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Abstract

Let K = K(a, p;λ1, λ2) be the multigraph with: the number of parts equal to p; the number of
vertices in each part equal to a; the number of edges joining any two vertices of the same part
equal to λ1; and the number of edges joining any two vertices of different parts equal to λ2. The
existence of C4-factorizations of K has been settled when a is even; when a ≡ 1 (mod 4) with one
exception; and for very few cases when a ≡ 3 (mod 4). The existence of Cz-factorizations of K
has been settled when a ≡ 1 (mod z) and λ1 is even, and when a ≡ 0 (mod z). In this paper, we
give a construction for Cz-factorizations of K for z = 2a when a is even.
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1. Introduction

Let K = K(a, p;λ1, λ2) denote the graph formed from p vertex-disjoint copies of the multi-
graph λ1Ka–each edge in Ka appearing λ1 times–by joining each pair of vertices in different copies
with λ2 edges. The vertex set, V (K), is always chosen to be Za×Zp, with parts Za×{j} for each
j ∈ Zp; naturally, each part induces a copy of λ1Ka. We say the vertex (i, j) is on level i and in
part j. An edge is said to be a mixed edge if it joins vertices in different parts, and is said to be a
pure edge (in part j) if it joins two vertices in the jth part.
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Figure 1. K = K(a, p;λ1, λ2)

Let Cz denote a cycle of length z. A Cz-factorization is a 2-factorization such that each com-
ponent of each 2-factor is a cycle of length z; each 2-factor of a Cz-factorization is known as
a Cz-factor. Cz-factorizations are also known as resolvable Cz-decompositions. A C{z1,z2,...,zk}-
factorization is a 2-factorization such that each 2-factor is a Cw-factor where w ∈ {z1, z2, ..., zk}.

There has been considerable interest recently in Cz-decompositions of various graphs, such
as complete graphs and complete multipartite graphs. In the resolvable case, these results are
collectively known as addressing the Oberwolfach problem. More recently, the existence problem
for Cz-decompositions of K for z ∈ {3, 4} has been solved [3, 4, 5]. Such decompositions are
known as Cz-group-divisible designs with two associate classes, following the notation of Bose
and Shimamoto who considered the existence problem for Kz-group divisible designs. The reason
for this name is that the structure can be thought of as partitioning ap symbols, or vertices, into
p sets of size a in such a way that symbols that are in the same set in the partition occur together
in λ1 blocks, and are known as first associates, whereas symbols that are in different sets in the
partition occur together in λ2 blocks, and are known as second associates [1].

Cz-factorizations of K have also been of interest [5]. Recently the existence of a C4-factorization
of K has been completely settled when a is even [2] and when a ≡ 1 (mod 4) with one difficult
exception [8, 9]. Some work has also been doen for the case where a ≡ 3 (mod 4) [6]. A general
construction for Cz-factorizations of K when z is even, a ≡ 1 (mod z), and λ1 is even, and when
a ≡ 0 (mod z) has also been given [10]. In this paper, we give a construction for Cz-factorizations
of K for z = 2a when a is even.

Open problems include a construction for Cz-factorizations of K for z = 2a when a is odd,
which is proving to be more difficult. Also, considering different cycle lengths, z = ka for k > 2,
in the Cz-factorization is a worthy endeavor; the authors suspect that the parity of k may play a
role in the difficulty of the constructions.

Lemma 1.1. Let z = 2a where a is even. If there exists a Cz-factorization of K (a, p;λ1, λ2), then:
1. p is even,
2. λ1 is even, and
3. λ2 > 0.

Proof. Since the number of z-cycles in each Cz-factor is the number of vertices divided by z, z
must divide ap, and since a = z/2, p ≡ 0 (mod 2).
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Each vertex is joined with λ1 edges to each of the (a − 1) other vertices in its own part and
with λ2 edges to each of the a(p− 1) vertices in the other parts; so the degree of each vertex is:

dK(v) = λ1(a− 1) + λ2a(p− 1).

Clearly, since K has a Cz-factorization, it is regular of even degree. The second term is even since
a is even. The first term must therefore be even, so since (a − 1) is odd, λ1 must be even. Since
a < z, each Cz-factor must contain mixed edges; hence λ2 > 0.

Lemma 1.2. Let z = 2a where a is even. If there exists a Cz-factorization of K(a, p;λ1, λ2), then
λ1 ≤ λ2a(p− 1).

Proof. Since a < z, each Cz-factor contains at most (a − 1) pure edges in each part. So each
Cz-factor contains at most (a− 1)p pure edges. Since there are λ1

(
a
2

)
p pure edges, the number of

Cz-factors in any Cz-factorization is at least:

λ1

(
a
2

)
p

(a− 1)p
=

λ1a

2
.

Each Cz-factor has ap edges, of which at most (a − 1)p = ap − p are pure, so there are at least p
mixed edges in any Cz-factor. Then the number of mixed edges in any Cz-factorization is at least:

λ1ap

2
.

Therefore, this number must be at most the number of mixed edges, λ2

(
p
2

)
a2, in K:

λ1ap

2
≤ λ2

(
p

2

)
a2,

so
λ1 ≤ λ2a(p− 1).

Lemma 1.3. Let a be even. There exists a cyclical decomposition of Ka into edge-disjoint Hamil-
tonian paths such that the ends of the paths are vertices i and i+ a/2 for i ∈ Za/2.

Proof. Let i ∈ Za/2. The ith such Hamiltonian path is

hi =
(
i, i+ 1, i+ (a− 1), i+ 2, i+ (a− 2), . . . , i+ (a/2− 1), i+ (a/2 + 1), i+ (a/2)

)
See Figure 2. Note that

Ka =
⋃

i∈Za/2

hi

and the ends of the Hamiltonian paths are always i and i+ a/2 (mod a). Let

Ha = {hi|i ∈ Za/2}

Theorem 1.1. [7] Suppose z > 2. There exists a Cz-factorization of K(a, p; 0, 1) if and only if
K ̸= K(6, 2; 0, 1) where z = 6.

Theorem 1.2. [2] Let a be even. There exists a C4-factorization of K(a, p;λ1, λ2).
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Figure 2. Hamiltonian path of Ka.

2. The main result - z is 2a

Theorem 2.1. Let z = 2a where a > 2 is even. There exists a C2a-factorization of K =
K(a, p;λ1, λ2) if and only if

1. p is even,
2. λ1 is even,
3. λ2 > 0, and
4. λ1 ≤ λ2a(p− 1)

Proof. The necessity of these conditions follows from Lemmas 1.1 and 1.2. So now assume that
K satisfies conditions (1–4). If λ1 = 0, then the required factorization is given by Theorem 1.1.
So we may also assume that λ1 > 0.

Given part size a, there are a mixed differences, 0, 1, ... a−1, between the levels of the vertices
in each part. Given two parts, m and n, an edge of mixed difference 0 would join the vertex on
level ℓ in part m to the vertex on level ℓ in part n. An edge of mixed difference d would join a
vertex on level ℓ in part m to the vertex on level (ℓ+ d) (mod a) in part n. For d ∈ Za, m,n ∈ Zp,
m < n, let

M(d,m, n) = {((ℓ,m), (ℓ+ d, n)) | ℓ ∈ Za}
be the set of a mixed edges of difference d between parts m and n. See Figure 3 for an example
showing all the mixed edges of mixed difference 1 between a pair of parts of size a = 6.

For d ∈ Za, ℓ ∈ Za/2, and m,n ∈ Zp, m < n, let

M2(d,m, n, ℓ) = {((ℓ,m), (ℓ+ d, n)), ((ℓ+ a/2,m), (ℓ+ a/2 + d (mod a), n))}

be the set of two mixed edges of M(d,m, n) on parts m and n such that the ends of the edges are
on levels ℓ and ℓ+a/2 in part m and on levels ℓ+d and ℓ+a/2+d (mod a) in part n. Notice that

M(d,m, n) =
⋃

ℓ∈Za/2

M2(d,m, n, ℓ).

Since p is even, there exists a 1-factorization of λ2Kp, denoted F , consisting of λ2(p − 1)
1-factors. Let fs be the sth 1-factor of F where

F = {fs | s ∈ Zλ2(p−1)}.
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Figure 3. The mixed edges of difference 1 between a pair of parts of size a = 6.

For s ∈ Zλ2(p−1), let

M2(s, d, ℓ) = {M2(d,m, n, ℓ) | (m,n) ∈ fs,m < n}

be the set of p mixed edges of difference d distributed across the paired parts of K defined by the
1-factor fs where the ends of the edges are on levels ℓ and ℓ + a/2 in part m and on levels ℓ + d
and ℓ+ a/2 + d (mod a) in part n. Also let

M2(s, d) =
⋃

ℓ∈Za/2

M2(s, d, ℓ)

be the set of all mixed edges of difference d distributed across the paired parts of K defined by the
1-factor fs. Notice that M2(s, d) is a 1-factor of K and that

π(s, d) = M2(s, d) ∪M2(s, d+ 1)

is a 2-factor of K, specifically, it is a C2a-factor of K. In fact, these C2a-factors can be used to
produce a C2a-factorization of K(a, p; 0, λ2), namely:⋃

s∈Zλ2(p−1)

⋃
{d=2x|x∈Za/2}

π(s, d).

However, we have pure edges to use too, since λ1 > 0 by assumption, which is accomplished
by spreading the edges of the 2a-cycles in π(s, d) among a C2a-factors p edges at a time. Each
such C2a-factor contains the p mixed edges of M2(s, d, ℓ) for some d ∈ Za, ℓ ∈ Za/2 together with
a Hamiltonian path in each part. More specifically, for each i ∈ Za and k ∈ Zp, using Lemma 1.3,
let hi(k) be the Hamiltonian path of a cyclical, edge-disjoint Hamiltonian path decomposition of
Ka on the vertex set Za × {k} where the ends of the path are i and i+ a/2 (mod a).

For i ∈ Za/2, d ∈ Za, m,n ∈ Zp, m < n, and s ∈ Zλ2(p−1), let

P (s, d, i) =
{
hi(m) ∪ hi+d(n) ∪M2(d,m, n, i) | (m,n) ∈ fs

}
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Figure 4. The mixed edges of differences 0 and 1 forming a 12-cycle.

be such a C2a-factor of K; see Figure 5 for an example. Notice that⋃
i∈Za/2

P (s, d, i)

contains

(a) each pure edge in each part exactly once, and
(b) precisely the mixed edges in M2(s, d).

Also notice that

P (s, d) =

 ⋃
i∈Za/2

P (s, d, i)

 ∪

 ⋃
i∈Za/2

P (s, d+ 1, i)


contains

(c) each pure edge in each part exactly twice, and
(d) precisely the mixed edges in π(s, d).

Let S = {(s, d) | s ∈ Zλ2(p−1), d ∈ Za, d is even}. Let S1 ⊆ S have size
λ1

2
. Notice that by

condition 4. of the theorem, λ1 ≤ λ2a(p − 1), so |S1| =
λ1

2
≤ λ2a(p− 1)

2
= |S|, so such a set

|S1| exists. Then ⋃
(s,d)∈S1

P (s, d)

is a set of
λ1a

2
C2a-factors that contains each pure edge 2|S1| = λ1 times by (c), and uses precisely

the mixed edges in ⋃
(s,d)∈S1

π(s, d)
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Figure 5. An example of P(s,d,i).

by (d). Therefore, the required C2a-factorization of K is defined by

P =

 ⋃
(s,d)∈S1

P (s, d)

 ∪

 ⋃
(s,d)∈S\S1

π(s, d)

 .

Notice that

|P | = a|S1|+ |S \ S1|

=
λ1a

2
+

λ2a(p− 1)

2
− λ1

2

=
λ1(a− 1)

2
+

λ2a(p− 1)

2

as required.
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