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Abstract

In this paper, we obtain a sufficient condition for the existence of parity factors in a regular graph
in terms of edge-connectivity. Moreover, we also show that our condition is sharp.
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1. Preliminaries

Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). The number of vertices
of a graph G is called the order of G and is denoted by n. The number of edges of G is called the
size of G and is denoted by e. For a vertex v of graph G, the number of edges of G incident to v is
called the degree of v in G and is denoted by dG(v). For two subsets S, T ⊆ V (G), let eG(S, T )
denote the number of edges of G joining S to T .

Let H be a function associating a subset of Z to each vertex of G. A spanning subgraph F of
graph G is called an H-factor of G if

dF (x) ∈ H(x) for every vertex x ∈ V (G). (1)

For a spanning subgraph F of G and for a vertex v of G, define

δ(H;F, v) = min{|dF (v)− i | i ∈ Hv},
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and let δ(H;F ) =
∑

x∈V (G) δ(H;F, x). Thus a spanning subgraph F is an H-factor if and only if
δ(H;F ) = 0. Let

δH(G) = min{δ(H;F ) | F are spanning subgraphs of G}.

A spanning subgraph F is called H-optimal if δ(H;F ) = δH(G). The H-factor problem is to
determine the value δH(G). An integer h is called a gap of H(v) if h /∈ H(v) but H(v) contains
an element less than h and an element greater than h. Lovász [11] gave a structural description on
the H-factor problem in the case where H(v) has no two consecutive gaps for all v ∈ V (G) and
showed that the problem is NP-complete without this restriction. Moreover, he also conjectured
that the decision problem of determining whether a graph has anH-factor is polynomial in the case
where H(v) has no two consecutive gaps for all v ∈ V (G). Cornuéjols [5] proved the conjecture.

Let therefore g, f : V → Z+ such that g(v) ≤ f(v) and g(v) ≡ f(v) (mod 2) for every
v ∈ V . Then a spanning subgraph F of G is called a (g, f)-parity-factor, if g(v) ≤ dF (v) ≤ f(v)
and dF (v) ≡ f(v) (mod 2) for all v ∈ V . Clearly, a (g, f)-parity-factor is a special kind of
H-factor and it has been shown that the decision problem of determining whether a graph has a
(g, f)-parity factor is polynomial.

Let a, b be two integers such that 1 ≤ a ≤ b and a ≡ b (mod 2). If g(v) = a and f(v) = b
for all v ∈ V (G), then a (g, f)-parity-factor is called an (a, b)-parity factor. Let n ≥ 1 be odd. If
a = 1 and b = n, then an (a, b)-parity factor is called a (1, n)-odd factor. There is also a special
case of the (g, f)-factor problem which is called the even factor problem, i.e., the problem with
g(v) = 2, f(v) ≥ |V (G)| and f(v) ≡ g(v) (mod 2) for all v ∈ V (G).

Fleischner gave a sufficient condition for a graph to have an even factor in terms of edge
connectivtiy.

Theorem 1.1 (Fleischner,[8]; Lovász, [12]). If G is a bridgeless graph with δ(G) ≥ 3, then G has
an even factor.

For a general graph G and an integer k, a spanning subgraph F such that

dF (x) = k for all x ∈ V (G)

is called a k-factor. In fact, a k-factor is also a (k, k)-parity factor.
The first investigation of the (1, n)-odd factor problem is due to Amahashi [2], who gave a

Tutte type characterization for graphs having a global odd factor.

Theorem 1.2 (Amahashi). Let n be an odd integer. A graph G has a (1, n)-odd factor if and only
if

o(G− S) ≤ n |S| for all subsets S ⊂ V (G). (2)

For general odd value functions h, Cui and Kano [6] established a Tutte type of theorem.

Theorem 1.3 (Cui and Kano, [6]). Let h : V (G) → N be odd value function. A graph G has a
(1, h)-odd factor if and only if

o(G− S) ≤ h(S) for all subsets S ⊂ V (G). (3)
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Now there are many results on consecutive factors (i.e. (g, f)-factor). But the research progress
on non-consecutive factors is slow. In non-consecutive factor problems, (g, f)-parity factors have
many similar properties with k-factors. So we believe that many results on k-factors can be ex-
tended to (g, f)-factor. In this paper, we will extend a result on k-factors of regular graphs to the
(g, f)-parity-factors.

Now let us recall one of the classical results due to Petersen.

Theorem 1.4 (Petersen [13]). Let r and k be integers such that 1 ≤ k ≤ r. Every 2r-regular graph
has a 2k-factor.

Considering the edge-connectivity, Gallai [7] proved the following result.

Theorem 1.5 (Gallai [7]). Let r and k be integers such that 1 ≤ k < r, and G an m-edge-
connected r-regular graph, where m ≥ 1. If one of the following conditions holds, then G has a
k-factor.

(i) r is even, k is odd, |G| is even, and r
m
≤ k ≤ r(1− 1

m
);

(ii) r is odd, k is even and 2 ≤ k ≤ r(1− 1
m
);

(iii) r and k are both odd and r
m
≤ k.

Bollobás, Satio and Wormald [3] improved above the result.

Theorem 1.6 (Bollobás, Saito and Wormald ). Let r and k be integers such that 1 ≤ k < r, and G
be anm-edge-connected r-regular graph, wherem ≥ 1 is a positive integer. Letm∗ ∈ {m,m+1}
such that m∗ ≡ 1 (mod 2). If one of the the following conditions holds, then G has a k-factor.

(i) r is odd, k is even and 2 ≤ k ≤ r(1− 1
m∗ );

(ii) r and k are both odd and r
m∗ ≤ k.

In this paper, we extend Theorems 1.5 and 1.6 to (a, b)-factors. The main tool in our proofs is
the following theorem of Lovász (see[11]).

Theorem 1.7 (Lovász [11]). G has a (g, f)-parity factor if and only if for all disjoint subsets S
and T of V (G),

δ(S, T ) = f(S) +
∑
x∈T

dG(x)− g(T )− eG(S, T )− τ ≥ 0,

where τ denotes the number of components C, called f -odd components of G− (S ∪ T ) such that
eG(V (C), T ) + f(V (C)) ≡ 1 (mod 2). Moreover, δ(S, T ) ≡ f(V (G)) (mod 2).
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2. Main Theorem

Theorem 2.1. Let a, b and r be integers such that 1 ≤ a ≤ b < r and a ≡ b (mod 2). Let G be
an m-edge-connected r-regular graph with n vertices. Let m∗ ∈ {m,m + 1} such that m∗ ≡ 1
(mod 2). If one of the following conditions holds, then G has an (a, b)-parity factor.

(i) r is even, a, b are odd, |G| is even, r
m
≤ b and a ≤ r(1− 1

m
);

(ii) r is odd, a, b are even and a ≤ r(1− 1
m∗ );

(iii) r, a, b are odd and r
m∗ ≤ b.

By Theorem 1.6, (ii) and (iii) are true. Now we prove (i). Let θ1 = a
r

and θ2 = b
r
. Then

0 < θ1 ≤ θ2 < 1. Suppose that G contains no (a, b)-parity factors. By Theorem 1.7, there exist
two disjoint subsets S and T of V (G) such that S ∪ T 6= ∅, and

−2 ≥ δ(S, T ) = b|S|+
∑
x∈T

dG(x)− a|T | − eG(S, T )− τ, (4)

where τ is the number of a-odd (i.e. b-odd) components C of G− (S ∪T ). Let C1, · · · , Cτ denote
a-odd components of G− S − T and D = C1 ∪ · · · ∪ Cτ .

Note that

−2 ≥ δ(S, T ) = b|S|+
∑
x∈T

dG(x)− a|T | − eG(S, T )− τ

= b|S|+ (r − a)|T | − eG(S, T )− τ
= θ2r|S|+ (1− θ1)r|T | − eG(S, T )− τ

= θ2
∑
x∈S

dG(x) + (1− θ1)
∑
x∈T

dG(x)− eG(S, T )− τ

≥ θ2(eG(S, T ) +
τ∑
i=1

eG(S,Ci)) + (1− θ1)(eG(S, T ) +
τ∑
i=1

eG(T,Ci))− eG(S, T )− τ

=
τ∑
i=1

(θ2eG(S,Ci) + (1− θ1)eG(T,Ci)− 1) + (θ2 − θ1)eG(S, T )

≥
τ∑
i=1

(θ2eG(S,Ci) + (1− θ1)eG(T,Ci)− 1).

Since G is connected and 0 < θ1 ≤ θ2 < 1, so θ2eG(S,Ci) + (1 − θ1)eG(T,Ci) > 0 for each Ci.
Hence we will obtain a contradiction by showing that for every C = Ci, 1 ≤ i ≤ τ , we have

θ2eG(S,C) + (1− θ1)eG(T,C) ≥ 1. (5)
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These inequalities imply

−2 ≥ δG(S, T ) ≥
τ∑
i=1

(θ2eG(S,Ci) + (1− θ1)eG(T,Ci)− 1)

>
τ−2∑
i=1

(θ2eG(S,Ci) + (1− θ1)eG(T,Ci)− 1)− 2 ≥ −2,

which is impossible.
Now, we will prove the 5 is true. Since C is an a-odd component of G− (S ∪ T ), we have

a|C|+ eG(T,C) ≡ 1 (mod 2). (6)

Moreover, since
r|C| =

∑
x∈V (C)

dG(x) = eG(S ∪ T,C) + 2|E(C)|,

we have

r|C| = eG(S ∪ T,C) (mod 2). (7)

It is obvious that the two inequalities eG(S,C) ≥ 1 and eG(T,C) ≥ 1 imply

θ2eG(S,C) + (1− θ1)eG(T,C) ≥ θ2 + 1− θ1 = 1.

Hence we may assume eG(S,C) = 0 or eG(T,C) = 0.
We consider the condition (i). If eG(S,C) = 0, then eG(T,C) ≥ m. Since a ≤ r(1− 1

m
), then

θ1 ≤ 1− 1
m

and so 1 ≤ (1− θ1)m. By substituting eG(T,C) ≥ m and eG(S,C) = 0 into (5), we
have

(1− θ1)eG(T,C) ≥ (1− θ1)m ≥ 1.

If eG(T,C) = 0, then eG(S,C) ≥ m. Since r
m
≤ b, hence θ2m ≥ 1, and so we obtain

θ2eG(S,C) ≥ θ2m ≥ 1.

Consequently, condition (i) guarantees (5) holds and thus (i) is true. The proof is completed.
Remark: The edge connectivity conditions in Theorem 2.1 are sharp.

We will give the construction for condition (i) of Theorem 2.1. For (ii) and (iii), the construc-
tions are similar. Let r ≥ 2 be an even integer, a, b ≥ 1 two odd integers and 2 ≤ m ≤ r − 2 an
even integer such that b < r/m or r(1 − 1

m
) < a. Since G has an (a, b)-parity factor if and only

if G has an (r − b, r − a)-parity factor, so we can assume b < r/m. Let J(r,m) be the complete
graph Kr+1 from which a matching of size m/2 is deleted. Take r disjoint copies of J(r,m). Add
m new vertices and connect each of these vertices to a vertex of degree r − 1 of J(r,m). This
gives an m-edge-connected r-regular graph denoted by G. Let S denote the set of m new vertices
and T = ∅. Let τ denote the number of components C, which are called a-odd components of
G− (S ∪ T ) and eG(V (C), T ) + a|C| ≡ 1 (mod 2). Then we have τ = r, and

δ(S, T ) = b|S|+
∑
x∈T

dG−S(x)− a|T | − τ(S, T ) = bm− r < 0.

So by Theorem 1.7, G contains no (a, b)-parity factors.
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