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Abstract
In this paper, we consider A-vertex magic graphs, where A is a non-trivial Abelian group. We
characterize Z-vertex magic graphs. We also explore the relation between the A-vertex magicness
of a graph G and its reduced graph. In addition, we introduce a new type of labeling called A′-
vertex magic labeling of graphs and characterize A-vertex magicness using A′-vertex magicness.
We give a new procedure to embed any graph as an induced subgraph of an A-vertex magic graph
and we construct infinite families of A-vertex magic graphs both of these procedure uses less
number of vertices compared to the one given in (Sabeel et al. in Australas. J. Combin. 85(1)
(2023), 49-60) and we also generalize some results proved in this paper. Finally we completely
classify generalised friendship graph using A-vertex magicness and group vertex magicness.
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1. Introduction

All the graphs considered in this paper are connected simple finite graphs and A denote a
non-trivial Abelian group, not necessarily finite. Let G = (V (G), E(G)) be a graph, we denote
by V (G) the vertex set of G. The concept of distance magic graph was introduced by Vilfred
in his research work [12]. Suppose G is a graph on n vertices, we say that G is distance magic
if there exists a bijection f : V (G) → {1, 2, . . . , n} such that w(v) =

∑
u∈NG(v) l(u) = µ for
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any vertex v of G, where NG(v) = {u ∈ V (G) : vu ∈ E(G)} is the open neighborhood of the
vertex v in G. The distance antimagic graph concept was introduced by Kamatchi and Arumugam
[7] in 2013. A graph G on n vertices is said to be distance antimagic if there exists a bijection
f : V (G) → {1, 2, . . . , n} such that w(u) ̸= w(v) for every distinct pair of vertices u and v.
Simanjuntak et al. have studied the distance magic, distance anti magic labelings of regular graphs
and product graphs [9] and [13]. A graph G is said to be A-vertex magic if there exists a labeling
l : V (G) → A \ {0} and µ in A such that w(v) =

∑
u∈NG(v) l(u) = µ for any vertex v of G, where

NG(v) = {u ∈ V (G) : vu ∈ E(G)} is the open neighborhood of the vertex v in G. The element
µ is called a magic constant of the labeling l. A graph G that admits such a labeling is called an
A-vertex magic graph. If G is an A-vertex magic graph for every non-trivial Abelian group A, then
G is called a group vertex magic graph. We denote the degree of a vertex v in a graph G by dG(v).
If v ∈ V (G) is such that dG(v) = 1, then v is called a pendant vertex of G. In this case, the vertex
to which v is adjacent is called a support vertex. A vertex w is called a strong support vertex if w
is adjacent to at least two pendant vertices.

The concept of group vertex magic graphs was introduced by Kamatchi et al. [8] and they have
studied some properties of this magicness for trees with diameter at most 4. In [10], Sabeel et
al. have completely characterized A- vertex magic trees of diameter at most 5, where A is a finite
Abelian group. In [1] and [2], the present authors have given a necessary condition for a graph to
be A-vertex magic and they have obtained results for the A-vertex magicness of product of graphs.

In this paper, we use group elements to label the vertices of a graph and we have extended
the study of group vertex magicness of a graph by considering an arbitrary Abelian group. This
work considers the vertex magicness of H-join and generalised friendship graphs. We use the
following important results in group theory namely Cauchy’s theorem, Sylow’s first theorem and
fundamental theorem of finite Abelian groups. We refer to Bondy and Murty [4] for graph theoretic
terminology and notations. We refer to Herstein [5] for ideas in algebra.

Let H be a graph with vertex set {v1, v2, . . . , vk} and let G1, G2, . . . , Gk be arbitrary graphs.
The H-join operation of the graphs G1, G2, . . . , Gk is denoted as H[G1, G2, . . . , Gk], is obtained by
replacing the vertex vi of H by the graph Gi for 1 ≤ i ≤ k and every vertex of Gi is made adjacent

with every vertex of Gj , whenever vi is adjacent to vj in H . The vertex set V (G) =
k⋃

i=1

V (Gi) and

edge set E(G) =
( k⋃
i=1

E(Gi)
)
∪
( ⋃
vivj∈E(H)

{uv : u ∈ V (Gi), v ∈ V (Gj)}
)

(see [11] and [3]). If

G ∼= Gi, for 1 ≤ i ≤ k, then H[G1, G2, . . . , Gk] ∼= H[G], the lexicographic product of H and G.
Let R be a commutative ring an element x of R is said to be a unit if it has a multiplicative

inverse. A non-zero element u of R is said to be a zero-divisor if its product with a non-zero
element yields zero. Let Z(R) denotes set of all zero-divisor of R. Given a ring R, we associate
a simple graph Γ(R) to R with vertex set the set of all zero-divisor Z(R) of R and two distinct
vertices u and v are adjacent if and only if uv = 0. This graph Γ(R) is called the zero-divisor
graph of R.

A caterpillar is a tree in which the removal of pendant vertices yields a path.
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2. Main results

Let us begin this section with following observation.

Observation 2.1. If G is a connected graph with |V (G)| ≤ 3, then G is A-vertex magic, where
|A| > 2.

The graph P4 is not A-vertex magic graph with minimum number of edges.

Theorem 2.1. Let G be a Z-vertex magic graph. Then there exists k ∈ N such that G is Zm-vertex
magic, for all m ≥ k.

Proof. Assume that l is Z-vertex magic labeling of G. Then l(vi) = ki, where ki ∈ Z, i =
1, 2, . . . , n. Let k = max{|ki|}+ 1. Now, define l′ : V (G) → Zm \ {0} by l′(vi) = l(vi)a, where
o(a) = m and m ≥ k. Clearly, the labeling l′ is Zm-vertex labeling of G, for all m ≥ k.

Theorem 2.2. Let m ∈ N and l is a Zp-vertex magic labeling of G, for all primes p ≥ m. Then G
is Z-vertex magic.

Proof. Let us assume l is Zp-vertex magic labeling of G, for all prime p ≥ m. Clearly, l is Zp′-
vertex magic, where p′ = min{p : p ≥ m}. Then l(vi) = kia, where ki ∈ Z and o(a) = p′.
Now, define l′ : V (G) → Z \ {0} by l′(vi) = kia, here a is generator of Z. Suppose l′ is
not a Z-vertex magic labeling of G, then there exists vi, vj ∈ V (G) such that w(vi) ̸= w(vj),
which implies w(vi) ̸= w(vj) is also true for all Zp1 , where p1 is a prime number, such that p1 >
max{deg(vi) : vi ∈ V (G)} · p′, which is a contradiction.

We recall the following relation on V (G) (see [3]). For any two vertices u, v ∈ V (G), define
u ∼G v if and only if NG(u) = NG(v). It is easy to see that, the relation ∼G is an equivalence rela-
tion on V (G). Let [u] be the equivalence class which contains u and S be the set of all equivalence
classes of this relation ∼G. The reduced graph H of G is defined as follows. The reduced graph
H of G is the graph with vertex set V (H) = S and two distinct vertices [u] and [v] are adjacent
in H if and only if u and v are adjacent in G. Note that, if V (H) = {[u1], [u2], . . . , [uk]}, then G
is the H-join of ⟨[u1]⟩, ⟨[u2]⟩, . . . , ⟨[uk]⟩, that is, G ∼= H[⟨[u1]⟩, ⟨[u2]⟩, . . . , ⟨[uk]⟩] (⟨[u]⟩ denote the
subgraph induced by [u]) and each [ui] is an independent subset of G, we take |[ui]| = mi, where
mi ∈ N for each i. Clearly, H is isomorphic to a subgraph of G induced by {u1, u2, . . . , uk}.

Theorem 2.3. If the reduced graph H of G is A-vertex magic, where |A| > 2 then G is A-vertex
magic.

Proof. Assume that H is A-vertex magic with the corresponding labeling l such that l([ui]) = ai,
where ai ∈ A \ {0} and [ui] = {ui

1, . . . , u
i
mi
}, for i = 1, . . . , k. Define the label on V (G) as

follows, suppose mi is odd, then define

l′(ui
j) =


ai, if j = 1,

a, if j > 1 and j is odd,
−a, if j is even,
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for some a ∈ A \ {0}. Suppose mi is even, then define

l′(ui
j) =


ai + a, if j = 1,

a, if j > 1 and j is odd,
−a, if j is even,

where ai ̸= −a. Let v ∈ V (G). Then v ∈ [ui], for some i. As w(v)(corresponding label l′ in G) is
equal to w([ui])(corresponding label l in H), G is A-vertex magic.

The following result proved in [2] is a consequence of Theorem 2.3.

Corollary 2.1 (Theorem 3, [2]). Let G = Kn1,n2,...,nm be a complete m-partite graph. Then G is
A-vertex magic, where |A| > 2.

Proof. By the relation ∼G on V (G), we see that Km is the reduced graph of G. Since Km is
A-vertex magic, where |A| > 2 and hence the result follows.

The following result proved in [10] is an immediate consequence of Corollary 2.1.

Corollary 2.2 (Corollary 2.4, [10]). For any finite Abelian group A with |A| ≥ 3, all tree of
diameter 2 are A-vertex magic.

The following corollaries are an immediate consequence of Theorem 2.3.

Corollary 2.3. If any connected graph G has at most three equivalence classes under the relation
∼G, then the graph G is A-vertex magic, where |A| > 2.

Proof. By Theorem 2.3 and observation 2.1, we get the required result.

Corollary 2.4. Let G = Kn1,n2,...,nm be a complete m-partite graph. The G + Kn is A-vertex
magic.

Proof. The reduced graph H of G+Kn is regular graph. By Theorem 2.3, the result follows.

Theorem 2.4. Let H be a simple graph on k vertices and let Gj = Knj

c, for all j = 1, 2, . . . , k.
The graph G = H[G1, G2, . . . , Gk] is A-vertex magic, where |A| > 2, if nj > 1, for each j =
1, 2, . . . , k.

Proof. Let V (G) =
⋃k

j=1 V (Kc
nj
) and vji ∈ V (Kc

nj
), where i = 1, 2, . . . , nj . Assume that each

nj > 1. Suppose nj is odd, define l : V (G) → A \ {0} by

l(vji ) =


a+ b, if i = 1,

−b, if i = 2,

−a, if i > 1 and i is odd,
a, if i > 2 and i is even,

318



www.ejgta.org

Group vertex magicness of H-join and generalised friendship graph | S. Balamoorthy et al.

where a ̸= −b.
Suppose nj is even, define l : V (G) → A \ {0} by

l(vji ) =

{
a, if i is odd,
−a, if i is even.

Thus w(v) = 0, for all v ∈ V (G).

The following result proved in [2] is an immediate consequence of Theorem 2.4.

Corollary 2.5 (Theorem 15, [2]). Let G be any simple graph on n vertices. The graph G[Km
c] is

A-vertex magic, |A| > 2 if and only if m > 1.

Consider the zero-divisor graph Γ(R), where R is a finite commutative reduced ring with unity.
It is well-known that such a ring has to be a product of finite fields [3]. That is, there exist k finite
fields Fq1 , Fq2 , . . . , Fqk such that R ∼= Fq1 × Fq2 × · · · × Fqk , where qi

′s are prime powers, say
qi = pni

i , ni ∈ N.

Corollary 2.6. Let qi ≥ 3 be a prime power, for 1 ≤ i ≤ k and R ∼= Fq1 × Fq2 × · · · × Fqk . Then
the graph Γ(R) is A-vertex magic, where |A| > 2.

Proof. An easy observation, if v ∈ V (Γ(R)), then there exists a vertex u ∈ V (Γ(R)) such that
u ̸= v and N(u) = N(v). Therefore, each equivalence class (∼G) contains at least two element in
V (Γ(R)). By Theorem 2.4, R is A-vertex magic, where |A| > 2.

Definition 2.1. Let G be a graph and let H be its reduced graph. We say that H is A′ magic if
there exists a labeling l : V (H) → A such that 0 can also be used to label the vertices [u] ∈ V (H)

whenever |[u]| ≥ 2 and
∑

[u]∈N([v])

l([u]) = µ, for all [v] ∈ V (H).

Lemma 2.1. Let A be an Abelian group with at least three elements. If n ≥ 2 and a ∈ A, then
there exists a1, a2, . . . , an in A \ {0} such that a =

∑n
i=1 ai.

Proof. Consider the following cases.
Case 1. a = 0.

Let b, c ∈ A \ {0} and b ̸= −c. If n is odd, define

ai =


b+ c, if i = 1,

−c, if i = 2,

−b, if i > 1 and i is odd,
b, if i > 2 and i is even.

If n is even, define

ai =

{
b, if i is odd,
−b, if i is even.
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Case 2. a ̸= 0
Let a, b ∈ A \ {0} and a ̸= −b. If n is odd, define

ai =

{
a, if i is odd,
−a, if i is even.

If n is even, define

ai =


a+ b, if i = 1,

−b, if i = 2,

−a, if i > 1 and i is odd,
a, if i > 2 and i is even.

The following result proved in [10] is an immediate consequence of Lemma 2.1.

Corollary 2.7 (Lemma 2.1 in [10]). Let A be a finite Abelian group with |A| ≥ 3 and let g ∈ A.
Then, for each n ≥ 2. there exist a1, a2, . . . , an in A \ {0} such that g = a1 + a2 + · · ·+ an.

Theorem 2.5. A graph G is A-vertex magic, where |A| > 2 if and only if it’s reduced graph H of
G is A′ magic.

Proof. Assume that G is A-vertex magic and l is corresponding A-vertex magic labeling. Define
l′ : V (H) → A by l′([v]) =

∑
u∈V (G)
u∼Gv

l(u). Then

w([v]) =
∑

[u]∈N([v])

l′([u])

=
∑( ∑

u′∈V (G)

u′∼Gu

l(u′)
)

=
∑

u∈N(v)

l(u)

= w(v)

Since G is A-vertex magic, we have H is A′ magic.
Conversely, assume that the reduced graph H of G is A′ magic and the corresponding labeling be
f . Define f ′ : V (G) → A \ {0} by if |[v]| = 1, then f ′(v) = f([v]) and if |[v]| ≥ 2, then we label
the vertices of the class using Lemma 2.1 in such a way that sum of the labels of all vertices in this
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equivalence class is equal to f([v]) in the reduced graph H of G.

w(v) =
∑

u∈N(v)

f ′(u)

=
∑

[u]∈N([v])

f([u])

= w([v]).

The following corollaries are immediate consequence of Theorem 2.5.

Corollary 2.8. Let A be an Abelian group with at least three elements. If G is a graph in which
every non-pendant vertex is a strong support vertex, then G is A-vertex magic.

Proof. Let v1, v2, . . . , vk be non-pendant vertices of G and vij be the pendant vertices of G, which
are adjacent to vi, j = 1, 2, . . . ,mi, where mi ≥ 2 for all i = 1, 2, . . . , k. Let H be the reduced
graph of G. Define l : V (H) → A \ {0} by

l([vm]) =

{
a, if dG(vm) > 2,

−(dH([vi])− 1)a, if vm = vij for some i, j

where a ∈ A \ {0}. Thus w([v]) = a, for all [v] ∈ V (H). By Theorem 2.5, we get the required
result.

The following result proved in [10] is an immediate consequence of corollary 2.8.

Corollary 2.9 (Theorem 2.2 in [10]). Let A be a finite Abelian group with |A| ≥ 3. If G is a graph
in which every non-pendant vertex is a strong support vertex, then G is A-vertex magic.

Corollary 2.10. A caterpillar T is A-vertex magic, where |A| > 2 if and only if T has no vertex of
degree two.

Proof. Let T be a caterpillar. Assume that T has a non-corner vertex with degree 2, let v2 be such
a vertex. Also, in the reduced graph H , deg([v2]) = 2(see Figure 1).

Suppose H is A′-vertex magic, then w([v2]) = l([v1]) + l([v3]). Let [v′1] be a equivalence class
which contained all vertices only adjacent to v1 in T . Since w([v′1]) = w([v2]) which implies
l([v3]) = 0. But we know |[v3]| = 1, by Theorem 2.5 which is a contradiction to l([v3]) = 0 in H .
The same argument works for corner vertex also.

Conversely, let T be a caterpillar such that it has no vertex of degree 2. The reduced graph H
of T is A′ magic, for all Abelian groups A with |A| > 2 (see Figure 2). By Theorem 2.5, T is
A-vertex magic.
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Figure 1.
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Figure 2. A′-vertex magic labeling of reduced graph H of T

Remark 2.1. Given a graph G, under the relation ∼G the vertex set V (G) is partitioned into equiv-
alence classes. For every equivalence class [vi], with |[vi]| = 1, introduce a new vertex xi in [vi].
Now, join the new vertex xi to all vertices in equivalence classes belongs to N([vi]). Thus each
equivalence class will have at least two vertices. Hence by Theorem 2.4 the resultant graph is
A-vertex magic, for all |A| > 2.

In the above construction we newly add at most |V (G)| vertices, the graph G is convert into
A-vertex magic, for all |A| > 2. Therefore, we get the following corollary as an immediate
consequence of the above construction.

Corollary 2.11. Any graph H ′ is an induced subgraph of A-vertex magic graph G, where |A| > 2.

The above corollary 2.11 is a generalisation of the following result proved in [10] which has
been proved only for finite Abelian groups and it uses more number of vertices.

Corollary 2.12 (Corollary 2.3, [10]). Any graph G is an induced subgraph of an A-vertex magic
graph H .

We now state a procedure to construct infinite classes of A-vertex magic graphs, when |A| > 2.
Let G be a A-vertex magic graph with magic labeling l. As ∼G is an equivalence relation, join a
new vertex x in any one of the equivalence class [vi] of G and join by an edge x into each vertex
in N(vi), the resulting graph is G′. Then by Lemma 2.1, we can relabel the vertices in [vi] and x
whose label sum is equal to

∑
v∈[vi] l(v), for the other vertices in G′ we retain the labeling given in

G by l.
The following result proved in [10] is an immediate consequence of the above construction.
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Corollary 2.13 (Theorem 3.1, [10]). Let t ≥ 2. Suppose G is an A-vertex magic graph of order n
with a labeling l and magic constant g. If there exists an edge uv in G with l(u) = l(v) = g, then
the graph G′, obtained from G by subdividing the edge uv and by attaching t pendant vertices at
the new vertex x, is an A-vertex magic graph of order n+ t+ 1 with the same magic constant g.

The main difference between our construction and corollary 2.13 is, it deals with more number
of vertices and it is proved under an additional assumption on the magic labeling. We just add only
one new vertex and our construction is true for infinite Abelian groups also.

3. Group Vertex Magic labeling of Generalised Friendship Graph

In [6], Henning Fernau et al. defined the Generalised Friendship Graph as follows

Definition 3.1. The friendship graph fm is a collection of m triangles with a common vertex. The
generalised friendship graph fn,m is a collection of m cycles (all of order n), meeting at a common
vertex.

Proposition 3.1. Let m ∈ N. The group A is isomorphic to the group
∏

Zmi
. Now, mi | (2m−1),

for all i if and only if o(a) | (2m− 1), for all a ∈ A.

Proof. Let A ∼=
∏

Zmi
. Suppose that mi | (2m − 1), for all i. Let a ∈ A. Then a =

(a1, a2, . . . , ai, . . .), where ai ∈ Zmi
for each i, which implies o(ai) | mi for all i. Then o(ai) |

(2m − 1). Now, (2m − 1)ai = 0 for all i. Therefore, (2m − 1)a = (0, 0, . . . , 0, . . .). Hence
o(a) | (2m− 1).
Conversely, assume that o(a) | (2m − 1), for all a ∈ A. Since (2m − 1)a = (0, 0, . . . , 0, . . .),
which implies (2m − 1)ai = 0 for all i. Therefore o(ai) | (2m − 1). Since this is true for every
ai ∈ Zmi

, it also hold for generator of Zmi
. Hence mi | (2m− 1), for all i.

Theorem 3.1. Let n ≡ 1, 3(mod 4). The generalised friendship graph G = fn,m is A-vertex magic
if and only if A ≇

∏
Zmi

, where mi | (2m− 1), for all i.

Proof. Let V1, V2, . . . , Vm+1 be a partition of V (G) with |Vi| = n− 1, where i = 1, 2, . . . ,m. Let
Vi = {vi1 , vi2 , . . . , vin−1} and Vm+1 = {v}. If G is A-vertex magic, then l(vik) = l(vik+4

).
Case 1. n = 3.

Assume that f3,m is A-vertex magic with l(vi1) = a, l(vi2) = b, l(v) = c. Since w(vi1) = w(vi2),
which implies a = b. Let j = {1, 2, . . . ,m} and i ̸= j. Assume that l(vj1) = a1, l(vj2) = b1.
Since w(vi1) = w(vj1), which implies b = b1. Since w(vi2) = w(vj2), which implies a = a1. Since
w(vi1) = w(vj2), which implies b = a1. Also, w(vi1) = w(v), which implies c = (2m − 1)a.
Hence A ≇

∏
Zmi

, where mi | (2m− 1), for all i.
Conversely, assume that A ≇

∏
Zmi

, where mi | (2m− 1), for all i. By Proposition 3.1, A has an
element a such that o(a) ∤ (2m − 1). Define l : V (G) → A \ {0} by l(vik) = a, for all i, k and
l(v) = (2m− 1)a. Thus w(v) = 2ma, for all v ∈ V (G).

Case 2. n ≡ 3(mod 4) and n > 3.
Assume that fn,m is A-vertex magic with l(vi1) = a, l(vi2) = b, l(vi3) = c, l(vi4) = d and l(v) = e.
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Since w(vi1) = w(vin−1), which implies b = a. Since w(vi1) = w(vi3), which implies e = d.
Also w(vi2) = w(vin−1), which implies c = e. Let j ∈ {1, 2, . . . ,m} and i ̸= j. Assume that
l(vj1) = a1, l(vj2) = b1, l(vj3) = c1, l(vj4) = d1. By similar argument, we get b1 = a1 and
c1 = d1 = e. Since w(vi1) = w(vj1), which implies b = b1. Since w(vin−1) = w(vjn−1), which
implies a = a1. Now, w(vi1) = w(v), which implies e = (2m − 1)a. Hence A ≇

∏
Zmi

, where
mi | (2m− 1), for all i.
Conversely, assume that A ≇

∏
Zmi

, where mi | (2m− 1), for all i. By Proposition 3.1, A has an
element a such that o(a) ∤ (2m− 1). Define l : V (G) → A \ {0} by

l(vik) =

{
(2m− 1)a, if k ≡ 0, 3(mod 4),

a, otherwise,

for all i, k and l(v) = (2m− 1)a. Thus w(v) = 2ma, for all v ∈ V (G).
Case 3. n ≡ 1(mod 4).

Assume that fn,m is A-vertex magic with l(vi1) = a, l(vi2) = b, l(vi3) = c, l(vi4) = d and l(v) = e.
Since w(vi1) = w(vin−1), which implies b = c. Since w(vi2) = w(vi3), which implies a = d.
Also w(vi2) = w(vin−1), which implies a = e. Let j ∈ {1, 2, . . . ,m} and i ̸= j. Assume that
l(vj1) = a1, l(vi2) = b1, l(vi3) = c1, l(vi4) = d1. By similar argument, we get b1 = c1, a1 =
d1 = e,which implies a1 = a = d = d1. Since w(vi1) = w(vj1), which implies b = b1. Since
w(vin−1) = w(vjn−1), which implies c = c1. Also, w(v) = w(vi1), which implies b = (2m− 1)a.
Hence A ≇

∏
Zmi

, where mi | (2m− 1), for all i.
Conversely, assume that A ≇

∏
Zmi

, where mi | (2m− 1). By Proposition 3.1, A has an element
a such that o(a) ∤ (2m− 1). Define l : V (G) → A \ {0} by

l(vik) =

{
(2m− 1)a, if k ≡ 2, 3(mod 4),

a, otherwise,

for all i, k and l(v) = a. Thus w(v) = 2ma, for all v ∈ V (G).

Theorem 3.2. If n ≡ 0(mod 4), then the generalised friendship graph fn,m is group vertex magic.

Proof. Let A be a non-trivial Abelian group. Let V1, V2, . . . , Vm+1 be a partition of V (G) with
|Vi| = n − 1, where i = 1, 2, . . . ,m. Let Vi = {vi1 , vi2 , . . . , vin−1} and Vm+1 = {v}. Define
l : V (G) → A \ {0} by

l(vik) =

{
−a, if k ≡ 1, 2(mod 4),

a, otherwise

and l(v) = a. Thus w(v) = 0, for all v ∈ V (G) (see Figure 3).

Theorem 3.3. Let n ≡ 2(mod 4). The generalised friendship graph G = fn,m is group vertex
magic if and only if m ≡ 1(mod 3).
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Figure 3. Group vertex magic labeling of fn,m, where n ≡ 0(mod 4)

Proof. Let V1, V2, . . . , Vm+1 be a partition of V (G) with |Vi| = n − 1, where i = 1, 2, . . . ,m.
Let Vi = {vi1 , vi2 , . . . , vin−1} and Vm+1 = {v}. Assume that fn,m is group vertex magic. By
observation, we have l(vik) = l(vik+4

). Assume that l(vi1) = a, l(vi2) = b, l(vi3) = c, l(vi4) = d
and l(v) = e. Since w(vi1) = w(vin−1), which implies b = d. Since w(vi1) = w(vi3), which
implies e = d. Also, w(vi2) = w(vi3), which implies a + c = b + d. Let j ∈ {1, 2, . . . ,m} and
i ̸= j. Assume that l(vj1) = a1, l(vj2) = b1, l(vj3) = c1, l(vj4) = d1. By similar argument, we
get b1 = d1 = e and a1 + c1 = b1 + d1. Since w(vi1) = w(vj1), which implies b = b1. Since
w(vin−1) = w(vjn−1), which implies d = d1. Let a′ ∈ Z3 \ {0}. Assume that l(vi2) = l(vi4) =
l(v) = a′. Since w(vi2) = w(vi3), which implies l(vi1) = l(vi3) = a′, therefore l(v) = a′, for all
v. Since w(vi1) = w(v), which implies 2a′ = 2ma′, we get m ≡ 1(mod 3).
Conversely, assume that m ≡ 1(mod 3) and p is a prime number.

Case 1. p = 2.
If 2 divides o(A), then define l : V (G) → A \ {0} by l(v) = a, for all v ∈ V (G), where o(a) = 2.
Thus w(v) = 0, for all v ∈ V (G).

Case 2. p = 3.
If 3 divides o(A), then define l : V (G) → A \ {0} by l(v) = a, for all v ∈ V (G), where o(a) = 3.
Thus w(v) = 2a, for all v.

Case 3. p > 3.
If p divides o(A), then
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Subcase 1. Assume that m is odd. Define l : V (G) → A \ {0} by

l(vik) =


−a, if i is even and k ≡ 1(mod 4),

3a, if i is even and k ≡ 3(mod 4),

a, otherwise

and l(v) = a, where o(a) = p. Thus w(v) = 2a, for all v.
Subcase 2. Assume that m is even. Define l : V (G) → A \ {0} by

l(vik) =



3a, if i = 1 and k ≡ 1(mod 4),

−a, if i = 1 and k ≡ 3(mod 4),

−2a, if i = 2 and k ≡ 1(mod 4),

4a, if i = 2 and k ≡ 3(mod 4),

−a, if i is even, i > 2 and k ≡ 1(mod 4),

3a, if i is even, i > 2 and k ≡ 3(mod 4),

a, otherwise

and l(v) = a, where o(a) = p. Thus w(v) = 2a, for all v ∈ V (G) (see Figure 4).
By Theorem 2.2 and Case 3, we get G is Z-vertex magic.
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Figure 4. Zp-vertex magic of fn,m, p > 3, n ≡ 2(mod 4) and m is even
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Theorem 3.4. Let n ≡ 2(mod 4) and m ̸≡ 1(mod 3). The generalised friendship graph fn,m is
A-vertex magic if and only if A ̸= Z3.

Proof. Let V1, V2, . . . , Vm+1 be a partition of V (G) with |Vi| = n− 1, where i = 1, 2, . . . ,m. Let
Vi = {vi1 , vi2 , . . . , vin−1} and Vm+1 = {v}. The necessary condition follows from Theorem 3.3.
Conversely, assume that A ̸= Z3.

Case 1. 2 divides o(A).
The proof follows from the labeling in case 1 of above theorem.

Case 2. 9 divides o(A).
By Sylow’s first theorem and fundamental theorem of finite Abelian groups, A has a subgroup
isomorphic to either Z9 or Z3 × Z3. Suppose A has a subgroup isomorphic to Z3 × Z3.

Subcase 1. Assume that m is odd. Define l : V (G) → Z3 × Z3 \ {0} by

l(vik) =



(1, 0), if i > 1, i is even and k ≡ 1(mod 4),

(1, 2), if i > 1, i is even and k ≡ 3(mod 4),

(2, 0), if i > 1, i is odd and k ≡ 1(mod 4),

(0, 2), if i > 1, i is odd and k ≡ 3(mod 4),

(1, 1), otherwise

for all i, k and l(v) = (1, 1)
Subcase 2. Assume that m is even. Define l : V (G) → Z3 × Z3 \ {0} by

l(vik) =



(1, 0), if i = 1 and k ≡ 1(mod 4),

(1, 2), if i = 1 and k ≡ 3(mod 4),

(0, 1), if i is even and k ≡ 1(mod 4),

(2, 1), if i is even and k ≡ 3(mod, 4)
(0, 2), if i > 2, i is odd and k ≡ 1(mod 4),

(2, 0), if i > 2, i is odd and k ≡ 3(mod 4),

(1, 1), otherwise

for all i, k and l(v) = (1, 1). Thus w(v) = (2, 2) for all v ∈ V (G).
Suppose A has a subgroup isomorphic to Z, Z9 or Zp, where p > 3, then the proof follows from
Therorem 2.2 and the labeling in case 3 of above theorem.

4. Concluding remarks

In this paper we have proved the A-vertex magicness of several graphs by considering its
reduced graph. These ideas helps us to embed every graph as an induced subgraph of an A-vertex
magic graph and also to construct infinite families of A-vertex magic graphs in a much more
simpler way.
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