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Abstract

Suppose that V = {1, . . . , n} is a non-empty set of n elements, S = {S1, . . . , Sm} a non-empty
set of m non-empty subsets of V . In this paper, by using some algebraic notions in commutative
algebra, we investigate the question arises whether there exists an undirected finite simple graph G
with V (G) = V , where S is the set whose elements are the minimal dominating sets of G.
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1. Introduction

In general, monomial ideals play an important role in investigating the relation between com-
binatorics and commutative algebra. Indeed, the relation between these two fields permit us to use
techniques and methods in commutative algebra to explore combinatorial problems, and vice versa.
Thus, commutative algebraists have started studying the properties of finite simple graphs through
monomial ideals. One of the pioneers in this area was Villarreal [11] which introduced the notion of
edge ideals. Let G = (V (G), E(G)) be a finite simple graph on the vertex set V (G) = {1, . . . , n},
that is, G has no loops and no multiple edges. Moreover, assume that R = K[x1, . . . , xn] is a poly-
nomial ring over a field K in n variables. Then we can build the edge ideal I(G) ⊂ K[x1, . . . , xn]
which is generated by all monomials xixj such that {i, j} ∈ E(G). In addition, the vertex cover
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ideal of G, denoted by J(G), is generated by monomials that correspond to vertex covers of G,
where a vertex cover means a set of vertices that contains at least one vertex from each edge. It
should be noted that J(G) is the Alexander dual of I(G), that is, J(G) = I(G)∨.

More recently, in [10], Sharifan and Moradi introduced the notions of closed neighborhood
ideals and dominating ideals of graphs. Refer to Section 2 for these definitions. In particular,
in [10], the authors studied regularity and projective dimension of closed neighborhood ideals
and dominating ideals in terms of the information from the underlying graph. After that, in [3],
Honeycutt and Sather-Wagstaff probed the Cohen-Macaulay, unmixed, and complete intersection
properties of closed neighborhood ideals. Next, in [9, 7], the authors concentrated on the normal-
ity, strong persistence property, persistence property, and symbolic strong persistence property of
closed neighborhood ideals and dominating ideals of some classes of graphs.

Besides these papers, another motivation of this paper originates from [4, 8]. In fact, in [4],
the author argued on the sets defining minimal vertex covers of graphs, while, in [8], the authors
studied the sets defining minimal vertex covers of uniform hypergraphs. In this paper, we discuss
the sets defining minimal dominating set of graphs. Indeed, suppose that V = {1, . . . , n} is a
non-empty set of n elements, S = {S1, . . . , Sm} a non-empty set of m non-empty subsets of V .
Our aim is to investigate the question arises whether there exists an undirected finite simple graph
G with V (G) = V , where S is the set whose elements are the minimal dominating sets of G. To
answer this question, we focus on regular graphs (cf. Theorem 3.1).

Throughout this paper, we denote the unique minimal set of monomial generators of a mono-
mial ideal I by G(I). Furthermore, all graphs are finite, simple, and undirected.

2. Preliminaries

In this section, we state the definitions which we will use in the rest of this paper. For any
unexplained notation and terminology, we refer the reader to [1, 2, 5, 6, 12, 13].

We begin with the definition of associated primes of an ideal in a commutative Noetherian
ring. Suppose that R is a commutative Noetherian ring and I an ideal of R. A prime ideal p ⊂ R
is an associated prime of I if there exists an element v in R such that p = (I :R v), where
(I :R v) = {r ∈ R | rv ∈ I}. The set of associated primes of I , denoted by AssR(R/I), is the
set of all prime ideals associated to I . In particular, if I = Q1 ∩ · · · ∩ Qm is a minimal primary
decomposition of I , then AssR(R/I) = {p1, . . . , pm}, where pi =

√
Qi for all i = 1, . . . ,m.

In what follows, we focus on the definitions of closed neighborhood ideals and dominating
ideals. Let G be a finite simple graph with the vertex set V (G) and the edge set E(G). The closed
neighborhood of a vertex v ∈ V (G) is NG[v] = {u | {u, v} ∈ E(G)} ∪ {v}. Due to [10], the
closed neighborhood ideal of G, denoted by NI(G), has been defined as

NI(G) = (
∏

j∈NG[i]

xj : i ∈ V (G)).

A subset S ⊆ V (G) is called a dominating set of G if S ∩NG[v] ̸= ∅ for any v ∈ V (G). Also, S
is called a minimal dominating set of G if it is a dominating set of G and no proper subset of S is
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a dominating set of G. By virtue of [10], the dominating ideal of G has been defined as

DI(G) = (
∏
i∈S

xi : S is a minimal dominating set of G).

Recall that if u = xa1
1 · · ·xan

n is a monomial in a polynomial ring R = K[x1, . . . , xn], then the
support of u is given by supp(u) := {xi | ai > 0}. It should be noted that for any square-free
monomial ideal I ⊂ R = K[x1, . . . , xn], the Alexander dual of I , denoted by I∨, is given by

I∨ =
⋂

u∈G(I)

(xi : xi ∈ supp(u)).

On account of [10, Lemma 2.2], we have DI(G) is the Alexander dual of NI(G), that is,
DI(G) = NI(G)∨.

3. Main result

Suppose that V = {1, . . . , n} is a non-empty set of n elements, S = {S1, . . . , Sm} a non-empty
set of m non-empty subsets of V . In this section, we investigate the question arises whether there
exists an undirected finite simple graph G with V (G) = V , where S is the set whose elements are
the minimal dominating sets of G.

Before asserting the main result of this section, one needs to review the following defnitions.
Remember that an m× n matrix M = (aij) is called binary if aij ∈ {0, 1} for each i = 1, . . . ,m
and j = 1, . . . , n.

Definition 3.1. Let M = (aij) be an m × n binary matrix, and r be a positive integer with
2 ≤ r ≤ n. We say that M satisfies the condition:

(i) when, for any 1 ≤ i1, i2 ≤ m with i1 ̸= i2, there exists a positive integer 1 ≤ j ≤ n such
that ai1,j > ai2,j .

(ii) when, for any r − 1 distinct positive integers 1 ≤ j1, . . . , jr−1 ≤ n, there exists a positive
integer 1 ≤ i ≤ m such that ai,j1 + · · ·+ ai,jr−1 = 0.

(iii) when, for any ℓ ≥ r distinct positive integers 1 ≤ j1, . . . , jℓ ≤ n such that ai,j1+ · · ·+ai,jℓ ≥
1 for all i = 1, . . . ,m, then there exist at least r distinct integers jα1 , . . . , jαr ∈ {j1, . . . , jℓ}
such that ai,jα1

+ · · ·+ ai,jαr
≥ 1 for all i = 1, . . . ,m.

(iv) when, there exist n subsets (possibly some of them are the same) Γt := {θt,1, . . . , θt,r} ⊆
{1, . . . , n} for any integer 1 ≤ t ≤ n such that we have

(a) ai,θt,1+· · ·+ai,θt,r ≥ 1 for i = 1, . . . ,m and t = 1, . . . , n. Furthermore, if z1, . . . , zr are
r distinct integers such that ai,z1 + · · ·+ai,zr ≥ 1 for i = 1, . . . ,m, then {z1, . . . , zr} =
Γs for some 1 ≤ s ≤ n;

(b) for any integer 1 ≤ t ≤ n there exist r sets Γi1 , . . . ,Γir with t ∈ Γik for all k =
1, . . . , r;
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(c) t ∈ Γt for t = 1, . . . , n;

(d) θt,i ∈ Γt if and only if t ∈ Γθt,i for i = 1, . . . , r and t = 1, . . . , n, which ensures us that
the resulting graph is not directed.

Definition 3.2. Suppose that V = {1, . . . , n} is a non-empty set of n elements, and let S =
{S1, . . . , Sm} be a non-empty set of m subsets of V . We define the incidence matrix associated to
S, denoted by M(S), as the binary matrix M(S) = (aij) with m rows and n columns such that
aij = 0 if j /∈ Si, and aij = 1 if j ∈ Si for all i = 1, . . . ,m and j = 1, . . . , n.

We are ready to state the main result of this paper in the following theorem.

Theorem 3.1. Suppose that V = {1, . . . , n} is a non-empty set of n elements, S = {S1, . . . , Sm}
a non-empty set of m non-empty subsets of V , and 2 ≤ r ≤ n a positive integer. Then there exists
an undirected (r− 1)-regular graph G with V (G) = V , where S is the set whose elements are the
minimal dominating sets of G if and only if the matrix M(S) = (aij) satisfies conditions (i)-(iv).

If there exists such (r − 1)-regular graph G, then the closed neighborhood ideal of G is given
by

NI(G) = (xj1 · · ·xjr : ai,j1 + · · ·+ ai,jr ≥ 1 for all i = 1, . . . ,m,

with j1, . . . , jr are distinct positive integers).

Proof. To establish the forward implication, assume there exists an (r − 1)-regular graph G with
V (G) = V , where S is the set whose elements are the minimal dominating sets of G. We show
that M(S) satisfies Condition (i). On the contrary, assume that Condition (i) does not hold. So
there exist 1 ≤ i1, i2 ≤ m with i1 ̸= i2 such that ai1,j ≤ ai2,j for each j = 1, . . . , n. Hence, we get
Si1 ⊆ Si2 , which contradicts the minimality of Si2 . Accordingly, we conclude that M(S) satisfies
Condition (i).

We prove that M(S) satisfies Condition (ii). On the contrary, assume that there exist r − 1
distinct positive integers 1 ≤ j1, . . . , jr−1 ≤ n, such that ai,j1+· · ·+ai,jr−1 ̸= 0 for each 1 ≤ i ≤ m.
To simplify the notation, put pi := (xw : w ∈ Si) for each i = 1, . . . ,m. Due to S1, . . . , Sm are
the minimal dominating sets of G, [10, Lemma 2.2] implies that NI(G) = ∩m

i=1pi, where NI(G)
denotes the closed neighborhood ideal of G. The assumption gives that {j1, . . . , jr−1}∩Si ̸= ∅ for
each i = 1, . . . ,m. Hence, one can conclude that {xj1 , . . . , xjr−1} ∩ pi ̸= ∅ for each i = 1, . . . ,m.
This yields that xj1 · · ·xjr−1 ∈ pi for each i = 1, . . . ,m, and so xj1 · · ·xjr−1 ∈ ∩m

i=1pi. Thus, there
exists an element u ∈ G(NI(G)) such that u | xj1 · · ·xjr−1 . So degu ≤ r − 1. On the other hand,
since G is an (r − 1)-regular graph, one obtains degu = r, which is a contradiction.

Here, we demonstrate that M(S) satisfies Condition (iii). Suppose that for each ℓ ≥ r distinct
positive integers 1 ≤ j1, . . . , jℓ ≤ n, we have ai,j1 + · · · + ai,jℓ ≥ 1 for all i = 1, . . . ,m. Want to
show that there are at least r distinct integers jα1 , . . . , jαr ∈ {j1, . . . , jℓ} such that ai,jα1

+ · · · +
ai,jαr

≥ 1 for all i = 1, . . . ,m. Set pi := (xw : w ∈ Si) for each i = 1, . . . ,m. It is not hard to
see that ai,j1 + · · · + ai,jℓ ≥ 1 for all i = 1, . . . ,m, if and only if {j1, . . . , jℓ} ∩ Si ̸= ∅ for all i =
1, . . . ,m, if and only if {xj1 , . . . , xjℓ} ∩ pi ̸= ∅ for all i = 1, . . . ,m, if and only if xj1 · · ·xjℓ ∈ pi
for all i = 1, . . . ,m. This leads to xj1 · · · xjℓ ∈ ∩m

i=1pi. On account of NI(G) = ∩m
i=1pi and G is

an (r − 1)-regular graph, this implies that there exists an element u ∈ G(NI(G)) with degu = r
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such that u | xj1 · · ·xjℓ . Let u = xjα1
· · ·xjαr

. Accordingly, we get jα1 , . . . , jαr ∈ {j1, . . . , jℓ}.
One can derive from u ∈ G(NI(G)) that xjα1

· · · xjαr
∈ pi for all i = 1, . . . ,m. Therefore,

ai,jα1
+ · · ·+ ai,jαr

≥ 1 for all i = 1, . . . ,m, as claimed.
To finish the argument, we show that M(S) satisfies Condition (iv). By virtue of G is an (r−1)-

regular graph, this implies that there exist n subsets NG[1], . . . , NG[n] such that, for each t =
1, . . . , n, NG[t] as the closed neighborhood of the vertex t ∈ V (G) has r elements. Set NG[t] :=
{θt,1, . . . , θt,r} for each t = 1, . . . , n. It follows from the definition of closed neighborhood ideal
of G that NI(G) = (xθt,1 · · ·xθt,r : t = 1, . . . , n). Since NI(G) = ∩m

i=1pi, where pi = (xw : w ∈
Si) for each i = 1, . . . ,m, this gives that xθt,1 · · ·xθt,r ∈ pi for each i = 1, . . . ,m and t =
1, . . . , n. Fix 1 ≤ t ≤ n. Hence, we get {θt,1, . . . , θt,r} ∩ Si ̸= ∅ for each i = 1, . . . ,m, and so
ai,θt,1 + · · ·+ ai,θt,r ≥ 1 for each i = 1, . . . ,m. Now, assume that z1, . . . , zr are r distinct integers
such that ai,z1 + · · · + ai,zr ≥ 1 for i = 1, . . . ,m. This implies that {z1, . . . , zr} ∩ Si ̸= ∅ for
each i = 1, . . . ,m, and so {xz1 , . . . , xzr} ∩ pi ̸= ∅ for all i = 1, . . . ,m. We can deduce that
xz1 · · ·xzr ∈ pi for all i = 1, . . . ,m, and hence xz1 · · ·xzr ∈ ∩m

i=1pi. As NI(G) = ∩m
i=1pi and

NI(G) = (xθt,1 · · ·xθt,r : t = 1, . . . , n), we get there exists an element xθs,1 · · ·xθs,r ∈ G(NI(G))
for some 1 ≤ s ≤ n such that xθs,1 · · · xθs,r | xz1 · · ·xzr . Since both of xθs,1 · · ·xθs,r and xz1 · · ·xzr

are square-free and in the same degree, we thus obtain that xθs,1 · · ·xθs,r = xz1 · · ·xzr , and therefore
{z1, . . . , zr} = Γs, as required.

Moreover, since G is an (r − 1)-regular graph, we derive there exist r sets NG[i1], . . . , NG[ir]
with t ∈ NG[ik] for all k = 1, . . . , r. Since G is undirected, this is equivalent to this statement that
θt,i ∈ NG[t] if and only if t ∈ NG[θt,i] for i = 1, . . . , r and t = 1, . . . , n. This yields that M(S)
satisfies Condition (iv).

Conversely, assume that the matrix M(S) satisfies Conditions (i)-(iv). Our aim is to verify
the existence of an (r − 1)-regular graph G with V (G) = V where S is the set whose el-
ements are the minimal dominating sets of G. Condition (iv) gives that there exist n subsets
Γt = {θt,1, . . . , θt,r} ⊆ {1, . . . , n} for any integer 1 ≤ t ≤ n such that ai,θt,1 + · · ·+ ai,θt,r ≥ 1 for
i = 1, . . . ,m and t = 1, . . . , n, and also for any integer 1 ≤ t ≤ n there exist r sets Γi1 , . . . ,Γir

with t ∈ Γik for all k = 1, . . . , r, t ∈ Γt, and θt,i ∈ Γt if and only if t ∈ Γθt,i for all i = 1, . . . , r.
Hence, we define an (r − 1)-regular graph G with NG[t] := Γt = {θt,1, . . . , θt,r} for any inte-
ger 1 ≤ t ≤ n. In other words, Conditions (iv)(a)-(d) guarantee the existence of such a graph
G. In particular, one can conclude from the definition of closed neighborhood ideal of G that
NI(G) = (xθt,1 · · ·xθt,r : t = 1, . . . , n).

In what follows, we prove that every element of S is a minimal dominating set of G. To see
this, we first show that S1, . . . , Sm are dominating sets of G. To do this, assume that NG[t] =
{θt,1, . . . , θt,r} is the closed neighborhood of the vertex t with 1 ≤ t ≤ n. By Condition (iv)(a), we
have that ai,θt,1 + · · ·+ ai,θt,r ≥ 1 for all i = 1, . . . ,m. Since, for all i = 1, . . . ,m, the i-th row of
the matrix M(S) is associated to Si and ai,θt,1 + · · ·+ai,θt,r ≥ 1, we obtain {θt,1, . . . , θt,r}∩Si ̸= ∅
for all i = 1, . . . ,m. Consequently, NG[t] ∩ Si ̸= ∅, and so Si is a dominating set of G for all
i = 1, . . . ,m.

Here, we claim that if D is an arbitrary dominating set of G, then Si ⊆ D for some 1 ≤ i ≤ m.
On the contrary, assume that Si ⊈ D for each i = 1, . . . ,m. Thus there exists an element fi ∈
Si \D for all i = 1, . . . ,m. Suppose that ∪m

i=1{fi} = {y1, . . . , yλ} such that y1 < · · · < yλ are λ
distinct integers. Because ∪m

i=1{fi} = {y1, . . . , yλ}, we get fi ∈ {y1, . . . , yλ} for all i = 1, . . . ,m.

405



www.ejgta.org

Sets defining minimal dominating sets of regular graphs | M. Nasernejad

Thus, we deduce that there exists a positive integer ki with 1 ≤ ki ≤ λ such that fi = yki for all
i = 1, . . . ,m. Due to fi ∈ Si for all i = 1, . . . ,m, this implies that yki ∈ Si for all i = 1, . . . ,m.
Since, for all i = 1, . . . ,m, the i-th row of the matrix M(S) is associated to Si, yki ∈ Si, and
1 ≤ ki ≤ λ, this yields that ai,y1 + · · · + ai,yλ ≥ 1 for each i = 1, . . . ,m. We prove that λ ≥ r.
Suppose, on the contrary, that λ ≤ r − 1. If λ = r − 1, then ai,y1 + · · · + ai,yr−1 ≥ 1 for each
i = 1, . . . ,m, which is a contradiction with Condition (ii). Now, let λ < r− 1, then this gives that
one can choose r−1−λ distinct integers z1, . . . , zr−1−λ ∈ {1, . . . , n}\{y1, . . . , yλ}. On account of
ai,y1+· · ·+ai,yλ ≥ 1 for each i = 1, . . . ,m, one obtains ai,y1+· · ·+ai,yλ+ai,z1+· · ·+ai,zr−1−λ

≥ 1
for each i = 1, . . . ,m. This contradicts Condition (ii), and hence we derive λ ≥ r. It follows from
Condition (iii) that there exist at least r distinct integers yα1 , . . . , yαr ∈ {y1, . . . , yλ} such that
ai,yα1

+ · · · + ai,yαr
≥ 1 for all i = 1, . . . ,m. In view of Condition (iv)(a), this implies that

{yα1 , . . . , yαr} = Γs = NG[s] for some 1 ≤ s ≤ n. Thus, {yα1 , . . . , yαr} ∩ D ̸= ∅, and so
{y1, . . . , yλ} ∩D ̸= ∅. This yields that (∪m

i=1{fi}) ∩D ̸= ∅, which is a contradiction. Hence, one
can conclude that if D is an arbitrary dominating set of G, then Si ⊆ D for some 1 ≤ i ≤ m. On
the other hand, Condition (i) gives that Si ⊈ Sj for each 1 ≤ i, j ≤ m with i ̸= j. Consequently,
we derive that S1, . . . , Sm are the minimal dominating sets of G, and so the proof is over.

The next example illustrates how we can employ Theorem 3.1.

Example 3.1. Assume that V = {x1, . . . , x6} and the Si’s are a non-empty set of V as follows:

S1 = {x1, x2}, S2 = {x1, x4}, S3 = {x1, x6}, S4 = {x2, x3}, S5 = {x2, x5},
S6 = {x3, x4}, S7 = {x3, x6}, S8 = {x4, x5}, S9 = {x5, x6}, S10 = {x1, x3, x5},
S11 = {x2, x4, x6}.

Conditions (ii) and (iii) force us to seek a 3-regular graph G. It is not hard to observe that the
matrix M(S) associated to S is the following matrix:

M(S) =



1 1 0 0 0 0
1 0 0 1 0 0
1 0 0 0 0 1
0 1 1 0 0 0
0 1 0 0 1 0
0 0 1 1 0 0
0 0 1 0 0 1
0 0 0 1 1 0
0 0 0 0 1 1
1 0 1 0 1 0
0 1 0 1 0 1


.

It is easy to investigate that Condition (i) holds. In order to show Condition (ii), we should
check that for each r − 1 = 3 distinct integers 1 ≤ j1, j2, j3 ≤ 6, there exists a positive integer
1 ≤ i ≤ 11 such that ai,j1 +ai,j2 +ai,j3 = 0. To do this, we have to examine it

(
6
3

)
= 20 times. This

proves that M(S) satisfies Condition (ii). Moreover, for verifying Condition (iii), one must check
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that for each 4 ≤ ℓ ≤ 6 and distinct integers 1 ≤ j1, . . . , jℓ ≤ 6 such that ai,j1 + · · ·+ ai,jℓ ≥ 1 for
all i = 1, . . . , 11, then there exist at least four distinct integers jα1 , jα2 , jα3 , jα4 ∈ {j1, . . . , jℓ} such
that ai,jα1

+ ai,jα2
+ ai,jα3

+ ai,jα4
≥ 1 for all i = 1, . . . , 11. Hence, we have to check Condition

(iii) exactly
(
6
4

)
+
(
6
5

)
+
(
6
6

)
= 22 times. After checking them, we derive that Condition (iii) holds.

Finally, direct computations show that after checking
(
6
4

)
= 15 cases, there exist exactly six subsets

Γ1 := {1, 2, 4, 6}, Γ2 := {1, 2, 3, 5}, Γ3 := {2, 3, 4, 6}, Γ4 := {1, 3, 4, 5}, Γ5 := {2, 4, 5, 6}, and
Γ6 := {1, 3, 5, 6} which satisfy Condition (iv).

Since Conditions (i)-(iv) hold, according to Theorem 3.1, one can deduce that the closed neigh-
borhood ideal of G is given by

NI(G) = (x1x2x4x6, x1x2x3x5, x2x3x4x6, x1x3x4x5, x2x4x5x6, x1x3x5x6).

Since x1x2x4x6 ∈ NI(G), one may consider the following cases:
Case 1. NG(1) = {2, 4, 6}. Because x1x2x3x5 ∈ NI(G), one can conclude that NG(2) =

{1, 3, 5}. Furthermore, thanks to NG(2) = {1, 3, 5} and x2x3x4x6 ∈ NI(G), this implies that
NG(3) = {2, 4, 6}. Due to NG(3) = {2, 4, 6} and x1x3x4x5 ∈ NI(G), we get NG(4) = {1, 3, 5}.
It follows from NG(4) = {1, 3, 5} and x2x4x5x6 ∈ NI(G) that NG(5) = {2, 4, 6}. Finally, since
NG(5) = {2, 4, 6} and x1x3x5x6 ∈ NI(G), this gives that NG(6) = {1, 3, 5}. Therefore, we
deduce that G is the graph G1 which has been shown in the figure below.

Case 2. NG(2) = {1, 4, 6} and NG(4) = {2, 3, 6}. A similar argument yields that NG(1) =
{2, 3, 5}, NG(3) = {1, 4, 5}, NG(5) = {1, 3, 6}, and NG(6) = {2, 4, 5}. We thus gain that G is
isomorphic to G2 which has been shown in the figure below.

Case 3. NG(2) = {1, 4, 6} and NG(6) = {2, 3, 4}. Following a similar discussion, we get
NG(1) = {2, 3, 5}, NG(3) = {1, 5, 6}, NG(4) = {2, 5, 6}, and NG(5) = {1, 3, 4}. Consequently,
one has G is isomorphic to G2.

Case 4. NG(4) = {1, 2, 6} and NG(3) = {1, 2, 5}. A similar discussion gives rise to NG(1) =
{3, 4, 5}, NG(2) = {3, 4, 6}, NG(5) = {1, 3, 6}, and NG(6) = {2, 4, 5}. One can easily check that
G is isomorphic to G2.

Figure 1. Graphs G1 and G2.
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Case 5. NG(4) = {1, 2, 6} and NG(5) = {1, 2, 3}. A similar argument implies that NG(1) =
{3, 4, 5}, NG(2) = {4, 5, 6}, NG(3) = {1, 5, 6}, and NG(6) = {2, 3, 4}. It is not hard to investi-
gate that G is isomorphic to G2.

Case 6. NG(6) = {1, 2, 4} and NG(5) = {1, 2, 3}. By a similar discussion, we obtain that
NG(1) = {3, 5, 6}, NG(2) = {4, 5, 6}, NG(3) = {1, 4, 5}, and NG(4) = {2, 3, 6}. One can
rapidly check that G is isomorphic to G2.

Case 7. NG(6) = {1, 2, 4} and NG(3) = {1, 2, 5}. A similar argument yields that NG(1) =
{3, 5, 6}, NG(2) = {3, 4, 6}, NG(4) = {2, 5, 6}, and NG(5) = {1, 3, 4}. We can easily see that G
is isomorphic to G2.

Since G1 has no induced odd cycle, this implies that G1 is bipartite, while G2 has an induced
odd cycle, and so is non-bipartite. This yields that G1 and G2 are non-isomorphic.
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