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Abstract

A disconnected graph G is called a cluster if G is not union of K2s (1-factor) but union of complete
graphs of order at least two. J. Akiyama, K. Ando and D. Avis showed in Lemma 2.1 of [2] that
G is equi-eccentric if the eccentric graph Ge is a cluster or pK2. And they also characterized all
graphs whose eccentric graphs are complete graphs and pK2 in [2]. In this paper, we determined
in Theorem 2 all graphs whose eccentric graphs are clusters, which is an extension of Lemma 2.1
in [2].
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1. Introduction

Let G = (V (G), E(G)) be a simple undirected graph. A disconnected graph G is called a
cluster if it is a union of complete graphs

⋃n
i=1Kpi (n ≧ 2, pi ≧ 2; Figure 1).

The eccentricity e(v) of a vertex v in V (G) is defined by e(v) = maxu∈V (G) d(u, v), where
d(u, v) stands for the length of a shortest path in G between u and v. We denote by Ge =
(V (Ge), E(Ge)) the eccentric graph based on G (Figure 2), where the vertex set V (Ge) is identi-
cal to V (G) and uv ∈ E(Ge) ⇔ d(u, v) = min(e(u), e(v)).
A similar graph, called the “furthest neighbor graph”, was introduced by Shamos [8]. Its vertex
set is a set of points in the plane, and the distance between two vertices is their Euclidean distance.
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Figure 1: Example of a cluster G = 3K2 ∪K3 ∪ 2K4 ∪K5

Two vertices are joined if either one is the “furthest neighbor” of the other. Extremal properties of
this graph are studied in [5].

A central vertex of a graph G is a vertex v with the property that the maximum distance between
v and any other vertex is as small as possible, this distance being called the radius, denoted by
r(G). That is, r(G) = minv∈V (G) e(v). The diameter of G denoted diam(G) is defined by
diam(G) = maxv∈V (G) e(v). A graph is a self-center [4] or r-equi-eccentric (or briefly r-equi)
[1] if e(v) = r(G) = diam(G) for all vertices v ∈ V (G) (see Figure 3). If S ⊂ V (G), then we
say that e(S) = i if e(v) = i for all v ∈ S, and we denote by ⟨S⟩ the subgraph induced by S. We
denote by N(v) the neighborhood of a vertex v of G consisting of the vertices in G adjacent to v.
The closed neighborhood N [v] of v is defined by N [v] = N(v) ∪ {v}. All other definitions and
notations used in this paper might be found in [4] or [6].

v1

v2 v3

v4

v5

G :

=⇒

(a) r(G) = 2, diam(G) = 3

v1

v2 v3

v4

v5

Ge :

(b) Ge

Figure 2: Example of a graph and its eccentric graph

(a) C6, 3-equi (b) 4-equi

Figure 3: Examples of a 3-equi and a 4-equi-eccentric graph

Lemma A ([2, Lemma 2.1]). If Ge =
⋃n

i=1Kpi , where
∑n

i=1 pi = p, pi ≧ 2(i = 1, 2, . . . , n) and
n ≧ 2, then G is equi-eccentric.
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Theorem A ([2, Theorem 2.2]). If G is a graph of order 2p then Ge = pK2 if and only if G is
radius critical, that is, r(G− v) = r(G)− 1 for all v ∈ V (G).

Theorem B ([2, Theorem 2.1]). For any connected graph G of order p, Ge = Kp if and only if for
all v ∈ V (G) either e(v) = 1 or e(N(v)) = 1.

Theorem B can be restated as follows and we give a different proof of it from one in [2]:

Theorem B′. A graph G of order p whose eccentric graph is a complete graph Kp if and only if G
is a join of a complete graph Km and n isolated vertices Kn i.e., G = Km+Kn,m+n = p,m ̸= 0.

G = K3 +K4

K3

K4

Ge = K7

Figure 4: Example of Theorem B′

Proof. We divide our proof into two cases depending on r(G) = 1 or not.

Case 1. Suppose that r(G)=1.
Let S(i) be a set of all vertices v of G with e(v) = i. Since S(i) = ∅ for every i(≧ 3),
we have that V (G) = S(1) ∪ S(2) and S(1) ∩ S(2) = ∅. Let |S(1)|, |S(2)| be m,n,
respectively. The induced subgraph ⟨S(1)⟩ of G is a complete subgraph Km of G.
If there exists at least one edge vv′ ∈ E(G) where both v, v′ ∈ S(2), then we have
that vv′ /∈ E(Ge), which implies that Ge is not a complete graph (Figure 5). There-
fore, ⟨S(2)⟩ must be a totally disconnected graph Kn. That is, G must be a Km + Kn.
Conversely, if G = Km +Kn, then Ge is a complete graph Km+n.

1

2

1

2
2v v′

G

=⇒

Ge

Figure 5: Example of Case 1. with the value of eccentricity of vertices in G

Case 2. Suppose that r(G) ≧ 2.
For any vertex v of G, there is a vertex v′ which is adjacent to v, implying that d(v, v′) =
1. Since e(v) ̸= 1 and e(v′) ̸= 1, we have that vv′ is not an edge of Ge. Therefore, Ge

cannot be a complete graph.
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2. Main results

Theorem 1. If r(G) ≧ 2, then (G+Kn)e = (G+Kn) = G ∪Kn, n ≧ 2.

Proof. Since r(G) ≧ 2, there is no vertex v such that e(v) = 1 in G. Therefore, G + Kn is
2-equi (Figure 6). Hence uv ∈ E(G+Kn) if and only if uv /∈ E((G+Kn)e), which implies that
(G+Kn)e is isomorphic to the complement of (G+Kn); i.e., G+Kn. Moreover, the complement
G+Kn is G ∪Kn.

G(red) +K3

=⇒

(G+K3)e = G+K3 = G ∪K3

Figure 6: Example of Theorem 1

Putting G = K(m1,m2, . . . ,mn), we obtain the Corollary 1.

Corollary 1. For mi ≧ 2 for i(1 ≦ i ≦ n) and ℓ ≧ 2,
(K(m1,m2, . . . ,mn) +Kℓ)e = Km1 ∪Km2 ∪ · · · ∪Kmn ∪Kℓ.

Proposition 1. (C2p)e = pK2 (see Figure 7a). (C2p+1)e = C2p+1 (see Figure 7b).

=⇒

(a) C6 and (C6)e = 3K2

=⇒

(b) C5 and (C5)e = C5

Figure 7: C6 and C5, and its eccentric graphs

Theorem 2. A graph whose eccentric graph is a cluster, i.e., Ge =
⋃n

i=1Kpi(n ≧ 2, pi ≧ 2 for
any i(1 ≦ i ≦ p), and at least one pi is not 2, Σn

i=1pi = p), if and only if G is a complete n-partite
graph K(p1, p2, . . . , pn).

Proof. Since n ≧ 2, Ge =
⋃n

i=1 Kpi is not connected. Then, there exists no vertex v ∈ V (G) such
that e(v) = 1 (if not, Ge would be connected). Let k = diam(G) and let x and y be any pair of
vertices in G such that d(x, y) = k. Note that xy is an edge of Ge.
Let zk be a vertex in N(x) such that d(zk, y) = k−1 (Figure 8a). For any vertex z in N(x), if every
path between z and y passes through x, then d(z, y) > k, which is a contradiction. Therefore, there
exists at least one path between z and y not passing through x for any z ∈ N(x) (Figure 8b). As
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to such a path between z and y:
if d(y, z) < k − 1 for some z ∈ N(x), d(x, y) = d(y, z) + d(z, x) < k, which is a contradiction.
If d(y, z) > k − 1 for some z ∈ N(x), that is d(y, z) = k(= diam(G)), e(z) = k. And then,
xy ∈ Ge, yz ∈ Ge, but xz /∈ Ge, since d(x, z) = 1 ̸= e(x) or e(z). It means that Ge is not

⋃
Kpi

(i.e., vertices x, y and z do not form a part of a complete graph), which is a contradiction.
Then, for any vertex z in N(x), there exists at least one path between z and y such that d(y, z) =
k − 1, if Ge is a cluster.

(a) Vertices in N(x) and N(y) (b) Paths between z and y

Figure 8

Due to the above results, G includes a k-equi-eccentric graph G′ which is composed of all paths
xzi ∪ ziy where zi ∈ N(x). Note that the number of N(y) is more than 1. Otherwise, for a unique
point w ∈ N(y), e(w) = d(x,w) and d(w, y) = 1. Then, xy ∈ Ge, xw ∈ Ge but yw /∈ Ge, which
means that vertices x, y and w do not form a part of complete graph, that is, Ge cannot be a cluster.

Any G′ can be constructed by applying one of or combination of following operations to GL,
which is a union of n disjoint paths Pi = xzi∪ziy (i = 1, 2, . . . , n) where n = |N(x)|, |V (GL)| =
|V (G′)| and the length of Pi is k (Figure 9):

Operation 1. Add an edge between points pi and pj where d(pi, x) + 1 = d(pj, x).

Operation 2. A point pi and some points pjs coincide, where 1 < d(pi, x) = d(pj, x) = ℓ < k−1,
but at least two of them for each ℓ must be distinct. And add m points pks, edges
pkpqs and pkprs so that m is just the reduced number above, and d(pk, x) ̸= ℓ,
d(pk, x)− 1 = d(pq, x) and d(pk, x) + 1 = d(pr, x).

For any z ∈ N(x), there must exist at least one point w ∈ N(y) such that e(z) = d(z, w) = k,
if Ge is a cluster. We can classify the situation into the following two cases by the maximum
number of w for all z ∈ N(x) where d(z, w) = k.

Case 1. The maximum number of w is more than 1 for all z ∈ N(x) where d(z, w) = k.
In this case, |N(x)| ≧ 3 and |N(y)| ≧ 3. For zi in N(x), there exist at least two vertices
wj and wℓ in N(y) such that d(zi, wj) = k, d(zi, wℓ) = k. That is, any paths ziy with
d(zi, y) = k − 1 never pass through wj or wℓ (Figure 10a).
Then, both ziwj and ziwℓ are edges of Ge, thus wjwℓ must also be an edge of Ge =
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y

w1 w2 w3 w4

z1 z2 z3 z4

x

N(x)

N(y)

P1 P2 P3 P4

(a) GL (b) G′ (c) G′

Figure 9: Examples of GL and G′ in the case of k = 4

y

w1 . . . wj . . . wi . . . wℓ . . .wm

P1
. . . Pj . . . Pi

. . . Pℓ
. . . Pm

z1 . . . zj . . . zi . . . zℓ . . . zm

x

N(x)

N(y)
=⇒

(a) d(zi, wj) = d(zi, wℓ) = k

y

z1 z2 z3 . . . zm

x

N(x) = N(y)

(b) G: 2-equi-eccentric graph

Figure 10

⋃n
i=1 Kpi . Since d(wj, wℓ) = 2 and e(wj) = e(wℓ) = k, k must be 2, which implies

that N(x) = N(y) and G is 2-equi-eccentric (Figure 10b).

Case 1-1. G′ includes all vertices of G.
There are two cases (i) and (ii) depending on whether some pairs of N(x) are joined
by edges of G or not.

(i) If no pair of N(x) is joined by an edge of G, G must be a complete bipartite graph
K(2,m) (Figure 11a) and Ge is K2 ∪Km (Figure 11b).

y

z1 z2 z3 . . . zm

x

N(x) = N(y)

G :

⇐⇒
y

z1 z2 z3
. . .

zm−1
zm

x

N(x) = N(y)

|N(x)| = m

G = K(2,m) :

(a) G is isomorphic to K(2,m)

z1 z2 z3

zm−1
zm

x y

(b) Ge = K2 ∪Km

Figure 11: Example of G and Ge of Case 1-1 (i)

(ii) If some pairs of N(x) are joined by edges of G, Ge is a cluster if and only if N(x)
induces a complete n-partite graph K(m1,m2, . . . ,mn),mi ≧ 2 for 1 ≦ i ≦ n
by Corollary 1.
That is, G is K(m1,m2, . . . ,mn)+K2 = K(2,m1,m2, . . . ,mn) and Ge is Km1∪
Km2 ∪ · · · ∪Kmn ∪K2. Figure 12 shows that N(x) induces a complete bipartite
graph K(2, 3) and G = K(2, 3) +K2 = K(2, 2, 3), respectively.
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z1 z2

z3 z4 z5

N(x) = K(2, 3):

z1 z2 z3 z4 z5

x

y

G :

G = K(2, 3) +K2

= K(2, 2, 3)

⇐⇒
z2

z1

z3

z4

z5

x y

G = K(2, 2, 3) :

=⇒
z2

z1

z3

z4

z5

x y
Ge = K2 ∪K2 ∪K3 :

Figure 12: N(x) induces a complete bipartite graph K(2, 3)

Case 1-2. G′ does not include all vertices of G.
Let v1, v2, . . . , vn be vertices which are included in none of G′. Since (1) G is con-
nected, (2) diam(G) = 2, and (3) vi belongs to neither N(x) or N(y), vizj must be
an edge of G for at least one vertex of N(x) (say zj) (Figure 13a).

(i) If no pair of N(x) has an edge of G, vi(i = 1, 2, . . . , ℓ) is joined by an edge with
every vertex in N(x) (Figure 13b), since otherwise e(vi) = 3 > diam(G)(= 2),
which is a contradiction (Figure 13a). Therefore, G must be K(m, ℓ+ 2) (Figure
13b), and Ge is Km ∪Kℓ+2.

y

z1 z2 z3 . . . zj . . . zm

x

N(x)

(= N(y))

vi

v1

v2

vℓ

(a) Example of Case 1-2.

y

z1 z2 z3 . . . zj . . . zm

x
G :

v1

vℓ

⇔

y

z1 z2 z3 zm

x v1 v2 vℓG :

(b) G = K(m, ℓ+ 2)

Figure 13: Example of G of Case 1-2.(i)

(ii) If some pairs of N(x) are joined by edges of G, N(x) must form K(m1,m2, . . . ,mn)
to make Ge be a cluster by Corollary 1 (Figure 14). Especially, K(2, 2, . . . , 2) is
the power (C2n)

n−1 of C2n. If N(x) is (C2n)
n−1, G is also a power (C2(n+1))

n

of C2(n+1) and Ge is (n + 1)K2, which is not a cluster (Figure 15 is the case of
n = 4).
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Let v1, v2, . . . , vℓ be vertices not in N(x) ∪ {x, y}. For vi(i = 1, 2, . . . , ℓ), since
(1) vi does not belong to N(x), (2) diam(G) = 2, and (3) if there exists z ∈ N(x)
such that viz /∈ G, viz ∈ Ge, vix ∈ Ge but xz /∈ Ge, then viz must be an edge of
G for all z in N(x) (Figure 16a). Therefore, G is K(m1,m2, . . . ,mn)+K2+ℓ, i.e.,
K(m1,m2, . . . ,mn, 2+ℓ) (Figure 16b), and Ge is Km1∪Km2∪· · ·∪Kmn∪K2+ℓ

(Figure 16c).

y

1 2 3 4 5 6 7

x

N(x)(= N(y))

1 2

3

4

5

67

N(x) = K(2, 2, 3):

Figure 14: Example of G: N(x) +K2(|N(x)| = 7)

Figure 15: Example of Case 1-2.(ii) for N(x) = C2n with n = 4

y

1 2 3 4 5 6 7

x

N(x)

v1v2 vℓ

(a) V (G) = N(x) ∪ {x, y} ∪ {v1, . . . , vℓ},
where N(x) = K(2, 2, 3)

v1

v2

v3

x

y

1 2

3

4

5

67

G = N(x) +K2+ℓ:

(b) Example with ℓ = 3, G = K(2, 2, 3)+K2+3 =
K(2, 2, 3, 5)

v1

v2

v3

x

y

1 2

3

4

5
6

7

(c) Ge = K2 ∪K3 ∪K2 ∪K5

Figure 16: zi is simply stated by i.

Case 2. The number of w for each z ∈ N(x) where d(z, w) = k is 1.
This case can be also classified into the following four cases:
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Case 2-1. |N(x)| = |N(y)| = 2 and G′ includes all vertices of G.
In this case, if G is a C2k (where 2k = p), G is k-equi-eccentric and Ge is a kK2 by
Proposition 1 (Figure 17), which is not a cluster. There exists no G such that Ge is a
cluster.

y : e(y) = k

w1 w2

v′ v : e(v) = k

x : e(x) = k

z1 z2

N(y) : e(w) = k

N(x) : e(z) = k

(a) G = C2k

y

w1 w2

x

z1 z2

(b) Ge = kK2

Figure 17: Example of G and Ge of Case 2-1.

Case 2-2. |N(x)| = |N(y)| = 2 and G′ does not include all vertices of G.
Let vi be a vertex which is not included in G′. Since G is connected, vi is connected
to some vertex of G′. Let x′ be a vertex on G′ such that d(vi, x′) is the shortest among
d(vi, vc) for any vertex vc on G′ (Figure 18a). Let y′ be a vertex on G′ such that
d(x′, y′) = k. For x′ and y′, we repeat the analogous argument as one for x and y.
Then we see that there are at least three paths of length k from x′ to y′. If k ̸= 2, Ge

cannot be a cluster as seen in Case 1.. If k = 2 and there is only one vertex v other than
x and y in N(x′) (Figure 18b where p = 5), G is K(3, 2) which is a 2-equi-eccentric
graph, and thus Ge is K3 ∪K2 (Figure 18c).

x

y

vi

y′

x′

P1 P2

(a) C2k

x

y

vy′ x′
|N(x′)| = 3

⇐⇒

(b) G

x
y

v

y′x′

(c) G = K(3, 2)

x
y

v

y′x′

K2 :

K3 :

(d) Ge = K2 ∪K3

Figure 18: Example of Case 2-2. where |N(x′)| = 3

If k = 2 and there are m′(≧ 2) vertices v1, v2, . . . , vm′ other than x′, y′, x and y in
N(x′) (where m′ = p − 4) (Figure 19a), G is K(m′ + 2, 2) (Figure 19b) and G is a
2-equi-eccentric graph. Thus Ge is K2 ∪Km′+2.

Case 2-3. |N(x)| = 2 and |N(y)| > 2.
If the number of w for each zi ∈ N(x) where d(zi, w) = k is 1, there must exist just
one wzi ∈ N(y) such that no path ziy with distance k−1 passes through wzi and every
path ziy passes through all wj ∈ N(y) other than wzi (Figure 20). But such a graph
G′ cannot be a k-equi-eccentric, so Ge is not a cluster. We do not need to consider this
case.
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x

y

v1y′ x′

v2
v3

vm′

|N(x′)| = m′ + 2

(a) G

x
y

v1

y′x′

v2 v3 vm′

⇐⇒

(b) G = K(m′ + 2, 2)

Figure 19: Example of Case 2-2. where |N(x′)| > 3 Figure 20: Example of Case 2-3.

Case 2-4. |N(x)| > 2.
If the number of w for each zi ∈ N(x) where d(zi, w) = k is 1, there must exist just
one wzi ∈ N(y) such that no path ziy with distance k − 1 passes through wzi and
every path ziy passes through all wj ∈ N(y) other than wzi . If G satisfies both this
condition and Ge =

⋃n
i=1Kpi , G is radius critical (Figure 21). Therefore, Ge is p

2
K2

by Theorem A, which is not a cluster.

(a) G = 3Cube (3-equi) (b) G = C4 × C4(= K2,2 ×K2,2); 5-equi (c) G = 4Cube (4-equi)

Figure 21: Examples of Case 2-4.

3. Further research

In this article, we determined that all graphs whose eccentric graphs are clusters if and only if
the graph is a complete n-partite graph K(p1, p2, . . . , pn), p ≧ 2. For further research, one can try
to determine all graphs that have the same eccentric graph. One can also try to find more graph
operations which preserve eccentricity like Mycielski’s operation, or to find practical applications
of eccentric graphs.
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