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Abstract

The combinatorial game of Nim can be played on graphs. Over the years, various Nim-like games
on graphs have been proposed and studied by N.J. Calkin et al., L.A. Erickson and M. Fukuyama.
In this paper, we focus on the version of Nim played on graphs which was introduced by N.J.
Calkin et al.: Two players alternate turns, each time choosing a vertex v of a finite graph and
removing any number (≥ 1) of edges incident to v. The player who cannot make a move loses
the game. Here, we analyze Graph Nim for various classes of graphs and also compute some
Grundy-values.
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1. Introduction and some preliminaries

Having its humble beginnings in the context of recreational mathematics, combinatorial game
theory has matured into an active area of research. Along with its natural appeal, the subject has
applications to complexity theory, logic, graph theory and biology. For these reasons, combinato-
rial games have caught the attention of many people and the large body of research literature on
the subject continues to increase. The interested reader is directed to [1, 2, 3, 7, 13, 14, 15], and to
A. Fraenkel’s excellent bibliography [10].
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A combinatorial game is one of complete information and no element of chance is involved in
gameplay. Each player is aware of the game position at any point in the game. Under normal play,
two players alternate taking turns and a player loses when he cannot make a move. An impartial
combinatorial game is one where both players have the same options from any position. A finite
game eventually terminates (with a winner and a loser, no draws allowed).

Perhaps the most famous finite impartial combinatorial game is Nim, which is played in the
following manner:

• There are n heaps, each containing a finite number of beads. Two players alternate turns,
each time choosing a heap and removing any number (≥ 1) of beads in that heap. The player
who cannot make a move loses the game.

In 1902, Bouton [4] gave a beautiful mathematical analysis and complete solution for Nim. Since
then, the game of Nim has been the subject of many mathematics research papers.

Over the years, various Nim-like games on graphs have been proposed and studied [5, 9, 11,
12]. In this paper, we focus on the version of Nim played on graphs (called Graph Nim), introduced
in [5]:

• Two players alternate turns, each time choosing a vertex v of a finite graph and removing
any number (≥ 1) of edges incident to v. The player who cannot make a move loses the
game.

Graph Nim is another example of a finite impartial combinatorial game (with normal play). In
this paper, we will use some basic ideas and standard notation from combinatorial game theory, as
found in [2], in the analysis of Graph Nim. For a more complete overview, the interested reader is
directed to [2, 3, 7].

First, we recall a few definitions and some basic concepts from CGT.

Definition. A P-position is a position which is winning for the previous player (who has just
moved). An N-position is a position which is winning for the next player (who is about to make a
move).

In finite impartial combinatorial games (under normal play), P-positions and N-positions have the
following properties:

• All terminal positions are P-positions.

• From every N-position, there is a move leading to a P-position.

• From every P-position, every move leads to an N-position.

The disjunctive sum of two or more game positions is the position obtained by placing the game
positions side by side. When it is your move, you can make a single move in a summand of your
choice. Note the following facts:

• The disjunctive sum of two P-positions is a P-position.
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• The disjunctive sum of a P-position and an N-position is an N-position.

• The disjunctive sum of two N-positions is indeterminate.

• A game Γ equals 0 = {|} ⇐⇒ Γ is a P-position.

2. Results for various classes of graphs

Standard notation and definitions in graph theory, as found in [6], will be used in this paper. In
[5], paths, cycles and complete graphs of order n, where 4 ≤ n ≤ 7, were analyzed. For the sake
of completeness, we list these results in Theorems A–D.

Theorem A. Graph Nim played on Pn (of order n) is an N-position, for n ≥ 2.

Theorem B. Graph Nim played on Cn is a P-position, for n ≥ 3.

Theorem C. Graph Nim played on K2n is an N-position, for 1 ≤ n ≤ 6. Graph Nim played on
K2m+1 is a P-position, for 1 ≤ m ≤ 5.

Theorem D. There exist arbitrarily large n, for which Graph Nim played on Kn is an N-position.

Proof. (Indirect). Assume that {Kn1 , Kn2 , . . . , Knr} (where n1 < n2 < · · · < nr) is the set of Ks,
where the first-player wins. Then, Knr+1 is a second-player win (ie. a P-position). By Proposition
2.1, we have that Knr+2 is an N-position. This gives the desired contradiction and thus the claim
is established.

Proposition 2.1. If there exists a vertex v of a graphG and a non-empty subsetE = {vu1, vu2, . . . ,
vun} of E(G) such that Graph Nim played on G − E is a P-position, then Graph Nim played on
G is an N-position.

Proof. Suppose that v is a vertex of G and E = {vu1, vu2, . . . , vun} is a non-empty subset of
E(G) such that G−E is a P-position. The first-player removes all of the edges of E. The second-
player must now make a move on G− E, a P-position. Thus, G is an N-position.

Let n ≥ 3. The wheel graph Wn (of order n + 1) is formed by adjoining a single vertex to all
of the vertices on an n-cycle. The fan graph Fn (of order n + 1) is formed by removing a single
non-spoke edge from Wn. The friendship graphs FGn were characterized by Erdos et al. [8] and
are isomorphic to Wn with a 1-factor removed from the outer-cycle.

Corollary 2.1. Let n ≥ 3. Then, Graph Nim played on Wn is an N -position.

Proof. Let n ≥ 3. Suppose the central edges (adjacent to vertex v) of Wn are e1, e2, . . . , en. Then,
Wn−{e1, e2, . . . , en} = Cn∪{v}, which is a P-position by Theorem B. Thus,Wn is an N-position,
by Proposition 2.1.

Corollary 2.2. Let n ≥ 3. Then, Graph Nim played on Fn is an N -position.
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Proof. Let n ≥ 3. There exist edges e1, e2, . . . , en−2 (adjacent to vertex v) of Fn such that Fn −
{e1, e2, . . . , en−2} = Cn+1, which is a P-position by Theorem B. Thus, Fn is an N-position, by
Proposition 2.1.

Corollary 2.3. Let n ≥ 4. Then, Graph Nim played on FGn is an N -position.

Proof. Because of the characterization of FGn by Erdos et al. [8], we have that n ∈ {4, 6, 8, . . . }.
Suppose the central edges (adjacent to v) of FGn are e1, e2, . . . , en.

• (Case 1): n ≡ 0 (mod 4). Then, FGn − {e1, e2, . . . , en} = (n
2
)P2 ∪ N1 = (2r)P2 ∪ N1,

namely 2r copies of P2 and an isolated vertex. This is clearly a P-position. Hence in this
case, FGn is an N-position by Proposition 2.1.

• (Case 2): n ≡ 2 (mod 4). There exist central edges e1, e2, . . . , en−2 of FGn such that
FGn−{e1, e2, . . . , en−2} = C3 ∪ (2s)P2, namely a C3 and 2s copies of P2. This is clearly a
P-position, since C3 is a P-position by Theorem B and (2s)P2 is a P-position. Hence in this
case, FGn is an N-position by Proposition 2.1.

Definition. Let r ≥ 1. A graph G of order 2r is 2-subgraph symmetric, if

1. G contains two vertex-disjoint isomorphic subgraphsG1 andG2, where V (G1) = {v1, v2, . . . , vr}
and V (G2) = {u1, u2, . . . , ur}, with vi corresponding (under the subgraph isomorphism) to
ui for all i; and

2. viuj ∈ E(G)⇐⇒ uivj ∈ E(G).

Furthermore, if viui /∈ E(G) for all i, then G is said to be restricted 2-subgraph symmetric.

Examples.

1. All C2r are restricted 2-subgraph symmetric, for r ≥ 2.
2. All complete multipartite graphs K2r1,2r2,...,2rk are restricted 2-subgraph symmetric, for k ≥

2. For example, see Figure 1.
3. Let M be a perfect matching of K2r, for r ≥ 1. Then, K2r −M is restricted 2-subgraph

symmetric, while K2r is 2-subgraph symmetric.
4. All P2r are 2-subgraph symmetric, for r ≥ 1.

Theorem 5. Let G be restricted 2-subgraph symmetric. Then, Graph Nim played on G is a P-
position.

Proof. Suppose some edges vivj and viuk (for a particular i) have been removed by the first-player.
Edges uiuj and uivk must still be in the graph and the second-player responds by removing them.
The remaining graph is again restricted 2-subgraph symmetric. This process is repeated until the
last edge(s) is removed by the second-player.
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Figure 1. K4,2,2 is restricted 2-subgraph symmetric.

Corollary 2.4. Let M be a perfect matching of K2r, with r ≥ 2. Then, Graph Nim played on
K2r −M is a P-position.

Corollary 2.5. Let M be a maximum matching of K2r+1 with r ≥ 2. Then, Graph Nim played on
K2r+1 −M is an N-position.

Proof. This follows immediately from Corollary 2.4 and Proposition 2.1.

Corollary 2.6. Let n1, n2, . . . , nk ∈ 2N and k ≥ 2. Then, Graph Nim played on Kn1,n2,...,nk
is a

P-position.

Corollary 2.7. Let n1, n2, . . . , nk−1 ∈ 2N, k ≥ 2, and nk be odd. Then, Graph Nim played on
Kn1,n2,...,nk

is an N-position.

Proof. This follows immediately from Corollary 2.6 and Proposition 2.1.

Remark. Note that a 2-subgraph symmetric graph might be an N-position or a P-position. Both
graphs in Figure 2 are 2-subgraph symmetric. The path P4 in Figure 2 is an N-position, In contrast,
the graph on the right in Figure 2 is a P-position. For the second graph, one can show this directly
by analyzing the eight distinct game positions which can arise after the first-player makes his first
move.

Figure 2. A 2-subgraph symmetric graph can be an N-position or a P-position.

Recall the definition of the line graph L(G), for a simple graph G.

Definition. Let G be a simple graph with p vertices and q edges. The line graph of G, denoted by
L(G), is the graph where V (L(G)) = {v1, v2, . . . , vq} and vivj ∈ E(L(G)) if and only if edges ei
and ej are incident in G.
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Lemma 2.1. Let G be restricted 2-subgraph symmetric. Then, L(G) is restricted 2-subgraph
symmetric and hence, a P -position for Graph Nim.

Proof. Since G is restricted 2-subgraph symmetric, there exists a partition of V (G); V1(G) =
{v1, v2, . . . , vr} and V2(G) = {u1, u2, . . . , ur}, such that the induced subgraphs (of the vertex sets)
are isomorphic (with vi ↔ ui), viui /∈ E(G) for all i, and viuj ∈ E(G) ⇔ uivj ∈ E(G). Let
〈Vi(G)〉 denote the subgraph induced by Vi(G), for i = 1, 2. Clearly, L(〈V1(G)〉) ∼= L(〈V2(G)〉).
Let L(〈V1(G)〉) = {v1, v2, . . . , vk} and L(〈V2(G)〉) = {u1, u2, . . . , uk}. Note that V (L(G)) may
contain vertices which don’t belong to V (L(〈V1(G)〉)) ∪ V (L(〈V2(G)〉)). In particular, these ver-
tices s1, s2, . . . , sm, t1, t2, . . . , tm correspond to edges uivj ∈ E(G). Let S = {uivj ∈ E(G) : i <
j} and T = {uivj ∈ E(G) : i > j}. The vertices s1, s2, . . . , sm in V (L(G)), corresponding to
edges in S, can be ordered in the following way: uivj < ucvd ⇐⇒ i < c or (i = c and j < d).
Using this, set S ′ = {s1, s2, . . . , sm}. This induces an ordering of the vertices t1, t2, . . . , tm in
V (L(G)), corresponding to edges in T , in the following way: If sl ↔ uivj , then tl ↔ viuj . Using
this, set T ′ = {t1, t2, . . . , tm}. Notice that edges sltl do not exist inL(G), since edges uivj and viuj
are disjoint inG. Also, edges vlul do not exist in L(G), since the edge (corresponding to vl) and the
edge (corresponding to ul) in G are not adjacent. Finally, let V ′1 = {v1, v2, . . . , vk, s1, s2, . . . , sm}
and V ′2 = {u1, u2, . . . , uk, t1, t2, . . . , tm}, with correspondences vi ↔ ui and si ↔ ti. This parti-
tion of V (L(G)) implies that L(G) is restricted 2-subgraph symmetric. Hence, Graph Nim played
on L(G) is a P-position, by Theorem 5.

Corollary 2.8. LetG be restricted 2-subgraph symmetric. Then, Graph Nim played onL(L · · ·L(G))
is a P-position.

Proof. This follows immediately from Lemma 2.1 and Theorem 5.

In Figure 3, the graph G on the left is restricted 2-subgraph symmetric. The graph on the right is
L(G), which is also restricted 2-subgraph symmetric. Hence, they are both P-positions.

Remark. Note that the converse of Lemma 2.1 is not necessarily true. For example, L(K4) ∼= K2,2,2

(the octahedral graph), which is restricted 2-subgraph symmetric. However, K4 is 2-subgraph
symmetric. On the other hand, the converse of Lemma 2.1 is sometimes true. For example,
L(C2r) ∼= C2r for r ≥ 2, which is restricted 2-subgraph symmetric.

Now, let us recall the definition of the Cartesian product of graphs G1 and G2.

Definition. Given graphs G1 and G2, the Cartesian product of G1 and G2 (denoted by G1 × G2)
is the graph, where V (G1 × G2) = V1 × V2 = {(a, b) : a ∈ V1 ∧ b ∈ V2} and E(G1 × G2) =
{((a, b), (a′, b′)) : a, a′ ∈ V1 ∧ b, b′ ∈ V2 ∧ ((a = a′ ∧ (b, b′) ∈ E2) ∨ (b = b′ ∧ (a, a′) ∈ E1))}.

Theorem 6. Let G be a graph and G′ be restricted 2-subgraph symmetric. Then, G × G′ is
restricted 2-subgraph symmetric and hence, is a P-position for Graph Nim.

Proof. Suppose G (a graph) and G′ (restricted 2-subgraph symmetric) are of orders n and 2r, re-
spectively. Let G′A and G′B be the two isomorphic subgraphs of G′ (as found in the definition
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Figure 3. Graph G and its line graph L(G).

of 2-subgraph symmetric). Let G′i be a copy of G′ in G × G′, 1 ≤ i ≤ n, and G′i,A and G′i,B
be the two isomorphic subgraphs of G′i with V (G′i,A) = {vi,A,1, vi,A,2, . . . , vi,A,r}, V (G′i,B) =
{vi,B,1, vi,B,2, . . . , vi,B,r}, and vi,A,j corresponding (under the isomorphism) to vi,B,j , for all j.
Clearly, G × G′A and G × G′B are vertex disjoint isomorphic subgraphs of G × G′, with V (G ×
G′A) ∪ V (G × G′B) = V (G × G′). Let uw be an edge of G × G′, which is one of five possible
types:

• u ∈ V (G′i,A) and w ∈ V (G′i,B), for some i.

• u,w ∈ V (G′i,A), for some i.

• u,w ∈ V (G′i,B), for some i.

• u ∈ V (G′i,A) and w ∈ V (G′j,A), where i 6= j.

• u ∈ V (G′i,B) and w ∈ V (G′j,B), where i 6= j.

For the first three types of edges, there exists an edge wu ∈ E(G × G′), since G′i is restricted 2-
subgraph symmetric. In the last two types of edges, there exists an edge wu ∈ E(G×G′), because
of the definition of G×G′. Thus, G×G′ is restricted 2-subgraph symmetric. Hence, Graph Nim
played on G×G′ is a P-position, by Theorem 5.
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Figure 4. The Cartesian product of P2 and restricted 2-subgraph symmetric C4.
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Remark. If G is a graph and G′ is a P-position, then G × G′ is not necessarily a P-position. For
example, let G = P2 and G′ = C3, which is a P-position. Now, consider Graph Nim played on
P2×C3. The first-player can remove a single edge, leaving the second-player to move on the graph
in Figure 5, which is a P-position. Thus, P2 × C3 is an N-position.

Figure 5. This graph is a P-position.

Theorem 7. Let G′ and G′′ be 2-subgraph symmetric. Then, G′ × G′′ is restricted 2-subgraph
symmetric and hence, is a P-position for Graph Nim.

Proof. Let G′1 and G′2 be the isomorphic subgraphs of G′, and G′′1 and G′′2 be the isomorphic
subgraphs of G′′. Then, G′1 × G′′1

∼= G′2 × G′′1
∼= G′1 × G′′2

∼= G′2 × G′′2 with V (G′i × G′′j ) =
{vi,j,l,m : 1 ≤ l ≤ |V (G′i)| and 1 ≤ m ≤ |V (G′′j )|} for 1 ≤ i, j ≤ 2, and v1,1,l,m, v2,1,l,m, v1,2,l,m
and v2,2,l,m all correspond to one another (under the isomorphisms), for all l and m (see Figure 6).
For the isomorphism G′1×G′′ ∼= G′2×G′′, we associate vertices v1,1,l,m and v1,2,l,m (in G′1×G′′) to
vertices v2,2,l,m and v2,1,l,m (in G′2×G′′), respectively. From the definition of the Cartesian product
G′ × G′′, we have vi,j,l,mvi′,j′,l′,m′ /∈ E(G′ × G′′) for all l, l′, m and m′ when i 6= i′ and j 6= j′.
Furthermore, since G′×G′′1 is isomorphic to G′×G′′2, we have v1,1,l,mv2,1,l,m ∈ E(G′×G′′) if and
only if v1,2,l,mv2,2,l,m ∈ E(G′ × G′′). Thus, G′ × G′′ is restricted 2-subgraph symmetric. Hence,
Graph Nim played on G′ ×G′′ is a P-position, by Theorem 5.

Figure 6. Structure of G′ ×G′′.

Examples.

1. Let r, s ∈ N. Then, P2r×P2s, P2r×K2s and K2r×K2s are restricted 2-subgraph symmetric
and hence P-positions, by Theorem 7.
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2. LetG be a graph and r, s ∈ N. Then,G×C2r,G×P2r×P2s,G×P2r×K2s andG×K2r×K2s

are restricted 2-subgraph symmetric and hence P-positions, by Theorems 6 and 7.

Corollary 2.9. Graph Nim played on the hypercube Qn is a P-position, for all n ≥ 2.

Proof. Let n ≥ 2. Since Qn = P2×P2×· · ·×P2 (n factors), the result follows immediately from
Theorems 7, 6, and 5.

Theorem 8. Let G = Pn × Pm and m ≥ 2. If m and n are even, then Graph Nim played on G is
a P-position. Otherwise, G is an N-position.

Proof. Let G = Pn × Pm. If n = 1, then G = Pm is an N-position. If both n and m are
even, then Pn and Pm are 2-subgraph symmetric and hence, G is a P-position (by Theorems 7
and 5). We now consider the last case where n,m ≥ 2, with at least one of n,m being odd. Let
V (G) = {vi,j : 1 ≤ i ≤ n and 1 ≤ j ≤ m} as shown in Figure 7. If n is even and m is odd, then
G[{vi,j : 1 ≤ i ≤ n

2
and 1 ≤ j ≤ m}] is isomorphic to G[{vi,j : n

2
+ 1 ≤ i ≤ n and 1 ≤ j ≤ m}],

with vi,j corresponding to vn−i+1,m−j+1 for 1 ≤ i ≤ n
2

and 1 ≤ j ≤ m (see Figure 7(a)).
Hence, G − {vn

2
,dm

2
evn

2
+1,dm

2
e} is restricted 2-subgraph symmetric, a P-position by Theorem 5.

Thus, G is an N-position by Proposition 2.1. If n is odd and m is even, then a similar vertex-
set partition and correspondence (see Figure 7(b)) shows that G − {vdn

2
e,m

2
vdn

2
e,m

2
+1} is restricted

2-subgraph symmetric, a P-position. Thus, G is an N-position. Lastly, suppose that n,m are
both odd. Let V1 = {vi,j : 1 ≤ i ≤ bn

2
c and 1 ≤ j ≤ m} ∪ {vdn

2
e,k : 1 ≤ k ≤ bm

2
c} and

V2 = {vi,j : dn
2
e + 1 ≤ i ≤ n and 1 ≤ j ≤ m} ∪ {vdn

2
e,k : dm

2
e + 1 ≤ k ≤ m}. Then,

G[V1] and G[V2] are isomorphic with vi,j corresponding to vn−i+1,m−j+1 for 1 ≤ i ≤ bn
2
c and

1 ≤ j ≤ m, and vdn
2
e,j corresponding to vdn

2
e,m−j+1 for 1 ≤ j ≤ bm

2
c (see Figure 7(c)). More-

over,G−{vdn
2
e,dm

2
evdn

2
e,bm

2
c, vdn

2
e,dm

2
evdn

2
e,dm

2
e+1, vdn

2
e,dm

2
evbn

2
c,dm

2
e, vdn

2
e,dm

2
evdn

2
e+1,dm

2
e} is restricted

2-subgraph symmetric (and hence, a P-position by Theorem 5). Thus,G is an N-position by Propo-
sition 2.1.

Figure 7. Vertex partitions which yield isomorphic subgraphs of Pn × Pm.
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What can be said with regards to other types of graph products? Let us recall the following
definitions.

Definition. Lexicographic product G1 •G2: V (G1 •G2) = V1× V2 = {(a, b) : a ∈ V1 ∧ b ∈ V2}
andE(G1•G2) = {((a, b), (a′, b′)) : a, a′ ∈ V1 ∧ b, b′ ∈ V2 ∧ ((a = a′ ∧ (b, b′) ∈ E2) ∨ (a, a′) ∈
E1)}.

Definition. Tensor product G1 ⊗ G2: V (G1 ⊗ G2) = V1 × V2 = {(a, b) : a ∈ V1 ∧ b ∈ V2} and
E(G1 ⊗G2) = {((a, b), (a′, b′)) : a, a′ ∈ V1 ∧ b, b′ ∈ V2 ∧ (a, a′) ∈ E1 ∧ (b, b′) ∈ E2}.

Of these two products, only the lexicographic product is not commutative.

Theorem 9. Let n ≥ 2 and Nm be the null graph of order m. If m is odd, then Graph Nim played
on G = Pn •Nm is an N-position. Otherwise, G is a P-position.

Proof. If m and n are odd, the first-player should remove the dark edges in Figure 8(a) on his first
move. This leaves a restricted 2-subgraph symmetric graph (a P-position) for the second-player
to move from. However, if m is odd and n is even, the first-player should remove the dark edge
in Figure 8(b) on his first move, which leaves a restricted 2-subgraph symmetric graph for the
second-player to move from. In both of these cases, we see that G is an N-position. If m is even,
then Figure 8(c) gives a vertex partition which illustrates that G is a P-position.

Figure 8. Vertex partitions which yield isomorphic subgraphs of Pn •Nm.

Theorem 10. Let m,n ≥ 2. If m and n are both odd, then Graph Nim played on G = Pm ⊗ Pn is
an N-position. Otherwise, G is a P-position.

Proof. Ifm and n are odd, the first-player should remove the dark edges in Figure 10(a) on his first
move. This leaves a restricted 2-subgraph symmetric graph (a P-position) for the second-player to
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Figure 9. P4 •N2 is restricted 2-subgraph symmetric and thus, is a P-position.

move from. In this case, we see that G is an N-position. In the other cases, Figure 10(b) gives a
vertex partition which illustrates that G is a P-position.

Figure 10. Vertex partitions which yield isomorphic subgraphs of Pm ⊗ Pn.

3. Grundy-values

Not surprisingly, the N- and P-positions (in Graph Nim) are highly dependent on the structure
of the underlying graph. It is quite likely that general results cannot be obtained for Graph Nim.
In this section, we use elementary combinatorial game theory to analyze some additional classes
of graphs. Here, we do not focus on the technical details of CGT. The discussion below is merely
an informal presentation of material arising from the Sprague-Grundy Theorem and CGT (as de-
veloped by Berlekamp, Conway, and Guy). The reader who is interested in the technical details is
referred to [2, 3, 7]. Instead, we will briefly explain the relevant ideas and their applications to the
analysis of Graph Nim.

For any finite impartial combinatorial game Γ, there is an associated value (Grundy-value)
G(Γ). In this context, such values are called nimbers and they are denoted by ∗0 = 0, ∗1, ∗2, ∗3, . . .
etc. (or 0, 1, 2, 3, . . . , etc., when there’s no possibility for confusion). The Grundy-value G(Γ)
immediately tells us if Γ is a P-position or an N-position. In particular, G(Γ) = 0 ⇐⇒ Γ is a
P-position. To compute G(Γ), we need the following two definitions.
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Figure 11. P4 ⊗ P4 is restricted 2-subgraph symmetric and thus, is a P-position.

Definition. The minimum excluded value (or mex) of a set of non-negative integers is the smallest
non-negative integer which does not occur in the set. This is denoted by mex{a, b, c, . . . , k}.

Definition. Let Γ be a finite impartial game. Then,

G(Γ) = mex{G(∆) : ∆ is an option of Γ}.

For any finite impartial game Γ which is a disjunctive sum of finite impartial games γ1 +γ2 + · · ·+
γk, G(Γ) =

∑
G(γi), where the sum is BitXor (Nim-addition).

Lemma 3.1. Let n ≥ 1. Then, G(K1,n) = ∗n.

Proof. This follows immediately from a straightforward induction argument.

In an attempt to gain deeper insight into Graph Nim, we created some Mathematica programs
to compute the Grundy-values for some classes of graphs. In [5], the Grundy-values for paths were
computed. The values have been confirmed by the authors of this paper and we list them in Fig-
ure 12 for quick reference. The (ij)th-entry in the table denotes the Grundy-value for P12(i−1)+j .
Note that the Grundy-values become periodic (rows 7, 8, . . . are identical). We then use this to
compute the Grundy-values for certain classes of broom graphs Bn,k. This, in turn, will allow us
to construct infinite classes of N -position double-broom graphs DBj,n,k.

Definition. A broom graph Bn,k is a path of n vertices, with k (≥ 2) pendant edges attached to
an end-vertex. A double-broom graph DBj,n,k is a path of n vertices, with j (≥ 2) pendant edges
attached to an end-vertex and k (≥ 2) pendant edges attached to the other end-vertex.

The Grundy-values for Bn,2 were also computed in [5]. These values have been confirmed by
the authors of this paper and we list them in Figure 13. There, the (ij)th-entry in the table denotes
the Grundy-value for B12(i−1)+j,2. Note that the Grundy-values become periodic (rows 14, 15, . . .
are identical).
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1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 2 3 1 4 3 2 1 4 2 6

2 4 1 2 7 1 4 3 2 1 4 6 7

3 4 1 2 8 5 4 7 2 1 8 6 7

4 4 1 2 3 1 4 7 2 1 8 2 7

5 4 1 2 8 1 4 7 2 1 4 2 7

6 4 1 2 8 1 4 7 2 1 8 6 7

7 4 1 2 8 1 4 7 2 1 8 2 7

8 4 1 2 8 1 4 7 2 1 8 2 7

9 4 1 2 8 1 4 7 2 1 8 2 7

10 4 1 2 8 1 4 7 2 1 8 2 7

Figure 12. Grundy-values for Pn.

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 2 1 0 8 6 0 1

2 2 3 8 5 12 7 1 0 8 9 14 1

3 2 3 11 4 7 12 14 0 16 2 4 12

4 2 3 10 4 7 15 1 16 9 18 16 12

5 2 3 10 16 7 12 1 16 18 11 16 12

6 2 22 11 16 7 12 1 20 24 16 26 12

7 13 22 11 16 24 15 14 16 22 19 16 12

8 13 19 11 16 24 15 14 16 25 11 16 12

9 13 22 11 16 7 15 1 20 25 19 11 12

10 13 22 11 32 19 22 14 20 22 19 11 12

11 13 22 11 25 19 22 14 16 22 19 11 21

12 13 22 11 25 19 22 14 21 25 19 11 21

13 13 22 11 25 19 22 14 20 22 19 11 21

14 13 22 11 25 19 22 14 21 22 19 11 21

15 13 22 11 25 19 22 14 21 22 19 11 21

Figure 13. Grundy-values for Bn,2.

By computing the Grundy-values for Pn, K1,n, Bn,2, Bn,3, etc., we can identify many trees
which are N -positions.

Examples.

1. The double-broom graph DB4,4,2, (i.e. P4, with 4 pendant edges on one end and 2 pendant
edges on the other end) is an N -position. This is because the first-player can remove the
single edge from the graph, leaving a K1,4 and a B3,2. The second-player must now move in
a game position which has Grundy-value ∗4 + ∗4 = 0 (ie. BitXor, Nim-addition).

2. Suppose that T is a tree with the following property: There exists a vertex v such that the
removal of some edges {ej} incident to v results in a disjoint collection of P2, B3,2 and
K1,5 (ignoring isolated vertices). The Grundy-values of P2, B3,2 and K1,5 are 1, 4 and 5,
respectively. This particular game position has Grundy-value ∗1 + ∗4 + ∗5 = 0. Thus, T
is an N -position since the first-player merely removes edges {ej} from T , which leaves the
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second-player to move in a game position having Grundy-value 0.
3. Consider the graph B8,2, which has Grundy-value 0. This means that it is a P-position. No

matter what moves the first-player makes, the second-player can eventually win the game.
Say for example, that the first-player removes two edges, leaving a P3 and aB4,2. This results
in a game position with Grundy-value ∗2 + ∗5 = ∗7. The second-player can then remove
three edges (from the B4,2 component), which leaves a game position with Grundy-value
∗2 + ∗2 = 0.

Definition. Let n ≥ 1. A tadpole graph Tn is a path of n vertices with a cycle C3 attached to an
end-vertex.

Using Figures 12 and 13, we compute the Grundy-values for Tn. They are given in Figure 14.
The (ij)th-entry in the table denotes the Grundy-value for T12(i−1)+j . Note that the Grundy-values
become periodic (rows 13, 14, . . . are identical).

1 2 3 4 5 6 7 8 9 10 11 12

1 0 4 2 6 7 4 3 7 1 8 9 6

2 11 1 12 7 10 4 8 10 11 4 9 16

3 14 1 12 7 14 1 13 2 1 4 13 2

4 14 1 2 7 10 4 8 2 10 16 13 7

5 11 1 16 7 14 4 8 2 11 4 13 7

6 14 1 16 7 18 4 13 2 11 4 13 16

7 14 1 16 7 18 4 13 20 10 4 13 7

8 14 1 20 7 18 4 8 20 11 4 13 7

9 14 1 20 7 18 4 13 2 11 4 13 7

10 14 1 20 7 18 4 13 22 11 4 13 7

11 14 1 20 7 18 4 13 25 11 4 13 7

12 14 1 20 7 18 4 13 20 11 4 13 7

13 14 1 20 7 18 4 13 25 11 4 13 7

14 14 1 20 7 18 4 13 25 11 4 13 7

15 14 1 20 7 18 4 13 25 11 4 13 7

Figure 14. Grundy-values for Tn.

Examples.

1. Consider the graph T6, which has Grundy-value ∗4. This indicates that Graph Nim played on
T6 is an N-position. The first-player merely removes the single edge which leaves a T3 and
P3. This resulting position has a Grundy-value of ∗2+∗2 = 0 (a losing position), from which
the second-player must move. From this point on, whatever move the second-player makes,
the first-player responds by removing edge(s) so that the resulting position has Grundy-value
0.

2. Let n ≥ 2. Then, Tn is an N-position, since G(Tn) 6= 0.
3. Suppose that G is a graph with the following property: There exists a vertex v such that

the removal of some edges {ej} incident to v results in a disjoint union (having an even
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number of components) of T3 and B6,2 (ignoring isolated vertices). The Grundy-values
of T3 and B6,2 are the same, namely 2. This particular game position has Grundy-value
∗2+∗2+· · ·+∗2 = 0, since there is an even number of summands. Thus,G is anN -position
since the first-player merely removes edges {ej} from G, which leaves the second-player to
move in a game position having Grundy-value 0 (a losing position).

We can continue to compute Grundy-values for other classes of graphs. For example, by using
Figures 12 and 13, we compute the Grundy-values for Bn,3. They are given in Figure 15. The
(ij)th-entry in the table denotes the Grundy-value for B12(i−1)+j,3. Note that the Grundy-values
become periodic (rows 13, 14, . . . are identical).

1 2 3 4 5 6 7 8 9 10 11 12

1 3 4 5 6 7 5 0 8 6 5 1 8

2 3 10 5 6 3 10 0 8 6 10 0 2

3 3 10 5 9 12 1 0 8 6 10 15 2

4 3 10 5 6 16 14 18 8 6 5 18 13

5 3 10 5 6 15 10 18 8 6 5 12 9

6 3 10 5 6 15 10 18 8 6 4 15 9

7 3 10 18 17 15 10 18 8 17 18 12 13

8 3 10 18 12 15 10 18 8 6 18 12 9

9 3 10 5 6 15 10 18 8 6 5 12 9

10 3 10 18 17 15 10 18 8 17 18 12 9

11 3 10 18 12 15 10 18 8 17 18 12 9

12 3 10 18 12 15 10 18 8 6 18 12 9

13 3 10 18 12 15 10 18 8 17 18 12 9

14 3 10 18 12 15 10 18 8 17 18 12 9

15 3 10 18 12 15 10 18 8 17 18 12 9

Figure 15. Grundy-values for Bn,3.

Examples.

1. Suppose that Graph Nim is played on a starting game position composed of aB7,3, B4,3, B9,3

and a B8,2. Since ∗0 + ∗6 + ∗6 + ∗0 = ∗0 = 0, this starting position is a P-position.
2. Suppose that Graph Nim is played on a starting game position composed of a W5, K6,4,2,
L(P4 ×K8), Q7 and a B7,3. With the exception of W5, all of the individual components are
P-positions. Thus, this starting position is an N-position (as G(W5 ∪K6,4,2 ∪ L(P4 ×K8) ∪
Q7 ∪B7,3) = G(W5) + ∗0 + ∗0 + ∗0 + ∗0 6= 0).
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