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Abstract

Zero-divisor graphs of a commutative ring R, denoted Γ(R), are well-represented in the literature.
In this paper, we consider domination numbers of zero-divisor graphs. For reduced rings, Vatan-
doost and Ramezani characterized the possible graphs for Γ(R) when the sum of the domination
numbers of Γ(R) and the complement of Γ(R) is n − 1, n, and n + 1, where n is the number of
nonzero zero-divisors of R. We extend their results to nonreduced rings, determine which graphs
are realizable as zero-divisor graphs, and provide the rings that yield these graphs.
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1. Introduction

The concept of the graph of the zero-divisors of a commutative ring was first introduced by
Beck in [4] when discussing the coloring of a commutative ring. In his work all elements of the ring
were considered vertices of the graph. Since the seminal paper by D.F. Anderson and Livingston
[3], the standard is to regard only nonzero zero-divisors as vertices of the graph, and we adhere to
this standard. The zero-divisor graph of R, denoted Γ(R), is the graph with V (Γ(R)) = Z(R)∗,
and for distinct r, s ∈ Z(R)∗, r − s ∈ E(Γ(R)) if and only if rs = 0. Among other results,
Anderson and Livingston proved that Γ(R) is always connected and has diameter at most 3 ([3,
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Theorem 2.3]). This discovery of strong graphical structure in zero-divisor graphs has inspired
researchers to continue exploring how the graphical structure of the zero-divisor graph might reveal
information about the algebraic structure in the ring, a desire necessitated by the frequent lack of
closure under addition in the set of zero-divisors of a ring. For general surveys of Γ(R), see [2]
and [6].

Domination has been extensively studied in the literature, though less frequently in regards
to graphs constructed from rings. (See [7], [11], and [1] for some recent examples of papers on
domination.) The main focus of this paper concerns the domination number of zero-divisor graphs.
In particular, we generalize theorems from Section 4 of [15]. The results presented in that paper
focus on what graphs are possible, and we determine which of these graphs are actually realizable
as zero-divisor graphs of commutative rings. Further, whereas the results of [15] were restricted
to reduced commutative rings with identity, or rings that have no nontrivial nilpotent elements, we
extend these results to non-reduced rings. In some papers on zero-divisor graphs, Γ(R) is not a
simple graph in the sense that a vertex v could have a loop if and only if v2 = 0. Since looped
vertices do not impact the domination number of a graph, this paper will adopt the convention that
all zero-divisor graphs are simple graphs. For reference, we will make copious use of the results
found in [14].

Below is a summary theorem outlining the main results of this paper.

Theorem 1.1. Let R be a commutative ring with identity.

1. γ(Γ(R)) = n
2

if and only if R ∼= Z3 × Z3 or R ∼= Z2 × Z2 × Z2.

2. γ(Γ(R))+γ(Γ(R)) = n+1 if and only if R ∼= Z2×Z2 or Z(R) is an ideal with (Z(R))2 = 0

3. γ(Γ(R))+γ(Γ(R)) = n if and only if R ∼= Z6, Z8, Z2[x]/(x
3), Z3×Z3, or Z4[x]/(2x, x

2−2)

4. γ(Γ(R)) + γ(Γ(R)) = n− 1 if and only if R ∼= Z2 × F4 or R ∼= Z2 × Z2 × Z2

2. Definitions

Throughout, by a ring we mean a commutative ring with identity, typically denoted by R. We
use Z(R) to denote the set of zero-divisors of R and Z(R)∗ to denote the set of nonzero zero-
divisors. For the set of integers modulo n and the field with n elements, we use the notations Zn

and Fn, respectively. For a ∈ R, the annihilator of a is ann(a) = {x ∈ R | ax = 0}. A ring is
local if it has a unique maximal ideal, typically denoted by M . For a general algebra reference,
see [9].

For any graph G, we denote the set of vertices of G by V (G) and the set of edges by E(G).
We will write v−w when vertices v and w are adjacent, or are incident to the same edge edge. By
a path between v and w, we mean a sequence of vertices and edges v − x1 − x2 − · · · − xn − w,
and G is connected if there exists a path between any two distinct vertices. The distance between
v and w, denoted by d(v, w), is the number of edges in a shortest path connecting v and w (note
that d(v, v) = 0 and d(v, w) = ∞ if no such path exists). The diameter of G is diam(G) =
sup{d(v, w) | v, w ∈ V (G)}. For a general graph theory reference, see [5].

If every pair of distinct vertices are adjacent in a graph G, then G is said to be a complete graph,
and a complete graph on n vertices is denoted as Kn. A graph G is called complete bipartite if
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there exist sets A,B ⊂ V (G) such that A ∪ B = V (G), A ∩ B = ∅, for all vi, vj ∈ A and
wi, wj ∈ B, we have vi − vj ̸∈ E(G), wi − wj ̸∈ E(G), and for all vi ∈ A and wj ∈ B, we
have vi − wj ∈ E(G). Finite complete bipartite graphs are denoted as Km,n, where |A| = m and
|B| = n. If |A| = 1, then the graph K1,n is called a star graph. A graph in which at least one vertex
is adjacent to every other vertex is called a star-shaped reducible. The graph v1−v2−· · ·−vn with
no other edges or vertices is called the path graph on n vertices and is denoted Pn, while the graph
v1−v2−· · ·−vn−v1 with no other edges or vertices is called the cycle graph on n vertices and is
denoted Cn. To create the corona of graphs G and H , denoted G ◦H , let V (G) = {v1, v2, ..., vn}.
Enumerate n copies of H as H1, H2, ..., Hn. Then we create G ◦H by joining vi to every vertex in
Hi with an edge for i = 1, ..., n.

For a graph G, a set X ⊆ V (G) is a dominating set of G if for every y ∈ V (G)\X there
exists x ∈ X such that x − y ∈ E(G). The domination number of G, denoted γ(G), is γ(G) =
min{|X| | X is a dominating set of G}.

This paper will also focus on the complement of a zero-divisor graph of a commutative ring
R. Given R, the complement of Γ(R) is denoted Γ(R) with V (Γ(R)) = V (Γ(R)), and a − b ∈
E(Γ(R)) if and only if a− b /∈ E(Γ(R)); i.e., ab ̸= 0 in R.

Throughout this paper, we only consider finite rings and will use n to denote |V (Γ(R))|; equiv-
alently, |Z(R)∗|.

3. Domination numbers of zero-divisor graphs

In [15], Vatandoost and Ramezani investigated the domination number and signed domination
number of reduced commutative rings. A reduced commutative ring is a commutative ring in which
x2 = 0 if and only if x = 0. Given R, a reduced commutative ring with identity, the results in [15]
classified the realizable graphs for Γ(R) if γ(Γ(R)) + γ(Γ(R)) ∈ {n− 1, n, n+ 1}.

The results presented below make repeated use of the excellent paper by Redmond, [14]. In
this paper, Redmond classifies all possible zero-divisor graphs with 14 or fewer vertices and their
associated commutative rings. Thus, given a graph with 14 or fewer vertices, it is possible to know
whether it corresponds to a zero-divisor graph of a commutative ring and to which ring(s).

Our first theorem generalizes [15, Theorem 4.1], which states that for R, a reduced commuta-
tive ring with identity, γ(Γ(R)) = n

2
if and only if Γ(R) is C4 or K3 ◦ K1. The following result

from [8] and [13] is used in the proof.

Lemma 3.1. [8, 13] For a graph Γ with even order m and no isolated vertices, γ(Γ) = n
2

if and
only if the components of Γ are the cycle C4 or the corona H ◦K1, where H is a connected graph.

Theorem 3.2. Let R be a commutative ring with identity. Then γ(Γ(R)) = n
2

if and only if
R ∼= Z3 × Z3 or R ∼= Z2 × Z2 × Z2.

Proof. (⇐) It is easy to check that |Z(Z3 × Z3)
∗| = 4 and γ(Γ(Z3 × Z3)) = 2 and that |Z(Z2 ×

Z2 × Z2)
∗| = 6 and γ(Γ(Z2 × Z2 × Z2)) = 3 (see Figure 1).

(⇒) By Lemma 3.1, Γ(R) is the cycle C4 or the corona H ◦K1, where H is a connected graph.
If Γ(R) is C4, then R ∼= Z3 × Z3 by [14]. Now suppose Γ(R) is H ◦K1 where H is a connected
graph. Let A = {ai ∈ Z(R)∗ | deg(ai) > 1 in Γ(R)}; i.e., A consists of the vertices from H .
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(1, 0) (0, 1)

(0, 2) (2, 0)

(0, 1, 1)
(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

(1, 1, 0)

(1, 0, 1)

Figure 1. Γ(Z3 × Z3) and Γ(Z2 × Z2 × Z2)

Since diam(Γ(R)) ≤ 3, the induced subgraph on A is complete. We consider two cases based on
the size of A.

If |A| = 2, then Γ(R) is the path graph P4 with a − b − c − d. However, by [3, Example
2.1(b)], P4 is not the zero-divisor graph of any commutative ring with identity. Suppose |A| > 3.
Let ai ∈ A and let ai ∈ Z(R)∗ with ann(ai) ∩ A = {ai}. Consider a1 + a2. Then a1 + a2 ̸= 0.
Otherwise, ann(a1) = ann(a2) = A ∪ {0, a2}, a contradiction. Since a1(a1 + a2) = 0, we
have a1 + a2 ∈ Z(R)∗. Since a1 + a2 ∈ ann(a1)\{a1}, we see that a1 + a2 ∈ A. Let b ∈
A\{a1, a2, a1+a2} (since |A| > 3). Since the subgraph induced by A is complete, b(a1+a2) = 0.
Thus, ba1 = 0 because ba2 = 0. This is a contradiction.

Therefore, |A| = 3. This implies Γ(R) ∼= K3 ◦K1. By [14], R ∼= Z2 × Z2 × Z2.

The following theorem characterizes exactly when γ(Γ(R))+ γ(Γ(R)) = n+1. This theorem
is a generalization of [15, Theorem 4.2], which states for R, a reduced commutative ring with
identity, γ(Γ(R)) + γ(Γ(R)) = n+ 1 if and only if Γ(R) is the complete graph Kn.

Theorem 3.3. Let R be a commutative ring with identity. Then the following are equivalent.

1. γ(Γ(R)) + γ(Γ(R)) = n+ 1.
2. Γ(R) is the complete graph Kn.
3. R ∼= Z2 × Z2 or xy = 0 for all x, y ∈ Z(R).
4. R ∼= Z2 × Z2 or Z(R) is an ideal with Z(R)2 = {0}.

Proof. The equivalence of 1 and 2 follows from the proof of [15, Theorem 4.2], while the equiva-
lences of 2, 3, and 4 follow from [3, Corollary 2.7 and Theorem 2.8].

Note that if R is Artinian, then statement (4) of Theorem 3.3 is equivalent to R ∼= Z2 × Z2 or
R is local with maximal ideal M such that M2 = {0}.

In reference to [15], if R is reduced the following corollary holds.

Corollary 3.4. Let R be a reduced commutative ring with identity. Then γ(Γ(R)) + γ(Γ(R)) =
n+ 1 if and only if R ∼= Z2 × Z2.

Proof. If R ∼= Z2 × Z2, then |Z(Z2 × Z2)
∗| = 2. By construction of Γ(Z2 × Z2) and Γ(Z2 × Z2),

we see that γ(Γ(Z2 × Z2)) + γ(Γ(Z2 × Z2)) = 1 + 2 = 2 + 1. Conversely, by Theorem 3.3,
R ∼= Z2 ×Z2 or xy = 0 for all x, y ∈ Z(R). Thus, since R is reduced, we have R ∼= Z2 ×Z2.
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We remind the reader of a useful graph theory result.

Lemma 3.5. [12, Theorem 13.1.3] If a simple graph G has n vertices and no isolated vertices,
then γ(G) ≤ n

2
.

Thus, since zero-divisor graphs of commutative rings are connected and in this paper simple
graphs are considered, γ(Γ(R)) ≤ n

2
. This result will be utilized in the proof of Theorem 3.7 (cf.

[15, Theorem 1.3]). In addition, we will use a result that relates the number of vertices, number of
edges, and domination number of a graph. The next lemma follows from a theorem in [16], which
states for a simple graph G with n vertices and m edges, if γ(G) ≥ 2, then

m ≤
⌊
(n− γ(G))(n− γ(G) + 2)

2

⌋
.

Lemma 3.6. Let G be a simple graph with n ≥ 2 vertices. Then γ(G) = n − 1 if and only if G
has exactly one edge.

Proof. (⇒) Clear.
(⇐) If G has exactly one edge, then precisely one vertex is dominated and, thus,

γ(G) = n− 1.

We now consider when γ(Γ(R))+γ(Γ(R)) = n. In the case when R is a reduced commutative
ring with identity, Vatandoost and Ramezani proved γ(Γ(R)) + γ(Γ(R)) = n if and only if Γ(R)
is C4 or P3 ([15, Theorem 1.3]).

Theorem 3.7. Let R be a commutative ring with identity. Then the following are equivalent.

1. γ(Γ(R)) + γ(Γ(R)) = n.
2. Γ(R) is C4 or P3.
3. R ∼= Z6, Z8, Z2[x]/(x

3), Z3 × Z3, or Z4[x]/(2x, x
2 − 2).

Proof. The equivalence of 2 and 3 follows from [14]. It is straightforward to verify (2 ⇒ 1).
(1 ⇒ 2) If γ(Γ(R)) = n

2
, then R ∼= Z3 × Z3 or R ∼= Z2 × Z2 × Z2 by Theorem 3.2. Observe

that γ(Γ(Z3 × Z3)) = 2 and γ(Γ(Z2 × Z2 × Z2)) = 2. Thus, γ(Γ(R))+γ(Γ(R)) = n holds when
R ∼= Z3 × Z3 but not for R ∼= Z2 × Z2 × Z2. Hence, R ∼= Z3 × Z3 and Γ(Z3 × Z3) is C4.

If γ(Γ(R)) < n
2
, then γ(Γ(R)) > n

2
. Therefore, Γ(R) has an isolated vertex by Lemma 3.5.

Thus, γ(Γ(R)) = 1 and γ(Γ(R)) = n − 1. By Lemma 3.6, Γ(R) has exactly one edge. We now
consider possible values of n. If n = 1, then γ(Γ(R)) = γ(Γ(R)) = 1. If n = 2, then γ(Γ(R))
consists of two isolated vertices. In both cases, γ(Γ(R)) ̸= n− 1. These contradictions imply that
n ≥ 3.

If n > 3, then Γ(R) consists of n − 2 isolated vertices and two vertices that are incident to a
single edge. Without loss of generality, say a1−a2 ∈ E(Γ(R)). Let Z(R)∗ = {a1, a2, . . . , an} with
aiaj = 0 whenever i ̸= j and {i, j} ≠ {1, 2}. For any ai, aj ∈ Z(R)∗, there exists ak ∈ Z(R)∗

such that akai = 0 and akaj = 0. Thus, ak(ai + aj) = 0. Hence, Z(R) is closed under addition.
Since |Z(R)∗| > 3, there exists ai ∈ Z(R)∗\{a1, a2} such that a1 + ai /∈ {a1, a2}. We see
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0 = a1(a1 + ai) = a21 + a1ai = a21, which yields 0 = a1(a1 + a2) = a21 + a1a2 = a1a2, a
contradiction.

Thus, it must be that n = 3. In this case the graph on the left in Figure 2 shows the only
possiblity for Γ(R). This implies that Γ(R) is as shown on the right in Figure 2. Hence, Γ(R) is
P3.

a b

c

a b

c

Figure 2. Γ(R) for n = 3, and its associated Γ(R).

We now discuss necessary and sufficient conditions for γ(Γ(R))+γ(Γ(R)) = n−1. Note that
when R is a reduced commutative ring with identity, [15, Theorem 1.4] states
γ(Γ(R))+γ(Γ(R)) = n−1 if and only if Γ(R) is isomorphic to K1,3 or K3◦K1. First, we provide
two observations that will be helpful when classifying these rings.

Observation 3.8. If m, n > 1, then γ(Km,n) + γ(Km,n) = 4. If m = 1 or n = 1, then
γ(Km,n) + γ(Km,n) = 3. In addition, γ(Kn) + γ(Kn) = 1 + n.

Observation 3.9. For a commutative ring R with identity, the equation γ(Γ(R))+γ(Γ(R)) = n−1
where |Z(R)∗| = n can only hold if n > 3.

Note that Observation 3.9 follows from the fact that if n = 1 or n = 2, then the equation fails
to hold as γ(Γ(R)) ≥ 1 and γ(Γ(R)) ≥ 1. If n = 3, then we see that Γ(R) is either K1,2 or K3

since Γ(R) is connected. In both cases, γ(Γ(R)) + γ(Γ(R)) ̸= n− 1.
In the following proposition, two more possibilities for n are eliminated when

γ(Γ(R)) + γ(Γ(R)) = n− 1.

Proposition 3.10. Let R be a commutative ring with identity. If γ(Γ(R)) + γ(Γ(R)) = n− 1 and
Γ(R) is star-shaped reducible, then n /∈ {5, 6}.

Proof. If n = 5, then by [14] we have R ∼= Z2 × Z5. Since Γ(Z2 × Z5) is K1,4,
γ(Γ(R)) + γ(Γ(R)) = 1 + 2 ̸= 5 − 1. If n = 6, then by again by [14], Γ(R) is K6. Hence,
γ(Γ(R)) + γ(Γ(R)) = 1 + 6 ̸= 6− 1.

We now build upon the above results.

Theorem 3.11. Let R be a commutative ring with identity. Then the following are equivalent.

1. γ(Γ(R)) + γ(Γ(R)) = n− 1.
2. Γ(R) is K1,3 or K3 ◦K1.
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3. R ∼= Z2 × F4, or R ∼= Z2 × Z2 × Z2.

Proof. By [14], we have (2 ⇔ 3).
(2 ⇒ 1) By Observation 3.8, if Γ(R) is K1,3, then γ(Γ(R)) + γ(Γ(R)) = 3 = 4 − 1 =

|Z(R)∗| − 1 since |Z(R)∗| = 4. Similarly, if Γ(R) is K3 ◦ K1, then, as shown in Figure 3,
γ(Γ(R)) = 3 while γ(Γ(R)) = 2. Hence, γ(Γ(R)) + γ(Γ(R)) = 3 + 2 = 6 − 1 = |Z(R)∗| − 1
since |Z(R)∗| = 6.

a b

x y

z

c

a

z

b

y

c
x

Figure 3. K3 ◦K1 and K3 ◦K1

(1 ⇒ 2) If γ(Γ(R))+γ(Γ(R)) = n− 1, then n ≥ 4 by Observation 3.9. As before, since Γ(R)
is connected, we have γ(Γ(R)) ≤ n

2
by Lemma 3.5. Three cases are considered: γ(Γ(R)) = n

2
,

γ(Γ(R)) = n
2
− 1, and γ(Γ(R)) < n

2
− 1.

Case 1. Suppose that γ(Γ(R)) = n
2
. Then R ∼= Z3 × Z3 or R ∼= Z2 × Z2 × Z2 by Theorem

3.2. From Theorem 3.7, if R ∼= Z3 ×Z3, then γ(Γ(R)) + γ(Γ(R)) = n. Thus, R ∼= Z2 ×Z2 ×Z2

and Γ(R) is K3 ◦K1.
Case 2. Suppose that γ(Γ(R)) = n

2
− 1. Thus γ(Γ(R)) = n

2
. By [10], we have

γ(Γ(R))γ(Γ(R)) ≤ n. So, (n
2
− 1)(n

2
) ≤ n, which implies that n

2
− 1 ≤ 2. Therefore, n ≤ 6. By

Observation 3.9, n = 4, 5, or 6. However, n
2
− 1 ∈ Z, so n = 4 or n = 6.

If n = 4, then Γ(R) is one of K2,2, K4, or K1,3 by [14]. Since γ(K2,2) = 2 ̸= n
2
−1, Γ(R) is not

K2,2. Since γ(K4) = 4, we see that Γ(R) is not K4. Since γ(Γ(K1,3))+γ(Γ(K1,3)) = 1+2 = 4−1,
we see that Γ(R) is K1,3. By [14], R ∼= Z2 × F4.

If n = 6, then Γ(R) is one of K6, K3 ◦K1, K2,4, or K3,3 by [14]. Since γ(K6) = 1 ̸= n
2
− 1

and γ(K3 ◦K1) = 3 ̸= n
2
− 1, Γ(R) is not K6 or K3 ◦K1. By Observation 3.8, K2,4 and K3,3 do

not satisfy γ(Γ(R)) + γ(Γ(R)) = n− 1.
Case 3. Suppose that γ(Γ(R)) < n

2
− 1. Since γ(Γ(R)) > n

2
, by Lemma 3.5 Γ(R) has an

isolated vertex, say w. Thus, in Γ(R) the vertex w is adjacent to all other vertices. Hence, Γ(R) is
star-shaped reducible. This implies that γ(Γ(R)) = 1 and γ(Γ(R)) = n− 2.

By Observation 3.9, n ≥ 4, and by Proposition 3.10, we have n ̸= 5, 6. Therefore, we have
either n = 4 or n ≥ 7. Since γ(Γ(R)) ≥ 1 and γ(Γ(R)) < n

2
− 1, n = 4 is not possible. Thus,

n ≥ 7. The remainder of the proof will show that n ≥ 7 is not possible.
Pick a minimum dominating set D of Γ(R). Since γ(Γ(R)) = n−2, there are vertices a, b /∈ D

and Z(R)∗ = D∪{a, b}. Also, there exists di, dj ∈ D such that a− di, b− dj ∈ E(Γ(R)). Let Ca

and Cb be connected components of Γ(R) containing a and b, respectively. We show two things:

175



www.ejgta.org

On domination numbers of zero-divisor graphs of commutative rings | S.E. Anderson et al.

1. D\(Ca ∪ Cb) consists solely of isolated vertices in Γ(R).
2. There are five possible graph configurations for Ca and Cb, and hence for Γ(R).

First, we show D\(Ca∪Cb) consists solely of isolated vertices in Γ(R). Pick d ∈ D\(Ca∪Cb),
and suppose d − x ∈ E(Γ(R)) for some x ∈ Z(R)∗. Clearly x /∈ {a, b}. Since d /∈ Ca ∪ Cb we
have d /∈ {di, dj}. Since d− x, a− di, b− dj ∈ E(Γ(R)) and Z(R)∗ = D ∪ {a, b}, D′ = D\{d}
is a dominating set of Γ(R). This is a contradiction since |D′| < |D|. Hence, each vertex of
D\(Ca ∪ Cb) is an isolated vertex of Γ(R).

The above shows that if Ca and Cb are the same component, then

γ(Γ(R)) = n− 2 = γ(Ca) + n− |V (Ca)|. (1)

In addition, if Ca and Cb are disjoint components, then

γ(Γ(R)) = n− 2 = γ(Ca) + γ(Cb) + n− |V (Ca)| − |V (Cb)|. (2)

The possible graph configurations for Ca and Cb are now investigated based on whether or not
Ca and Cb are the same component or disjoint components.

Subcase 1. Assume that Ca and Cb consist of the same connected component in Γ(R).
If |V (Ca)| = m ≥ 5, then γ(Ca) ≤ m

2
by Lemma 3.5. Thus, γ(Γ(R)) ≤ m

2
+ n−m = n− m

2

by Equation 1. However, n− m
2
> n− 2 since m ≥ 5, a contradiction. Thus, |V (Ca)| ≤ 4. Note

that |V (Ca)| > 2 since a, b /∈ D.
If |V (Ca)| = 4, then γ(Ca) = 2 since, by Equation 1, n − 2 = γ(Ca) + n − 4. Hence, Ca is

either C4 or P4.
If |V (Ca)| = 3, then γ(Ca) = 1 since, by Equation 1, n − 2 = γ(Ca) + n − 3. Hence, Ca is

either C3 or P3.
Subcase 2. Assume Ca and Cb are disjoint components of Γ(R). Clearly,

|V (Ca)|, |V (Cb)| ≥ 2. Assume, without loss of generality, that |V (Ca)| = m ≥ 3. Then
γ(Ca) ≤ m

2
by Lemma 3.5. Hence, by Equation 2,

n− 2 = γ(Ca) + γ(Cb) + n− |V (Ca)| − |V (Cb)| ≤
m

2
+ γ(Cb) + n−m− |V (Cb)|

which simplifies to

|V (Cb)| − γ(Cb) +
m

2
≤ 2

This inequality is impossible since |V (Cb)| − γ(Cb) ≥ 1 and m
2
≥ 3

2
. Similarly, |V (Cb)| cannot be

greater than or equal to 3. Thus, |V (Ca)| = |V (Cb)| = 2, and hence Ca and Cb are P2.
The above work shows there are 5 possible configurations for Γ(R), as shown in Figure 4.
We show that none of these configurations for Γ(R) are possible. Recall that n ≥ 7 as stated at

the beginning of Case 3.
Configuration 1. The graphs of Γ(R) and Γ(R) for Configuration 1 are shown in Figure 5. Let

a, b, c, and d be as shown in Figure 5.
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vertices
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a
isolated
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Figure 4. The five configurations for Γ(R)

Consider a+b. Since ann(a) ̸= ann(b), a ̸= −b. Thus, a+b ̸= 0. Since there exists l ∈ Z(R)∗

with la = lb = 0, l(a + b) = 0. This implies a + b ∈ Z(R)∗. Clearly, a + b ̸= a and a + b ̸= b.
Observe from Γ(R) that c(a + b) = ca + cb = ca ̸= 0. Thus, the element a + b is not in the
complete subgraph portion of Γ(R) which means a+ b ∈ {a, b, c, d}. We see that a+ b ̸= d since
cd = 0. Thus, a + b = c. However, 0 = dc = d(a + b) = da + db = db ̸= 0, a contradiction. So,
Γ(R) cannot take this configuration.

c

b

d

a
isolated
vertices c

b

d

a complete
subgraph

Figure 5. Configuration 1, Γ(R) on left and Γ(R) on right.

Configuration 2. The graphs of Γ(R) and Γ(R) for Configuration 2 are shown in Figure 6. Let
a, b, and c be as shown in Figure 6.

Let l1, l2 be distinct vertices in the complete subgraph portion of Γ(R) as in Figure 6. Consider
the elements l1 + b and l2 + b. Neither element is 0 since ann(l1) = ann(l2) ̸= ann(b) implies
li ̸= −b. It can then be seen from Γ(R) that {l1 + b, l2 + b} ⊆ ann(a)\ ann(c) ⊆ {a, b}. Clearly,
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c
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complete
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Figure 6. Configuration 2, Γ(R) on left and Γ(R) on right.

l1+b and l2+b are not equal to b. Thus, l1+b = a = l2+b, which implies l1 = l2, a contradiction.
So, Γ(R) cannot take this configuration.

Configuration 3. The graphs of Γ(R) and Γ(R) for Configuration 3 are shown in Figure 7. Let
a, b, and c be as shown in Figure 7.

a

cb

isolated
vertices

a

c
b

complete
subgraph

Figure 7. Configuration 3, Γ(R) on left and Γ(R) on right.

Let l1, l2, l3, l4 be distinct vertices in the complete subgraph portion of Γ(R) as in Figure 7.
Then a(li + b) = ab ̸= 0. Thus, li + b is not in the complete subgraph portion of Γ(R). Also, since
li ∈ ann(a) for 1 ≤ i ≤ 4 but b,−b /∈ ann(a), we have li + b ̸= 0 for 1 ≤ i ≤ 4. When i ̸= j,
we have lj(li + b) = 0, so li + b ∈ Z(R)∗ for 1 ≤ i ≤ 4. Clearly, li + b ̸= b. This implies that for
1 ≤ i ≤ 4 we have {l1+b, l2+b, l3+b, l4+b} ⊆ {a, c}. Without loss of generality, l1+b = l2+b,
implying that l1 = l2, a contradiction. So, Γ(R) cannot take this configuration.

Configuration 4. The graphs of Γ(R) and Γ(R) for Configuration 4 are shown in Figure 8. Let
a, b, c, and d be as shown in Figure 8.

d

b

c

a
isolated
vertices d

b

c

a complete
subgraph

Figure 8. Configuration 4, Γ(R) on left and Γ(R) on right.

None of the zero-divisor graphs with 7 vertices are isomorphic to Γ(R) in Figure 8 since none
of the realizable graphs in [14] have exactly 4 vertices of degree 4. Hence, n ≥ 8. Let l1, l2, l3, l4
be distinct vertices in the complete subgraph portion of Γ(R). As in the argument above for
Configuration 3, {l1 + b, l2 + b, l3 + b, l4 + b} ⊆ {a, c, d}. This yields the same contradiction as in
Configuration 3. So, Γ(R) cannot take this configuration.

Configuration 5. The graphs of Γ(R) and Γ(R) for Configuration 5 are shown in Figure 9. Let
a, b, c, and d be as shown in Figure 9.
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b
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a complete
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Figure 9. Configuration 5, Γ(R) on left and Γ(R) on right.

Again, none of the zero-divisor graphs with 7 vertices are isomorphic to Γ(R) in Figure 9 since
none of the realizable graphs in [14] have exactly 2 vertices of degree 4 as exhibited by a and b.

Hence n ≥ 8. Let l1, l2, l3, l4 be distinct vertices in the complete subgraph portion of Γ(R). As
in the argument above, we obtain {l1 + b, l2 + b, l3 + b, l4 + b} ⊆ {a, c, d}. This yields the same
contradiction. So, Γ(R) cannot take the configuration in Configuration 5.

We have now shown the four results given in Theorem 1.1.
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