

Electronic Journal of Graph Theory and Applications

On Ramsey $(C_4, K_{1,n})$ -minimal graphs

Hilda Assiyatun^{*a,c}, Maya Nabila^b, Edy Tri Baskoro^{a,c}

 ^aCombinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
 ^bDoctoral Program of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
 ^cCenter for Research Collaboration on Graph Theory and Combinatorics, Indonesia

hilda@itb.ac.id, mayanabila@students.itb.ac.id, ebaskoro@itb.ac.id

*corresponding author

Abstract

Let F, G and H be any simple graphs. The notation $F \to (G, H)$ means for any red-blue coloring on the edges of graph F, there exists either a red copy of G or a blue copy of H. If $F \to (G, H)$, then graph F is called a Ramsey graph for (G, H). Additionally, if the graph F satisfies that $F - e \not\rightarrow (G, H)$ for any edge e of F, then graph F is called a Ramsey (G, H)-minimal. The set of all Ramsey (G, H)-minimal graphs is denoted by $\mathcal{R}(G, H)$. In this paper, we construct a new class of Ramsey $(C_4, K_{1,n})$ -minimal graphs.

Keywords: Ramsey minimal graph, cycle, star Mathematics Subject Classification : 05C55, 05D10 DOI: 10.5614/ejgta.2023.11.1.12

1. Introduction

In this paper, all graphs are simple graphs. A cycle and a star of order n is denoted by C_n and $K_{1,n-1}$, respectively. For any three graphs F, G and H, the notation of $F \to (G, H)$ to mean that for any red-blue coloring on the edges of F, there exists a red copy of G or a blue copy of H.

Received: 20 December 2022, Revised: 20 March 2023, Accepted: 26 March 2023.

Definition 1.1. A graph F is called a *Ramsey graph* for a pair of graphs (G, H) if F satisfies that $F \to (G, H)$.

Definition 1.2. A graph F is called a *Ramsey* (G, H)-*minimal* if F satisfies the following these conditions:

- (i) $F \to (G, H)$, and
- (ii) $F e \not\rightarrow (G, H)$, for any $e \in E(F)$.

The set of all Ramsey (G, H)-minimal graphs will be denoted by $\mathcal{R}(G, H)$.

The pair (G, H) is called a *Ramsey-finite* if $\mathcal{R}(G, H)$ is finite. Otherwise, the pair (G, H) is called *Ramsey-infinite*. The study on the Ramsey minimal graphs was initiated by Burr et al. [1]. In general, finding the Ramsey (G, H)-minimal graph is both a challenging and interesting problem to be solved. There are several papers that are dedicated to some Ramsey classes for specific graphs G and H. For instance, Burr et al. [2] showed that for an arbitrary graph G, the pair (mK_2, G) is Ramsey-finite. In 1980, Burr et al. [3] proved that if $H = K_{1,n}$ and G is any 2-connected graph, then the set $\mathcal{R}(G, H)$ is infinite. Nešetřil and Rödl [4] proved that if both G and H are 3-connected or if G and H are forests and neither of which is a union of stars, then the pair (G, H) is Ramsey-infinite. Over decades later, Borowiecki et al. [5] characterized all graphs in $\mathcal{R}(K_3, K_{1,2})$. Mushi and Baskoro [6] gave necessary and sufficient conditions for all members of $\mathcal{R}(3K_2, K_{1,n})$ for $n \geq 3$. Additionally, for $3 \leq n \leq 7$ they were able to list all Ramsey $(3K_2, K_{1,n})$ -minimal graphs of order at most 10 vertices.

Here are some of the latest related papers that discuss the pair of a cycle and a star. Nisa et al. [7] constructed some graphs in $\mathcal{R}(C_6, K_{1,2})$. Nabila and Baskoro [8] gave some Ramsey $(K_{1,2}, C_n)$ -minimal graphs for $n \in \{5, 6, 8\}$ and constructed the Ramsey $(C_n, K_{1,2})$ graphs for $n \in \{10, 12, 14, 16, 18\}$. Hadiputra and Silaban [9] showed a new class of graphs using C_4 -paths and some edge additions are the members of an infinite family in $\mathcal{R}(K_{1,2}, C_4)$. Moreover, Nabila et al. [10] gave some finite and infinite classes of Ramsey $(C_4, K_{1,n})$ -minimal graphs for any $n \ge 3$ in the form of path graphs.

In this paper, we give a new class of graph called theta-trees, which are constructed using an edge-weighted tree.

2. Main Results

In this section, we derive some sufficient conditions of Ramsey (G, H)-minimal graphs for G is a cycle C_4 on four vertices and H is a star $K_{1,n}$ with $n \ge 2$. Based on these sufficient conditions, we give some classes of Ramsey $(C_4, K_{1,n})$ -minimal graphs.

For any edge-weighted tree T on m edges, define a theta-tree graph $\theta[T]$ as follows.

Definition 2.1. Let T be an edge-weighted tree on m edges e_1, e_2, \ldots, e_m with $a_i \in \mathbb{N}$ is the weight of e_i for each i. The *theta-tree graph* based on T, denoted by $\theta[T]$, is a graph constructed from T by replacing each edge $e_i = (x_i, y_i)$ by a union of a_i paths of length 2 whose internal vertices are disjoint. This internally disjoint union of a_i paths connects x_i and y_i .

From the Definition 2.1, we have $V(\theta[T]) = V(T) \cup A_1 \cup A_2 \cup \cdots \cup A_m$, where $A_i = \{u_{i,j} | i \in [1, m], j \in [1, a_i]\}$. All members of each A_i are called *internal vertices* in $\theta[T]$ graph. For example, in Figure 1 we give the theta-tree graph $\theta[T]$ obtained from a tree T on 6 edges.

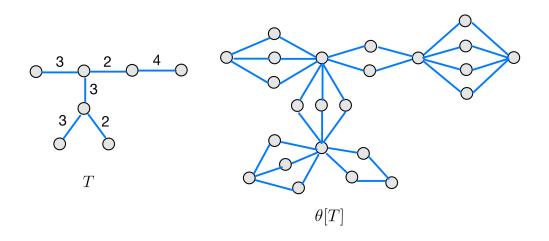


Figure 1. An edge-weighted tree T on 6 edges and the corresponding graph $\theta[T]$.

2.1. Sufficient conditions

In this section, we present some sufficient conditions for an edge-weighted tree T on m edges such that the theta-tree graph $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph.

Let T be an edge-weighted tree with m edges e_1, e_2, \ldots, e_m and a_i is the weight of e_i for each i. The sum of graph T, denoted by sum(T), is defined as the sum of all edge weights, namely sum(T) = $\sum_{i=1}^{m} a_i$.

Theorem 2.1. Let n, m be natural numbers and T be a weighted tree on m edges e_1, e_2, \ldots, e_m with weights a_1, a_2, \ldots, a_m , respectively, where $n, m \ge 1$ and $2 \le a_i \le 2n$. If the following statements hold

- (a) sum(T) = (m+1)n,
- (b) sum(T') < (l+1)n for each proper subtree T' of T induced by any l edges,

then $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph.

Proof. Let T be a weighted tree on m edges e_1, e_2, \ldots, e_m . Let $G \cong \theta[T]$. Let $\sum_{i=1}^m a_i = (m+1)n$, we will show that $G \to (C_4, K_{1,n})$. Consider any red-blue coloring α on the edges of G containing no blue copy of $K_{1,n}$. Let B be the set of all blue edges in G by the coloring α . Since there is no blue copy of $K_{1,n}$ in G, then

$$|B| \le (m+1)(n-1).$$
(1)

This is true since the maximum blue star is a $K_{1,n-1}$, and it must have a center v_i for some $i \in [1, m + 1]$. Assume G has no red copy of C_4 by α coloring, then the number of blue edges incident with A_i is at least $a_i - 1$ where at most one internal vertex in A_i is incident with two red edges, for each $i \in [1, m]$. Thus,

$$|B| \ge \sum_{i=1}^{m} (a_i - 1) = -m + \sum_{i=1}^{m} a_i = (m+1)(n-1) + 1.$$
(2)

www.ejgta.org

From Eq. (1) and (2) we have a contradiction. It means that if G has no blue copy of $K_{1,n}$, then G must contain a red copy of C_4 . Therefore, $G \to (C_4, K_{1,n})$.

Next, we will show that $G - e \nleftrightarrow (C_4, K_{1,n})$ for any edge e. Let $e = ab \in G$, where a is a non-internal vertex and b is an internal vertex in A_j for some $j \in [1, m]$. Define a red-blue coloring on the edges of G such that the edge incident to b is colored by red and the remaining edges are colored by red and blue with satisfying the following three conditions:

- (i) each internal vertex in A_i is incident with at most one blue edge, such that the number of blue edges incident with A_i is exactly $a_i 1$ for each $i \neq j$,
- (ii) each internal vertex in A_j is incident with at most one blue edge, such that the number of blue edges incident with A_j is exactly $a_j 2$, and
- (iii) the number of blue edges incident to each non-internal vertex is exactly (n-1).

This above coloring can always be done since from the conditions (i), (ii), (iii), and requirement (b), we obtain

$$|B| = a_j - 2 + \sum_{i=1 \text{ and } i \neq j}^m (a_i - 1) = (m+1)(n-1).$$
(3)

where B is the set of all blue edges in G by the above coloring. By condition (iii) we have no blue $K_{1,n}$ in G. By conditions (i) and (ii) we have exactly one internal vertex incident with two red edges. Therefore, there is no red C_4 in G. Thus, G is a Ramsey $(C_4, K_{1,n})$ -minimal graph. Note that the (b) condition is required; otherwise, the existence of a subtree T' of size l satisfying sum(T') = (l+1)n would make $G[T'] \rightarrow (C_4, K_{1,n})$.

2.2. Special sequences of theta-tree graphs

From now on, let T be an edge-weighted tree on m edges e_1, e_2, \ldots, e_m with the weights a_1, a_2, \ldots, a_m and $a_1 \ge a_2 \ge \ldots \ge a_m$. In this section, we give some sequences a_1, a_2, \ldots, a_m such that the theta-tree graph $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph.

Theorem 2.2. Let $j \ge 1$ be fixed. If $a_i = n + j$ for $i \in [1, m]$ where $n \ge 2$ with n = mj, then $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph.

Proof. Let T be an edge-weighted tree on m edges e_1, e_2, \ldots, e_m with the weights $a_i = n + j$ for each $i \in [1, m]$. In order to show that $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph, it is enough to prove that T satisfies the two conditions of Theorem 2.1. The first condition of Theorem 2.1 is satisfied, since sum $(T) = (n + j) + \cdots + (n + j) = (m + 1)n$.

Now, consider any proper subtree T' of T induced by any l edges. Then, we have that sum(T') = l(n+j). It is easy to verify that, in any case, sum(T') < (l+1)n if $1 \le l \le m-1$. So, the second condition of Theorem 2.1 is satisfied. Therefore, $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph.

Theorem 2.3. If $a_1 = 2n - m + 1$ and $a_i = n + 1$ for $i \in [2, m]$ where $n \ge 2$ and $2 \le m \le n$, then $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph.

Proof. Let T be an edge-weighted tree on m edges e_1, e_2, \ldots, e_m where $2 \le m \le n$. Let a_i be the weight of e_i with $a_1 = 2n - m + 1$ and $a_i = n + 1$ for each $i \in [2, m]$. In order to show that $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph, it is enough to prove that T satisfies the two conditions of Theorem 2.1. The first condition of Theorem 2.1 is satisfied, since sum $(T) = (2n - m + 1) + (n + 1) + \ldots + (n + 1) = (m + 1)n$.

Now, consider any proper subtree T' of T induced by any l edges. Then, we have that sum(T') = l(n + 1) or sum(T') = (2n - m + 1) + (l - 1)(n + 1). It is easy to verify that, in any case, sum(T') < (l + 1)n if $2 \le m \le n$. So, the second condition of Theorem 2.1 is satisfied. Therefore, $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph. \Box

Theorem 2.4. If one of the following statements:

- (i) $a_1 = 2n m k + 1, a_2 = n + k + 1, a_i = n + 1$ for $i \in [3, m]$ where $n \ge 6, 3 \le m \le n 2k 2$, and $1 \le k \le \frac{n m}{2} 1$,
- (ii) $a_1 = 2n m k, a_2 = n + k_1 + 1, a_3 = n + k_2 + 2, a_i = n + 1$ for $i \in [4, m]$ where $n \ge 6$, $4 \le m \le n - 2k - 3, k_1 > k_2, k = k_1 + k_2, and 1 \le k \le \frac{n - m - 1}{2} - 1$,

holds, then $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph.

Proof. Let T be an edge-weighted tree on m edges e_1, e_2, \ldots, e_m . In order to show that $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph, it is enough to prove that T satisfies the two conditions of Theorem 2.2. If (i) holds, then sum $(T) = (2n - m - k + 1) + (n + k + 1) + (n + 1) + \ldots + (n + 1) = (m + 1)n$. Thus, the first condition of Theorem 2.1 is satisfied. Now, consider any proper subtree T' of T induced by any l edges. Then sum $(T') \leq (l-2)(n+1) + (n+k+1) + (2n-m-k+1)$. The upper bound is achieved if the edges e_1 and e_2 are in T'. It is easy to verify that sum(T') < (l+1)n if $3 \leq m \leq n - 2k - 2$. So, the second condition of Theorem 2.1 is satisfied.

If (ii) holds, then sum $(T) = (2n - m - k) + (n + k_1 + 1) + (n + k_2 + 2) + (n + 1) \dots + (n + 1) = (m + 1)n$. Thus, the first condition of Theorem 2.1 is satisfied. Now, consider any proper subtree T' of T induced by any l edges. Then sum $(T') \leq (l - 3)(n + 1) + (n + k_2 + 2) + (n + k_1 + 1) + (2n - m - k)$. The upper bound is achieved if the edges e_1, e_2 , and e_3 are in T'. It is easy to verify that sum(T') < (l + 1)n if $4 \leq m \leq n - 2k - 3$. So, the second condition of Theorem 2.1 is satisfied. Therefore, $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph.

Theorem 2.5. If $a_1 = 2n - \frac{1}{2}(m-1)m$ and $a_i = n + m - (i-1)$ for $i \in [2, m]$ where $n \ge 6$ and $2 \le m \le \left\lfloor \frac{-1 + \sqrt{1+8n}}{2} \right\rfloor$, then $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph.

Proof. Let T be an edge-weighted tree on m edges e_1, e_2, \ldots, e_m with the weights $a_1 = 2n - \frac{1}{2}(m-1)m$ and $a_i = n + m - (i-1)$ for each $i \in [2, m]$. In order to show that $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph, it is enough to prove that T satisfies the two conditions of Theorem 2.1. The first condition of Theorem 2.1 is satisfied, since sum $(T) = (2n - \frac{1}{2}(m-1)m) + (n+m-1) + \cdots + (n+1) = (m+1)n$.

Now, consider any proper subtree T' of T induced by any l edges. Then, we have that $\operatorname{sum}(T') \leq (2n - \frac{1}{2}(m-1)m) + \cdots + (n+2) = mn-1$. It is easy to verify that, in any case, $\operatorname{sum}(T') < (l+1)n$ if $1 \leq l \leq m-1$. So, the second condition of Theorem 2.1 is satisfied. Therefore, $\theta[T]$ is a Ramsey $(C_4, K_{1,n})$ -minimal graph. \Box

Acknowledgment

This research has been supported by the PPMI program, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung and by the Research grant of "*Pendidikan Magister menuju Doktor untuk Sarjana Unggulan (PMDSU)*", Ministry of Education, Culture, Research and Technology, Indonesia.

References

- [1] S.A. Burr, P. Erdős and L. Lovász, On graphs of Ramsey type, Ars Combin. 1 (1976), 167–190.
- [2] S.A. Burr, P. Erdős, R.J. Faudree, and R.H. Schelp, A class of Ramsey-finite graphs, *In Proc.* 9th SE Conf. on Combinatorics, Graph Theory and Computing (1978), 171–178.
- [3] S.A. Burr, P. Erdős, R.J. Faudree, C.C. Rousseau, and R.H. Schelp, Ramsey minimal graphs for the pair star-connected graph, *Studia Sci. Math. Hungar.* **15** (1980), 265–273.
- [4] J. Nešetřil and V. Rődl, The structure of critical Ramsey graphs, *Acta Mathematica Hungarica* 32(3-4) (1978), 295–300.
- [5] M. Borowiecki, I. Schiermeyer and E. Sidorowicz, Ramsey (K_{1,2}, K₃)-minimal Graphs, *Electron. J. Combin.* 12 (2005), #R20.
- [6] H. Muhshi and E.T. Baskoro, Matching-star Ramsey minimal graphs, *Mathematics in Computer Science* **9**(4) (2015), 443–452.
- [7] F. Nisa, D. Rahmadani, Purwanto, and H. Susanto, On Ramsey (P₃, C₆)-minimal graphs, AIP Conference Proceedings 2215(1) (2020), 070010.
- [8] M. Nabila and E.T. Baskoro, On Ramsey (C_n, H) -minimal graphs, In Journal of Physics: Conference Series, **1722**(1) (2021), 012052.
- [9] F.F. Hadiputra and D.R. Silaban, Infinite Family of Ramsey $(K_{1,2}, C_4)$ -minimal Graphs, *Journal of Physics: Conference Series* **1722**(1) (2020), 012049.
- [10] M. Nabila, H. Assiyatun and E.T. Baskoro, Ramsey minimal graphs for a pair of a cycle on four vertices and an arbitrary star, *Electron. J. Graph Theory Appl.* **10**(1) (2022), 289–299.