
13 14 8

9

11
15

k = 76

K1,14:

23

20

26

1

12

19 5 10 11 13

2

3

4

67

2829

22
24
25 14 15 17 18

8
9

1621
27

k = 126

Figure 1. ASD-magic labelings of the star K1,n−1

4. ASD-Magic Labelings for Paths

Theorem 4.1. A path Pn admits an ASD-magic labeling if and only if n = 1, 2, 3, 4, 6, 7, 10, 15, 21, 28,
and 36.

Proof. Let {Hi | i = 1, 2..., t} be a collection of t ascending subgraphs of Pn. It is easy to see that
Pn is ASD-magic for n = 1, 2, 3, but for n ≥ 4 we have the following seven cases based on H1

and whether it contains an end vertex:

1. H1
∼= P2 contains an end vertex;

2. H1
∼= P2 does not contain an end vertex;

3. H1
∼= P3 contains an end vertex;

4. H1
∼= P3 does not contain an end vertex;

5. H1
∼= 2P2 contains two end vertices;

6. H1
∼= 2P2 does not contain an end vertex; and
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7. H1
∼= 2P2 contains exactly one end vertex.

From formula (1), we count the maximum weight of H1 for each case.

wmax(H1) =


6n− 6, for Cases 1 and 2,
10n− 15, for Cases 3 and 4,
12n− 21, for Cases 5, 6 and 7.

(7)

Since the size of Pn satisfies
(
t+1
2

)
≤ n− 1 <

(
t+2
2

)
,

t =

{
⌊−1+

√
8n−7

2
⌋, for Cases 1 and 2,

⌈−3+
√
1+8n

2
⌉, for Cases 3, 4, 5, 6, and 7.

(8)

Case 1. H1
∼= P2 contains an end vertex

Let q1, q2, ..., qt be a sequence of size of Hi for 1 ≤ i ≤ t and q1 = 1. To minimize the number of
intersection vertices, Hi

∼= Pqi+1 ∀i = 1, 2, ..., t, and so c = t − 1. To find the smallest average
weight, the label set of C must contain {1, 2, ..., t− 2, 2n− 3}, where 2n− 3 is a label of a vertex
of H1. Hence, the minimum average weight for Pn is

wmin(Pn) ≥ 1

t

[
2n−1∑
i=1

i+
t−2∑
i=0

i+ 2n− 3

]
=

2n2 + n− 2

t
+

t− 3

2
.

By Lemma 2.1,

6n− 6 ≥ 2n2 + n− 2

t
+

t− 3

2
which gives the integer solution n ∈ {4, 7}. The ASD-magic labelings of P4 and P7 can be seen
in Figure 2.

P4:

7 5 4 1 2 3 6
k = 16

P7:

13 11 10 9 6 8 1 12 5 4 3 2 7
k = 34

Figure 2. ASD-magic labelings of paths in Case 1

Case 2 H1
∼= P2 does not contain an end vertex

Let q1, q2, ..., qt be a sequence of the size of Hi for 1 ≤ i ≤ t and q1 = 1. To minimize the number
of intersection vertices, we divide the order set into two subcases: when 4 ≤ n ≤ 6 and n ≥ 7.
For n = 4, the ascending subgraphs of P4 are H1

∼= P2 and H2
∼= 2P2. For n = 5, the ascending

subgraphs of P5 are H1
∼= P2 and H2

∼= P2 ∪ P3. While for n = 6, the ascending subgraphs of P6

are H1
∼= P2 and H2

∼= 2P3 or H1
∼= P2 and H2

∼= P2 ∪ P4. Therefore, c = 2 when n = 4, 5, 6.
Next, for each n = 4, 5,, and 6, we apply the largest labels for H1, the smallest labels for H2, and
the two smallest labels of H1 are labels for the two intersection vertices. Then we derive

wmax(H1) =


18, if n = 4,
24, if n = 5,
30, if n = 6.

(9)
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and

wmin(Pn) =


19.5, if n = 4,

30, if n = 5,

42.5, if n = 6.

(10)

From (9) and (10), we see that wmax(H1) < wmin(Pn) for n = 4, 5, 6, which means P4, P5, and
P6 do not admit an ASD-magic labeling.

Subsequently, the ascending subgraphs for Pn, n ≥ 7 are Hi
∼= Pqi+1, which implies c =

t − 1. Since two of elements in C are two vertices in H1, then the label set for C must contain
{1, 2, ..., t− 3, 2n− 2, 2n− 3} and the minimum average weight for Pn is

wmin(Pn) ≥ 1

t

[
2n−1∑
i=1

i+
t−3∑
i=0

i+ (2n− 2) + (2n− 3)

]
=

2n2 + 3n− 2

t
+

t− 5

2
.

By Lemma 2.1,

6n− 6 ≥ 2n2 + 3n− 2

t
+

t− 5

2
,

with solution in n ∈ [0.875, 0.999), or no integer solution.

Case 3. H1
∼= P3 contains an end vertex

Let q1, q2, ..., qt be a sequence of the size of subgraph Hi for 1 ≤ i ≤ t and q1 = 2. To minimize
the number of intersection vertices, Hi

∼= Pqi+1 ∀i = 1, 2, ..., t, and so c = t − 1. Consider that
one element of C is a vertex of H1, then the labels for C must contain {1, 2, ..., t− 2, 2n− 5} and
the minimum average weight for Pn is

wmin(Pn) ≥ 1

t

[
2n−1∑
i=1

i+
t−2∑
i=0

i+ 2n− 5

]
=

2n2 + n− 4

t
+

t− 3

2
.

By Lemma 2.1,

10n− 15 ≥ 2n2 + n− 4

t
+

t− 3

2

with solution in n ∈ [2, 2.5] ∪ (3, 27.79] ∪ (28, 32.74] ∪ (36, 37.69]. Using the fact that q =(
t+2
2

)
− 1 = t(t+3)

2
and n ≥ 6, if Pn admits an ASD-magic labeling, then n = 6, 10, 15, 21. The

ASD-magic labelings on paths in this case can be seen in Figure 3.
Case 4. H1

∼= P3 does not contain an end vertex
Let q1, q2, ..., qt be a sequence of size of Hi for 1 ≤ i ≤ t and q1 = 2. To minimize the number
of intersection vertices, we separate into two subcases: t = 2 and t ≥ 3. When t = 2 (n = 6), P6

admits an ASD-magic labeling as demonstrated in the Figure 4.
Subsequently, when t ≥ 3 the ascending subgraphs of Pn are Hi

∼= Pqi+1, ∀i = 1, 2, ..., t, and
so c = t − 1. The label set for C must contain {1, 2, ..., t − 3, 2n − 5, 2n − 4} where two of its
elements are the labels for two vertices in H1. Thus,

wmin(Pn) =
1

t

[
2n−1∑
i=1

i+
t−3∑
i=1

i+ (2n− 5) + (2n− 4)

]
=

2n2 + 3n− 6

t
+

t− 5

2
.
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P6:

11 10 7 4 2 1 6 5 3 9 8
k = 34

P10: 19 18 17 5 11 16 6 14 10

4

913812157321
k = 70

P21: 41 40 39 36 37 35 32 28 27 3 31 30 26

25241897232229211917161514

413 38 34 33 20 12 11 10 8 6 5 2 1
k = 193

P15: 29 28 27 12 25 24 22 21 6

41920181715131135

2623 16 14 10 9 8 7 2 1
k = 121

Figure 3. ASD-magic labelings of paths in Case 3

And by Lemma 2.1,

10n− 15 ≥ 2n2 + 3n− 6

t
+

t− 5

2

with solution n ∈ (3, 26.88] ∪ (28, 31.84] ∪ (36, 36.79]. Using the fact that q =
(
t+2
2

)
− 1 = t(t+3)

2

and n ≥ 6, if a path with t ≥ 3 admits an ASD-magic labeling, then its order is n = 6, 10, 15, and
21. The ASD-magic labelings of Pn in Case 4 are shown in Figure 4.

P6:

1 2 9 8 11 6 7 5 10 4 3
k = 41

P10: 14 12 11 10 9 1 18 19 16

5

171513876432
k = 75

P15: 24 22 21 19 7 3 29 28 27

162518171513128611

2623 20 14 10 9 5 4 2 1
k = 125

P21: 38 36 35 33 5 1 41 40 39 32 37 34 31

302610984292827242322216

32 25 20 19 18 17 16 15 14 13 12 11 7
k = 189

Figure 4. ASD-magic labelings of paths in Case 4

Case 5. H1
∼= 2P2 contains two end vertices

The minimal number of intersection vertices can be derived utilizing the ascending subgraphs
of Pn−1 in Case 1. Here we add one more intersection vertex while preserving the number of
ascending subgraphs. Thus, c = t that includes two vertices of H1. The label set for C contains
{1, 2, ..., t− 2, 2n− 6, 2n− 5}, thus we obtain

wmin(Pn) ≥ 1

t

[
2n−1∑
i=1

i+
t−2∑
i=1

i+ (2n− 6) + (2n− 5)

]
=

2n2 + 3n− 10

t
+

t− 3

2
.
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Due to (7), since H1
∼= 2P2, then wmax(H1) = 12n − 21. Using Lemma 2.1, solution of

wmax(H1) ≥ wmin(Pn) or 12n − 21 ≥ 2n2+3n−10
t

+ t−3
2

is n ∈ [2, 2.5] ∪ (3, 44.5] ∪ (45, 50.46] ∪
(55, 56.41]. Using the fact that q =

(
t+2
2

)
−1 = t(t+3)

2
and n ≥ 6, if a path Pn admits an ASD-magic

labeling, then its order is n = 6, 10, 15, 21, 28, and 36. Conversely, the ASD-magic labelings of
the paths in Case 5 are shown in Figure 5.

P6:

11 6 8 9 1 2 7 5 10 4 3

k = 42

P10: 6 16 5 10 8 13 14 15 1

3

41771191221819
k = 66

P15: 23 26 5 18 24 21 15 25 4

11214172219203166

78 9 10 27 12 13 1 28 29
k = 112

P21: 38 39 11 37 36 35 24 31 4 6 17 28 25

333032311672021222334292

2627 8 19 10 5 12 13 14 15 18 9 40 41
k = 178

P28: 55 54 31 51 50 49 48 37 4 46 45 44 43

42401541393635343328739

3230 29 27 26 24 23 22 21 19 2 6 47 38

201817161514131211108255352

k = 270

P36: 71 70 60 55 44 61 68 66 35 57 47 51 54

23694944850464552394220403

2430 31 33 53 34 5 56 37 38 43 2 21 27

26192964225836188174111628

6332 65 6 7 25 9 10 11 12 13 14 15 62 59 67
k = 389

Figure 5. ASD-magic labelings of paths in Case 5

Case 6. H1
∼= 2P2 does not contain an end vertex

Let q1, q2, ..., qt be a sequence of size of Hi for 1 ≤ i ≤ t and q1 = 2. To minimize the number
of intersection vertices, the ascending subgraphs of the paths for t = 2, 3, and 4 are as follows.
For t = 2 or n = 6, the ascending subgraphs of P6 are H1

∼= 2P2 and H1
∼= 3P2. For t = 3 or

n = 10, the ascending subgraphs ofP10 are H1
∼= 2P2, H2

∼= P4, and H3
∼= P2 ∪ P4. For t ≥ 4,

the ascending subgraphs of Pn are H1
∼= 2P2, and for i ≥ 2, Hi

∼= Pqi . Hence

c =

{
4, if t = 2, 3, 4

t, if t ≥ 5.
.

For t = 2, 3 or 4 (n = 6, 10, 15), to determine wmin(Pn), the label set of all intersection vertices
should contain the smallest labels of H1, that is {2n − 6, 2n − 5, 2n − 4, 2n − 3}. Consider that
those labels are counted twice, so

wmin(Pn) ≥ 1

t

[
2n∑
i=1

i+ (2n− 6) + (2n− 5) + (2n− 4) + (2n− 3)

]
=

2n2 + 7n− 18

t
.
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Combining Formula (7) and Lemma 2.1, the solution of wmax(H1) ≥ wmin(Pn) or 12n − 21 ≥
2n2+7n−18

t
is n ∈ [1, 1.5] ∪ (3, 42.74] ∪ (45, 48.74]. Using the fact that q =

(
t+2
2

)
− 1 = t(t+3)

2
and

n ≥ 6, if a path Pn admits an ASD-magic labeling, then its order is n = 6, 10, and 15.
Furthermore, for t ≥ 5, the label set for C contains {1, 2, ..., t−5, 2n−6, 2n−5, 2n−4, 2n−3}

which includes the four smallest labels of H1. Therefore,

wmin(Pn) ≥ 1

t

[
2n−1∑
i=1

i+
t−5∑
i=1

i+ (2n− 6) + (2n− 5) + (2n− 4) + (2n− 3)

]

=
2n2 + 7n− 8

t
+

t− 9

2
.

Solution of the inequality wmax(H1) ≥ wmin(Pn) or 12n−21 ≥ 2n2+7n−8
t

+ t−9
2

is n ∈ (3, 42.67]∪
(45, 48.64]. Using the fact that q =

(
t+2
2

)
− 1 = t(t+3)

2
and n ≥ 6, if t ≥ 5, if Pn admits an ASD-

magic labeling, then its order is n = 6, 10, 15, 21, 28, 36. On the other hand, the ASD-magic
labelings on paths in Case 6 can be seen in Figure 6.

P6:

2 4 9 7 6 3 5 11 10 8 1

k = 48

P10: 19 12 11 10 7 8 17 4 16

9

1518146153213
k = 84

P15: 29 8 21 22 10 18 26 24 27

316151413121123925

719 28 17 6 5 4 2 20 1
k = 134

P21: 35 34 33 32 30 1 41 15 39 9 2 20 26

252423383637222172918131910

1614 12 11 40 17 8 27 6 5 4 3 28 31
k = 206

P28: 50 48 47 46 43 11 54 40 53 8 42 41 6

39382052514912735332313029

2636 28 25 34 23 22 21 37 19 12 14 18 10

15171344459167555424233

k = 299

P36: 28 64 63 62 61 60 71 70 69 9 8 37 56

5554536865661241104948474645

44
1

42 20 40 39 38 57 36 35 34 33 32 2

2129262767252423221917591830

1615 14 13 52 51 50 11 58 7 6 5 4 3 31 43
k = 409

Figure 6. ASD-magic labelings of paths in Case 6

Case 7. H1
∼= 2P2 contains exactly one end vertex

The minimal number of intersection vertices can be derived utilizing the ascending subgraphs
for Pn−1 in Case 2. Here we add one more intersection vertex while preserving the number of
ascending subgraphs. Thus, c = t that includes three vertices of H1. Now, consider two subcases
for t = 2 and t ≥ 3. When t = 2 or n = 6, P6 admits an ASD-magic labeling as illustrated in
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Figure 7. For t ≥ 3 or n ≥ 10, the label set for all the intersection vertices contains {1, 2, ..., t −
3, 2n− 6, 2n− 5, 2n− 4, 2n− 3} and we obtain

wmin(Pn) ≥ 1

t

[
2n−1∑
i=1

i+
t−3∑
i=1

i+ (2n− 6) + (2n− 5) + (2n− 4)

]
=

2n2 + 5n− 12

t
+

t− 5

2
.

By Lemma 2.1, the solution of the inequality wmax(H1) ≥ wmin(Pn) or 12n−21 ≥ 2n2+5n−12
t

+ t−5
2

is n ∈ (3, 43.57] ∪ (45, 49.53] ∪ (55, 55.49]. Using the fact that q =
(
t+2
2

)
− 1 = t(t+3)

2
and n ≥ 6,

if a path in case 7 admits an ASD-magic labeling, then n = 6, 10, 15, 21, 28, and 36. To complete
the proof, we present Figure 7 to illustrate the ASD-magic labelings of all paths in Case 7.

P6:

5 7 9 6 4 3 2 10 11 8 1

k = 44

P10: 14 9 19 7 10 13 12 2 18

5

1611817615431
k = 81

P15: 6 20 27 5 23 4 21 24 28

2526191716315131112

12 22 18 14 7 10 8 29 9
k = 132

P21: 40 18 39 4 34 33 32 28 38 36 37 35 21

152652322243112191710161314

1141 27 20 9 8 7 6 29 25 3 2 1 30
k = 208

P28: 55 54 53 48 46 45 42 9 52 31 50 43 41

383430121037443936352927222

123 33 32 28 26 25 24 21 19 18 17 14 15

5149474020161311876543

k = 295

P36: 70 68 69 67 63 62 61 16 71 65 66 58 57

5655541815305149484746454424

223 42 40 38 37 36 35 34 33 32 19 9 31

535043292827262522212011617

6460 59 52 41 39 14 13 12 10 8 7 5 4 3 1
k = 409

Figure 7. ASD-magic labelings of paths in Case 7

5. ASD-Magic Labelings for Cycles

In this last section, we characterize ASD-magic cycles.

Theorem 5.1. Cycle Cn is ASD-magic if and only if n = 3, 5, 9, 14, 20, 27, and 35.

Proof. The three cases to be considered are

1. H1
∼= P2;

2. H1
∼= P3; and

199



www.ejgta.org

Magic labeling on graph with ascending subgraph decomposition | S. Pancahayani et al.

3. H1
∼= 2P2.

As a consequence, we have

wmin(H1) =


6n− 3, for Case 1,
10n− 10, for Case 2,
12n− 15, for Case 3.

Since the size of Cn satisfy
(
t+1
2

)
≤ n <

(
t+2
2

)
, we obtain

t =

{
⌊−1+

√
1+8n

2
⌋, for Case 1,

⌈−3+
√
9+8n

2
⌉, for Cases 2 and 3.

Next, we shall count wmin(Cn) for each case so that we can apply Lemma 2.1.
Case 1. H1

∼= P2

The minimal number of intersection vertices can be derived utilizing the ascending subgraphs as
in Case 1 of the proof of Theorem 4.1 by joining the two ends of the path. Thus, we obtain c = t.
To obtain the smallest average weight of a cycle, the set of labels for the intersection vertices must
contain {1, 2, ..., t− 2, 2n− 2, 2n− 1}. This set involves two labels of H1, so we have

wmin(Cn) ≥ 1

t

[
2n∑
i=1

i+
t−2∑
i=1

i+ (2n− 2) + (2n− 1)

]
=

2n2 + 5n− 2

t
+

t− 3

2
.

By Lemma 2.1, the integer solution for wmax(H1) ≥ wmin(Cn) or 6n − 3 ≥ 2n2+5n−2
t

+ t−3
2

is
n = 3. Therefore, the only cycle admitting an ASD-magic labeling in case 1 is C3. Moreover, the
ASD-magic labeling of C3 is given in Figure 8.

C3 :

5

6

4

2
1

3

H1
∼= P2

H2
∼= P3

w(H1) = w(H2) = 15

Figure 8. ASD-magic labeling of C3

Case 2. H1
∼= P3

The minimal number of intersection vertices can be derived utilizing the ascending subgraphs as
in Case 3 of the proof of Theorem 4.1 by joining the two ends of the path. Thus, we get c = t.
Subsequently, to obtain the smallest average weight of a cycle, the set of labels for the intersection
vertices must contain {1, 2, ..., t− 2, 2n− 4, 2n− 3}, which include two labels of H1: 2n− 4 and
2n− 3. Hence,

wmin(Cn) ≥ 1

t

[
2n∑
i=1

i+
t−2∑
i=1

i+ (2n− 4) + (2n− 3)

]
=

2n2 + 5n− 6

t
+

t− 3

2
.
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By Lemma 2.1 the solution for wmax(H1) ≥ wmin(Cn) or 10n − 10 ≥ 2n2+5n−2
t

+ t−3
2

is n ∈
(1, 1.5) ∪ (2, 26.3) ∪ (27, 31.25) ∪ (35, 36.2). Using the fact that q =

(
t+2
2

)
− 1 = t(t+3)

2
and

n ≥ 5, if a cycle admits an ASD-magic labeling, then the order is n = 5, 9, 14, 20. Moreover, the
ASD-magic labelings of Cn in Case 2 are given in Figure 9.

C5:
8 4

6 10 7

1

2359
k = 35

C9:

14
5 16 18 17 1 9 10 12

13

8234671115
k = 70

C14: 28 27 26 17 24 23 22 21 13 9 10

25
18
16

15143120191211876

5
4
2

k = 122

C20: 36 39 38 37 34 40 35 33 20

19
3

323128272523

4
11

30 26 22 21 18 15

13
10

2162924171412
9
8
7
6
5
1

k = 184

Figure 9. ASD-magic labelings of cycles in Case 2

Case 3. H1
∼= 2P2

The minimal number of intersection vertices can be derived utilizing the ascending subgraphs as
in Cases 6 or 7 of the proof of Theorem 4.1. Thus, for t = 2 we have c = 2 and for t ≥ 3 we have
c = t + 1. For t = 2 or n = 5, C5 admits an ASD-magic labeling as shown in the Figure 10. For
t ≥ 3, to find the smallest average weight of cycle, the set of labels for the intersection vertices
must contain {1, 2, ..., t − 3, 2n − 5, 2n − 4, 2n − 3, 2n − 2}, where 2n − 5, 2n − 4, 2n − 3, and
2n− 2 are labels for four vertices in H1. Hence,

wmin(Cn) ≥ 1

t

[
2n∑
i=1

i+
t−3∑
i=1

i+ (2n− 5) + (2n− 4) + (2n− 3) + (2n− 2)

]

=
2n2 + 9n− 11

t
+

t− 5

2
.

By Lemma 2.1, the solution of inequality wmax(H1) ≥ wmin(Cn) or 12n− 15 ≥ 2n2+9n−13
t

+ t−3
2

is n ∈ [0.5, 1] ∪ (2, 41.98] ∪ (44, 47.95]. Using the fact that q =
(
t+2
2

)
− 1 = t(t+3)

2
and n ≥ 5, if a

cycle Cn admits an ASD-magic labeling then its order is n = 5, 9, 14, 20, 27, and 35. To complete
the proof, Figure 10 presents the ASD-magic labelings of cycles in case 3.

6. Remark and Open Problems

In this paper, we introduce the notion of ASD-magic labeling, a natural magic labeling arising
from the ascending subgraph decomposition. From our preliminary results on characterizing ASD-
magic stars, paths, and cycles, few graphs seem to be ASD-magic. However, we can still ask
several general questions regarding ASD-magic labeling.
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C5:
3 6 8 1 10

9

452
7

k = 40

C9:

18
8 15 2 3 12 13 17 16

7

14145691011
k = 78

C14: 28 14 26 20 19 16 12 11 25 13 23

24
21
17

1487692722181054

3
2
1

k = 129

C20: 40 29 38 32 27 26 25 20 31

28
33

37362423137

4
22

39 21 19 18 17 16

14
12

1011353430159
8
6
5
3
2
1

k = 199

C27: 54 53 52 45 51 49 38 18 46 50 44 43 42

41
39

3514536333231302928

26
11

6 37 48 24 23 22 21 20 19 15

13
10

7404734272517161298
4

3

2

1

k = 299

C35: 70 69 68 62 61 60 55 33 66 67 65 49 48

47
46

45441150575652514240

20
14

8 15 53 43 38 37 36 35 34 32

30
26
16
10

6358

39
31

2928

27

232221

19

17126

64

595441

25

24
18

13
9
7
5
4
3
2
1

k = 405

Figure 10. ASD-magic labelings of cycles in Case 3

Problem 1. If G is an ASD-magic graph of order n, what are the upper and lower bounds of the
magic constant k, as functions of n?

Problem 2. Does there exist an infinite graph class where most of the graphs in that class are
ASD-magic?

Problem 3. If G and H are two ASD-magic graphs, which binary graph operation ◦ preserves the
ASD-magicness of G ◦H?

Problem 4. If we relax the bijection condition in the ASD-magic labeling to injection, is it possible
to have ASD-magic injection for all graphs?
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