Electronic Journal of Graph Theory and Applications

Note on Parity Factors of Regular Graphs

Hongliang Lu ${ }^{\text {a }}$, Yuqing Lin ${ }^{\text {b }}$

${ }^{a}$ Department of Mathematics
Xi'an Jiaotong University, Xi'an 710049, PR China
${ }^{b}$ School of Electrical Engineering and Computer Science, The University of Newcastle, Australia
luhongliang215@sina.com, yuqing.lin@newcastle.edu.au

Abstract

In this paper, we obtain a sufficient condition for the existence of parity factors in a regular graph in terms of edge-connectivity. Moreover, we also show that our condition is sharp.

Keywords: Parity Factors, edge-connectivity
Mathematics Subject Classification : 05C70

1. Preliminaries

Let $G=(V, E)$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The number of vertices of a graph G is called the order of G and is denoted by n. The number of edges of G is called the size of G and is denoted by e. For a vertex v of graph G, the number of edges of G incident to v is called the degree of v in G and is denoted by $d_{G}(v)$. For two subsets $S, T \subseteq V(G)$, let $e_{G}(S, T)$ denote the number of edges of G joining S to T.

Let H be a function associating a subset of \mathbb{Z} to each vertex of G. A spanning subgraph F of graph G is called an H-factor of G if

$$
\begin{equation*}
d_{F}(x) \in H(x) \quad \text { for every vertex } x \in V(G) \tag{1}
\end{equation*}
$$

For a spanning subgraph F of G and for a vertex v of G, define

$$
\delta(H ; F, v)=\min \left\{\left|d_{F}(v)-i\right| i \in H_{v}\right\}
$$

Received: 6 February 2013, Revised: 8 April 2013, Accepted: 24 April 2013.
and let $\delta(H ; F)=\sum_{x \in V(G)} \delta(H ; F, x)$. Thus a spanning subgraph F is an H-factor if and only if $\delta(H ; F)=0$. Let

$$
\delta_{H}(G)=\min \{\delta(H ; F) \mid F \text { are spanning subgraphs of } G\} .
$$

A spanning subgraph F is called H-optimal if $\delta(H ; F)=\delta_{H}(G)$. The H-factor problem is to determine the value $\delta_{H}(G)$. An integer h is called a gap of $H(v)$ if $h \notin H(v)$ but $H(v)$ contains an element less than h and an element greater than h. Lovász [11] gave a structural description on the H-factor problem in the case where $H(v)$ has no two consecutive gaps for all $v \in V(G)$ and showed that the problem is NP-complete without this restriction. Moreover, he also conjectured that the decision problem of determining whether a graph has an H-factor is polynomial in the case where $H(v)$ has no two consecutive gaps for all $v \in V(G)$. Cornuéjols [5] proved the conjecture.

Let therefore $g, f: V \rightarrow Z^{+}$such that $g(v) \leq f(v)$ and $g(v) \equiv f(v)(\bmod 2)$ for every $v \in V$. Then a spanning subgraph F of G is called a (g, f)-parity-factor, if $g(v) \leq d_{F}(v) \leq f(v)$ and $d_{F}(v) \equiv f(v)(\bmod 2)$ for all $v \in V$. Clearly, a (g, f)-parity-factor is a special kind of H-factor and it has been shown that the decision problem of determining whether a graph has a (g, f)-parity factor is polynomial.

Let a, b be two integers such that $1 \leq a \leq b$ and $a \equiv b(\bmod 2)$. If $g(v)=a$ and $f(v)=b$ for all $v \in V(G)$, then a (g, f)-parity-factor is called an (a, b)-parity factor. Let $n \geq 1$ be odd. If $a=1$ and $b=n$, then an (a, b)-parity factor is called a $(1, n)$-odd factor. There is also a special case of the (g, f)-factor problem which is called the even factor problem, i.e., the problem with $g(v)=2, f(v) \geq|V(G)|$ and $f(v) \equiv g(v)(\bmod 2)$ for all $v \in V(G)$.

Fleischner gave a sufficient condition for a graph to have an even factor in terms of edge connectivtiy.

Theorem 1.1 (Fleischner,[8]; Lovász, [12]). If G is a bridgeless graph with $\delta(G) \geq 3$, then G has an even factor.

For a general graph G and an integer k, a spanning subgraph F such that

$$
d_{F}(x)=k \text { for all } x \in V(G)
$$

is called a k-factor. In fact, a k-factor is also a (k, k)-parity factor.
The first investigation of the $(1, n)$-odd factor problem is due to Amahashi [2], who gave a Tutte type characterization for graphs having a global odd factor.

Theorem 1.2 (Amahashi). Let n be an odd integer. A graph G has a $(1, n)$-odd factor if and only if

$$
\begin{equation*}
o(G-S) \leq n|S| \quad \text { for all subsets } S \subset V(G) \tag{2}
\end{equation*}
$$

For general odd value functions h, Cui and Kano [6] established a Tutte type of theorem.
Theorem 1.3 (Cui and Kano, [6]). Let $h: V(G) \rightarrow N$ be odd value function. A graph G has a $(1, h)$-odd factor if and only if

$$
\begin{equation*}
o(G-S) \leq h(S) \quad \text { for all subsets } S \subset V(G) \tag{3}
\end{equation*}
$$

Now there are many results on consecutive factors (i.e. (g, f)-factor). But the research progress on non-consecutive factors is slow. In non-consecutive factor problems, (g, f)-parity factors have many similar properties with k-factors. So we believe that many results on k-factors can be extended to (g, f)-factor. In this paper, we will extend a result on k-factors of regular graphs to the (g, f)-parity-factors.

Now let us recall one of the classical results due to Petersen.
Theorem 1.4 (Petersen [13]). Let r and k be integers such that $1 \leq k \leq r$. Every $2 r$-regular graph has a $2 k$-factor.

Considering the edge-connectivity, Gallai [7] proved the following result.
Theorem 1.5 (Gallai [7]). Let r and k be integers such that $1 \leq k<r$, and G an m-edgeconnected r-regular graph, where $m \geq 1$. If one of the following conditions holds, then G has a k-factor.
(i) r is even, k is odd, $|G|$ is even, and $\frac{r}{m} \leq k \leq r\left(1-\frac{1}{m}\right)$;
(ii) r is odd, k is even and $2 \leq k \leq r\left(1-\frac{1}{m}\right)$;
(iii) r and k are both odd and $\frac{r}{m} \leq k$.

Bollobás, Satio and Wormald [3] improved above the result.
Theorem 1.6 (Bollobás, Saito and Wormald). Let r and k be integers such that $1 \leq k<r$, and G be an m-edge-connected r-regular graph, where $m \geq 1$ is a positive integer. Let $m^{*} \in\{m, m+1\}$ such that $m^{*} \equiv 1(\bmod 2)$. If one of the the following conditions holds, then G has a k-factor.
(i) r is odd, k is even and $2 \leq k \leq r\left(1-\frac{1}{m^{*}}\right)$;
(ii) r and k are both odd and $\frac{r}{m^{*}} \leq k$.

In this paper, we extend Theorems 1.5 and 1.6 to (a, b)-factors. The main tool in our proofs is the following theorem of Lovász (see[11]).

Theorem 1.7 (Lovász [11]). G has a (g, f)-parity factor if and only if for all disjoint subsets S and T of $V(G)$,

$$
\delta(S, T)=f(S)+\sum_{x \in T} d_{G}(x)-g(T)-e_{G}(S, T)-\tau \geq 0
$$

where τ denotes the number of components C, called f-odd components of $G-(S \cup T)$ such that $e_{G}(V(C), T)+f(V(C)) \equiv 1(\bmod 2)$. Moreover, $\delta(S, T) \equiv f(V(G))(\bmod 2)$.

2. Main Theorem

Theorem 2.1. Let a, b and r be integers such that $1 \leq a \leq b<r$ and $a \equiv b(\bmod 2)$. Let G be an m-edge-connected r-regular graph with n vertices. Let $m^{*} \in\{m, m+1\}$ such that $m^{*} \equiv 1$ $(\bmod 2)$. If one of the following conditions holds, then G has an (a, b)-parity factor.
(i) r is even, a, b are odd, $|G|$ is even, $\frac{r}{m} \leq b$ and $a \leq r\left(1-\frac{1}{m}\right)$;
(ii) r is odd, a, b are even and $a \leq r\left(1-\frac{1}{m^{*}}\right)$;
(iii) r, a, b are odd and $\frac{r}{m^{*}} \leq b$.

By Theorem 1.6, (ii) and (iii) are true. Now we prove (i). Let $\theta_{1}=\frac{a}{r}$ and $\theta_{2}=\frac{b}{r}$. Then $0<\theta_{1} \leq \theta_{2}<1$. Suppose that G contains no (a, b)-parity factors. By Theorem 1.7, there exist two disjoint subsets S and T of $V(G)$ such that $S \cup T \neq \emptyset$, and

$$
\begin{equation*}
-2 \geq \delta(S, T)=b|S|+\sum_{x \in T} d_{G}(x)-a|T|-e_{G}(S, T)-\tau \tag{4}
\end{equation*}
$$

where τ is the number of a-odd (i.e. b-odd) components C of $G-(S \cup T)$. Let C_{1}, \cdots, C_{τ} denote a-odd components of $G-S-T$ and $D=C_{1} \cup \cdots \cup C_{\tau}$.

Note that

$$
\begin{aligned}
-2 \geq \delta(S, T) & =b|S|+\sum_{x \in T} d_{G}(x)-a|T|-e_{G}(S, T)-\tau \\
& =b|S|+(r-a)|T|-e_{G}(S, T)-\tau \\
& =\theta_{2} r|S|+\left(1-\theta_{1}\right) r|T|-e_{G}(S, T)-\tau \\
& =\theta_{2} \sum_{x \in S} d_{G}(x)+\left(1-\theta_{1}\right) \sum_{x \in T} d_{G}(x)-e_{G}(S, T)-\tau \\
& \geq \theta_{2}\left(e_{G}(S, T)+\sum_{i=1}^{\tau} e_{G}\left(S, C_{i}\right)\right)+\left(1-\theta_{1}\right)\left(e_{G}(S, T)+\sum_{i=1}^{\tau} e_{G}\left(T, C_{i}\right)\right)-e_{G}(S, T)-\tau \\
& =\sum_{i=1}^{\tau}\left(\theta_{2} e_{G}\left(S, C_{i}\right)+\left(1-\theta_{1}\right) e_{G}\left(T, C_{i}\right)-1\right)+\left(\theta_{2}-\theta_{1}\right) e_{G}(S, T) \\
& \geq \sum_{i=1}^{\tau}\left(\theta_{2} e_{G}\left(S, C_{i}\right)+\left(1-\theta_{1}\right) e_{G}\left(T, C_{i}\right)-1\right)
\end{aligned}
$$

Since G is connected and $0<\theta_{1} \leq \theta_{2}<1$, so $\theta_{2} e_{G}\left(S, C_{i}\right)+\left(1-\theta_{1}\right) e_{G}\left(T, C_{i}\right)>0$ for each C_{i}. Hence we will obtain a contradiction by showing that for every $C=C_{i}, 1 \leq i \leq \tau$, we have

$$
\begin{equation*}
\theta_{2} e_{G}(S, C)+\left(1-\theta_{1}\right) e_{G}(T, C) \geq 1 \tag{5}
\end{equation*}
$$

These inequalities imply

$$
\begin{aligned}
-2 \geq \delta_{G}(S, T) & \geq \sum_{i=1}^{\tau}\left(\theta_{2} e_{G}\left(S, C_{i}\right)+\left(1-\theta_{1}\right) e_{G}\left(T, C_{i}\right)-1\right) \\
& >\sum_{i=1}^{\tau-2}\left(\theta_{2} e_{G}\left(S, C_{i}\right)+\left(1-\theta_{1}\right) e_{G}\left(T, C_{i}\right)-1\right)-2 \geq-2
\end{aligned}
$$

which is impossible.
Now, we will prove the 5 is true. Since C is an a-odd component of $G-(S \cup T)$, we have

$$
\begin{equation*}
a|C|+e_{G}(T, C) \equiv 1(\bmod 2) \tag{6}
\end{equation*}
$$

Moreover, since

$$
r|C|=\sum_{x \in V(C)} d_{G}(x)=e_{G}(S \cup T, C)+2|E(C)|
$$

we have

$$
\begin{equation*}
r|C|=e_{G}(S \cup T, C)(\bmod 2) \tag{7}
\end{equation*}
$$

It is obvious that the two inequalities $e_{G}(S, C) \geq 1$ and $e_{G}(T, C) \geq 1$ imply

$$
\theta_{2} e_{G}(S, C)+\left(1-\theta_{1}\right) e_{G}(T, C) \geq \theta_{2}+1-\theta_{1}=1 .
$$

Hence we may assume $e_{G}(S, C)=0$ or $e_{G}(T, C)=0$.
We consider the condition (i). If $e_{G}(S, C)=0$, then $e_{G}(T, C) \geq m$. Since $a \leq r\left(1-\frac{1}{m}\right)$, then $\theta_{1} \leq 1-\frac{1}{m}$ and so $1 \leq\left(1-\theta_{1}\right) m$. By substituting $e_{G}(T, C) \geq m$ and $e_{G}(S, C)=0$ into (5), we have

$$
\left(1-\theta_{1}\right) e_{G}(T, C) \geq\left(1-\theta_{1}\right) m \geq 1 .
$$

If $e_{G}(T, C)=0$, then $e_{G}(S, C) \geq m$. Since $\frac{r}{m} \leq b$, hence $\theta_{2} m \geq 1$, and so we obtain

$$
\theta_{2} e_{G}(S, C) \geq \theta_{2} m \geq 1
$$

Consequently, condition (i) guarantees (5) holds and thus (i) is true. The proof is completed.
Remark: The edge connectivity conditions in Theorem 2.1 are sharp.
We will give the construction for condition (i) of Theorem 2.1. For (ii) and (iii), the constructions are similar. Let $r \geq 2$ be an even integer, $a, b \geq 1$ two odd integers and $2 \leq m \leq r-2$ an even integer such that $b<r / m$ or $r\left(1-\frac{1}{m}\right)<a$. Since G has an (a, b)-parity factor if and only if G has an $(r-b, r-a)$-parity factor, so we can assume $b<r / m$. Let $J(r, m)$ be the complete graph K_{r+1} from which a matching of size $m / 2$ is deleted. Take r disjoint copies of $J(r, m)$. Add m new vertices and connect each of these vertices to a vertex of degree $r-1$ of $J(r, m)$. This gives an m-edge-connected r-regular graph denoted by G. Let S denote the set of m new vertices and $T=\emptyset$. Let τ denote the number of components C, which are called a-odd components of $G-(S \cup T)$ and $e_{G}(V(C), T)+a|C| \equiv 1(\bmod 2)$. Then we have $\tau=r$, and

$$
\delta(S, T)=b|S|+\sum_{x \in T} d_{G-S}(x)-a|T|-\tau(S, T)=b m-r<0 .
$$

So by Theorem 1.7, G contains no (a, b)-parity factors.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 11101329)
[1] J. Akiyama and M. Kano, Factors and factorizations of graphs-a survey, J. Graph Theory, 9 (1985), 1-42.
[2] A. Amahashi, On factors with all degree odd, Graphs and Combin., 1 (1985), 111-114.
[3] B. Bollobás, A. Satio, and N. C. Wormald, Regular factors of regular graphs, J. Graph Theory, 9 (1985), 97-103.
[4] L. Collatz and U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg, 99 (2009), 287-297.
[5] G. Cornuéjols, General factors of graphs, J. Combin. Theory Ser. B, 45 (1988), 185-198.
[6] Y. Cui and M. Kano, Some results on odd factors of graphs, J. Graph Theory, 12 (1988), 327-333.
[7] T. Gallai, The factorisation of graphs, Acta Math. Acad. Sci. Hung, 1 (1950), 133-153.
[8] H. Fleischner, Spanning Eulerian subgraphs, the Splitting Lemma, and Petersen’s Theorem, Discrete Math., 101 (1992), 33-37.
[9] C. Godsil and G. Royle, Algebraic Graph Theory, Springer Verlag New York, (2001).
[10] M. Kano, [$a, b]$-factorization of a graph. J. Graph Theory, 9 (1985), 129-146.
[11] L. Lovász, The factorization of graphs, II, Acta Math. Sci. Hungar., 23 (1972), 223-246.
[12] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam (1979).
[13] J. Petersen, Die Theorie der regulären Graphen, Acta Math., 15 (1891), 193-220.
[14] W. T. Tutte, The factors of graphs, Canad. J. Math., 4 (1952), 314-328.

