
www.ejgta.org

Electronic Journal of Graph Theory and Applications 11 (1) (2023), 155–164

The Alon-Tarsi number of two kinds of planar
graphs
Zhiguo Li∗, Qing Ye, Zeling Shao
Department of Mathematics, Hebei University of Technology, China

zhiguolee@hebut.edu.cn, hebutyeqing@163.com, zelingshao@163.com

Abstract

The Alon-Tarsi number AT (G) of a graph G is the least k for which there is an orientation D of G
with max outdegree k− 1 such that the number of spanning Eulerian subgraphs of G with an even
number of edges differs from the number of spanning Eulerian subgraphs with an odd number of
edges. In this paper, the exact value of the Alon-Tarsi number of two kinds of planar graphs is
obtained.
Keywords: Alon-Tarsi number, choice number, chromatic number, Combinatorial Nullstellensatz, planar graph
Mathematics Subject Classification : 05C15
DOI: 10.5614/ejgta.2023.11.1.13

1. Introduction

All graphs considered in this article are finite and simple. One of the most popular topics in
graph theory is graph coloring. In addition to classical coloring, list coloring is also a hot topic, it
is a well-established generalization of graph coloring and has been widely studied. The study of
list coloring problems was obtained in the 1970s by Vizing [1] and independently by Erdős, Rubin,
and Taylor [2].

A k-list assignment of a graph G is a mapping L which assigns to each vertex v of G a set
L(v) of k permissible colors. Given a k-list assignment L of G, an L-coloring of G is a mapping
ϕ which assigns to each vertex v a color ϕ(v) ∈ L(v) such that ϕ(u) ̸= ϕ(v) for every edge uv
of G. A graph G is k-choosable if G has an L-coloring for every k-list assignment L. The choice
number of a graph G is the least positive integer k such that G is k-choosable, denoted by ch(G).
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In the classic article [3], an upper bound for the choice number and for some related parameters
of graphs is obtained by applying algebraic techniques, which was later called the Alon-Tarsi
number of G, and denoted by AT (G) (see e.g. Jensen and Toft (1995) [4]).

The Alon-Tarsi number of G, AT (G), is the smallest k for which there is an orientation D of
G with max outdegree k − 1 such that the number of odd spanning Eulerian subgraphs of G is not
the same as the number of even spanning Eulerian subgraphs of G. For convenience, all Eulerian
subgraphs in this paper represent spanning Eulerian subgraphs. Furthermore, there is an equivalent
definition of the Alon-Tarsi number by Alon-Tarsi polynomial method (see Definition 2.3).

Let χp(G) be the paint number of G. Schauz [5] has pointed out that ch(G) ≤ χp(G) ≤
AT (G) for any graph G and the equalities are not held in general. For more details about the paint
number, the reader is referred to [6]. A graph G is chromatic-choosable, if χ(G) = ch(G). In [7],
Thomassen proves with a very elegant argument that every planar graph is 5-choosable, with proof
that can be translated into a simple linear algorithm for finding a list coloring. Voigt [8] has shown
that not every planar graph is 4-choosable. Recently, Zhu [9] showed that every planar graph G has
AT (G) ≤ 5 which generalizes Thomassen’s result. In [10], the authors get the Alon-Tarsi number
of Halin graphs which have upper bound 4.

In this paper, we are interested in the Alon-Tarsi number of two kinds of planar graphs. One
kind of graph is a class of 4-regular planar graphs [11], which is defined by Rn = (V,E), V =
{v1, v2, . . . , vn} ∪ {u1, u2, . . . , un} and E = {vivi+1, uiui+1, uivi, uivi+1|i = 1, 2, . . . , n}, where
vn+1 = v1, un+1 = u1 (see Figure 1). Obviously Rn contains v1v2 · · · vnv1 and u1u2 · · ·unu1 n-
cycles as subgraphs. Another kind of graph is the biwheel Bn [12], there exists two vertices y1
and y2 adjacent to every vertices on cycles Cn. A biwheel Bn has 2n triangle faces, 3n edges, and
2 + n vertices (see Figure 2 for n = 6).

In this article, we study the Alon-Tarsi number of Rn and Bn respectively and obtain two results
as follows:

Figure 1. 4-regular planar graph Rn(n ≥ 3).

Theorem 1.1. For a 4-regular planar graph Rn,

χ(Rn) = AT (Rn) =

{
3, n ≡ 0 (mod 3);
4, otherwise.

Consequently, Rn is chromatic-choosable.

156



www.ejgta.org

The Alon-Tarsi number of two kinds of planar graphs | Zhiguo Li et al.

Figure 2. A biwheel B6.

Theorem 1.2. For a biwheel Bn (n ≥ 3),

AT (Bn) =

{
3, n = 4,
4, otherwise.

2. Preliminaries

Definition 2.1. [3] A subdigraph H of a directed graph D is called Eulerian if V (H) = V (G) and
the indegree d−H(v) of every vertex v of H in H is equal to its outdegree d+H(v). Note that H might
not be connected. For a digraph D, we denote by E(D) the family of Eulerian subdigraphs of D.
H is even if it has an even number of edges, otherwise, it is odd. Let Ee(D) and Eo(D) denote the
family of even and odd Eulerian subgraphs of D, respectively. Let diff(D) = |Ee(D)| − |Eo(D)|.
We say that D is Alon-Tarsi if diff(D) ̸= 0. If an orientation D of G yields an Alon-Tarsi digraph,
then we say D is an Alon-Tarsi orientation (or an AT-orientation, for short) of G.

Definition 2.2. [13] Assume that G is an undirected simple graph whose vertices are linearly
ordered and F is a field. Associate to each vertex v of G a variable xv. The graph polynomial
f(x) ∈ F[x] of G is defined as

fG(x) =
∏

uv∈E(G), u<v

(xu − xv).

It is clear that the graph polynomial encodes information about its proper colorings. Indeed, a
graph G is k-colorable if and only if there exists an n-tuple (a1, a2, . . . , an) ∈ {0, 1, . . . , k − 1}n
such that fG(a1, a2, . . . , an) ̸= 0. Similarly, G is k-choosable if and only if for an arbitrary field
F and for every family of sets Si ⊂ F : 1 ≤ i ≤ n, each of size at least k, there exists an n-tuple
(a1, a2, . . . , an) ∈ S1 × S2 × . . .× Sn such that fG(a1, a2, . . . , an) ̸= 0.

The following theorem gives a sufficient condition for the existence of such an n-tuple.

Theorem 2.1 (Combinatorial Nullstellensatz). [14] Let F be an arbitrary field, and let f = f(x1, x2,
. . . , xn) be a polynomial in F[x1, x2, . . . , xn]. Suppose the degree deg(f) of f is

∑n
i=1 ti, where
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each ti is a nonnegative integer, and suppose the coefficient of
∏n

i=1 x
ti
i in f is nonzero. Then,

if S1, . . . , Sn are subsets of F with |Si| > ti, there are s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that
f(s1, . . . , sn) ̸= 0.

Combinatorial Nullstellensatz is a landmark theorem in algebraic combinatorics, which is now
a widely used tool in tackling many (not necessarily coloring related) combinatorial problems in
diverse areas of mathematics.

Finally we give another equivalent definition of the Alon-Tarsi number.

Definition 2.3. [13] Let G = (V,E) be a graph with vertex set V = {v1, v2, . . . , vn}. We say that
G is Alon-Tarsi k-choosable, if there exist a monomial c

∏n
i=1 x

ti
i in the expansion of fG such that

c ̸= 0 and ti ≤ k − 1 for every 1 ≤ i ≤ n. The smallest integer k for which G is Alon-Tarsi
k-choosable, denote by AT (G), is called the Alon-Tarsi number of G.

3. Proof of the Theorem 1.1

Lemma 3.1. [15] If G is a connected graph, and is neither a complete graph nor an odd cycle,
then AT (G) ≤ ∆(G), where ∆(G) is the maximum degree of G.

By Lemma 3.1 and Rn contains odd cycles, we have

Lemma 3.2. 3 ≤ χ(Rn) ≤ AT (Rn) ≤ 4 for each Rn.

Lemma 3.3. For a 4-regular planar graph Rn,

χ(Rn) =

{
3, n ≡ 0 (mod 3),
4, otherwise.

Proof. Assume V (Rn) = {v1, v2, . . . , vn, u1, u2, . . . , un}.
Case 1. n ≡ 0 (mod 3).
It is easy to check that there is a proper 3-coloring π: V (Rn) → {0, 1, 2} as follows:
If i ≡ 1 ( mod 3), then π(ui) = 0 and π(vi) = 1;
If i ≡ 2 ( mod 3), then π(ui) = 1 and π(vi) = 2;
If i ≡ 0 ( mod 3), then π(ui) = 2 and π(vi) = 0.
It follows by Lemma 3.2 that χ(Rn) = 3 (see Figure 3 for n = 6).
Case 2. n ≡ 1 (mod 3) or n ≡ 2 (mod 3).
We shall prove that Rn is not 3-colorable. Assume toward the contrary that there is a proper

3-coloring ϕ: V (Rn) → {0, 1, 2}. Without loss of generality, let ϕ(u1) = 0 and ϕ(v1) = 1.
v2, u2, v3, u3, . . . , vn−1, un−1 can be colored by a unique way.

If n ≡ 1 (mod 3), vn is adjacent to v1, vn−1 and un−1, but ϕ(v1) = 1, ϕ(vn−1) = 0 and
ϕ(un−1) = 2, there is no available color for vn, a contradiction.

If n ≡ 2 (mod 3), ϕ(v1) = ϕ(vn−1) = 1 and ϕ(un−1) = 0, so ϕ(vn) = 2. However, there is no
possible color for un, a contradiction.

By Brook’s theorem, χ(Rn) ≤ 4. Hence χ(Rn) = 4 if n ≡ 1 (mod 3) or n ≡ 2 (mod 3).
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Figure 3. A 3-coloring of R6.

Lemma 3.4. [16] Assume that f(x) ∈ F[x1, x2, . . . , xn] is a polynomial over F, and di ≥ 0 are
integers such that deg f ≤

∑n
i=1 di. Let d = (d1, d2, . . . , dn). Then the coefficient of the monomial∏n

i=1 x
di
i in the expansion of f is

cf,d = (
n∏

i=1

di!)
−1

d1∑
a1=0

· · ·
dn∑

an=0

(−1)d1+a1
(
d1
a1

)
· · · (−1)dn+an

(
dn
an

)
f(a1, . . . , an).

In particular, if di = d for all i, then the coefficient of the monomial
∏n

i=1 x
d
i in the expansion of f

is

cf,d = (d!)−n
∑
σ

(
n∏

i=1

(−1)d+σ(xi)
(

d
σ(xi)

))
f(σ),

where the summation is over all mappings σ : {x1, x2, . . . , xn} → {0, 1, . . . , d} and f(σ) is the
evaluation of f at xi = σ(xi) for i = 1, 2, . . . , n.

Lemma 3.5. For a 4-regular graph Rn,

AT (Rn) =

{
3, n ≡ 0 (mod 3),
4, otherwise.

Proof. By Lemma 3.2 and Lemma 3.3, it follows that AT (Rn) = 4 when n ≡ 1 (mod 3) and
n ≡ 2 (mod 3). It remains to show that AT (Rn) = 3 if n ≡ 0 (mod 3).

The graph polynomial of Rn is

f(x) =
∏

1≤i≤n

(xvi+1
− xvi)(xui+1

− xui
)(xvi − xui

)(xvi+1
− xui

),

where un+1 = u1, vn+1 = v1.
In order to prove that AT (Rn) ≤ 3, by Definition 2.3, it suffices to show that the monomial∏n

i,j=1 x
2
vi
x2
uj

in the expansion of f(x) is non-vanishing. By Lemma 3.4, it is equivalent to prove
that

cf,2 = (2!)−2n
∑
σ

[
n∏

i=1

(−1)2+σ(vi)
(

2
σ(vi)

)
(−1)2+σ(ui)

(
2

σ(ui)

)]
f(σ) ̸= 0,

where the summation is over all mappings σ : {v1, . . . , vn, u1, . . . , un} → {0, 1, 2}.
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Let Φ = {σ | f(σ) ̸= 0} and Ψ = {σ | f(σ) = 0}. Obviously Ψ contribute nothing to the
coefficient cf,2. It is clear that f(σ) ̸= 0 if and only if the mapping σ is a 3-proper coloring of Rn.
Since Rn is 3-colorable when n ≡ 0 (mod 3), Φ ̸= ∅. By Lemma 3.3, each color class contains 2n

3

vertices. Hence

n∏
i=1

(−1)2+σ(vi)
(

2
σ(vi)

)
(−1)2+σ(ui)

(
2

σ(ui)

)
=

2∏
j=0

[
(−1)2+j

(
2
j

)] 2n
3
=
[
(−1)2+1

(
2
1

)] 2n
3 = 2

2n
3 ,

and
cf,2 = 2−2n2

2n
3

∑
σ∈Φ

f(σ) = 2−
4n
3

∑
σ∈Φ

f(σ).

For each mapping σ ∈ Φ,

f(σ) =
∏

1≤i≤n

(σ(vi+1)− σ(vi))(σ(ui+1)− σ(ui))(σ(vi)− σ(ui))(σ(vi+1)− σ(ui)). (∗)

According to Lemma 3.3, if the coloring of any two adjacent vertices are determined, then other
vertices can be colored in a unique way. Furthermore, it is quite clear that σ(vi) = σ(ui+1) and
σ(ui) = σ(vi+2) for each 1 ≤ i ≤ n. On the right hand side of (∗), replace σ(ui+1) − σ(ui) and
σ(vi+1)− σ(ui) with σ(vi)− σ(ui) and σ(vi+1)− σ(vi+2) respectively. Then we get

f(σ) = (−1)n
∏

1≤i≤n

(σ(vi+1)− σ(vi))
2(σ(vi)− σ(ui))

2 = (−1)n2
4n
3 .

Hence
cf,2 = (−1)n2−

4n
3 2

4n
3 |Φ| = (−1)n|Φ| ≠ 0.

Therefore
∏n

i,j=1 x
2
vi
x2
uj

is a non-vanishing monomial of fRn and AT (Rn) ≤ 3. In addition,
AT (Rn) ≥ χ(Rn) = 3, and this completes the proof.

It follows from the inequality χ(G) ≤ ch(G) ≤ χp(G) ≤ AT (G) that

Corollary 3.1.

ch(Rn) = χp(Rn) =

{
3, n ≡ 0 (mod 3),
4, otherwise.

4. Proof of the Theorem 1.2

The proof will be completed by a sequence of lemmas. By the structure of the biwheel, it is
easy to show that

Lemma 4.1. For a biwheel Bn,

χ(Bn) =

{
3, n is even,
4, n is odd.

160



www.ejgta.org

The Alon-Tarsi number of two kinds of planar graphs | Zhiguo Li et al.

Figure 4. A 3-proper coloring of B4.

Lemma 4.2. AT (B4) = 3.

Proof. According to Lemma 4.1, χ(B4) = 3 (see Figure 4). Thus AT (B4) ≥ 3. What is left is to
show that AT (B4) ≤ 3. The graph polynomial of B4 is

f(x) =
∏

1≤i≤4

(xvi+1
− xvi)(xu1 − xvi)(xu2 − xvi),

where v5 = v1.
In order to show that AT (B4) ≤ 3, it suffices to prove that the coefficient

cf,2 = (2!)−6
∑
σ

[
4∏

i=1

(−1)2+σ(vi)
(

2
σ(vi)

) 2∏
j=1

(−1)2+σ(uj)
(

2
σ(uj)

)]
f(σ)

of the term x2
v1
x2
v2
x2
v3
x2
v4
x2
u1
x2
u2

in f(x) is not zero, where the summation is over all mappings
σ : {v1, . . . , v4, u1, u2} → {0, 1, 2}. Note that if σ is not a proper coloring of B4, then f(σ) = 0.
Therefore, we can restrict the summation to proper colorings σ of B4 with color set {0, 1, 2}.

It is easy to check that every proper coloring σ of B4 is of the form σ(v1) = σ(v3) = a,
σ(v2) = σ(v4) = b and σ(u1) = σ(u2) = c, where (a, b, c) is a permutation of the color set
{0, 1, 2}. So each color class contains 2 vertices. It follows that

4∏
i=1

(−1)2+σ(vi)
(

2
σ(vi)

) 2∏
j=1

(−1)2+σ(uj)
(

2
σ(uj)

)
=

2∏
k=0

[
(−1)2+k

(
2
k

)]2
= [(−1)2+1

(
2
1

)
]2 = 22,

and
f(σ) =

∏
1≤i≤4

(σ(vi+1)− σ(vi))(σ(u1)− σ(vi))(σ(u2)− σ(vi))

= [(σ(v2)− σ(v1))(σ(u1)− σ(v1))(σ(u1)− σ(v2))]
4 > 0.

Therefore
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cf,2 = 2−4
∑
σ

f(σ) ̸= 0.

Lemma 4.3. If n is even and n > 4, then AT (Bn) = 4.

Proof. Assume V (Bn) = {v1, v2, . . . , v2k, u1, u2}, D is an arbitrary orientation of Bn. Since∑
x∈V (D) d

+
D(x) = |A(D)| = 6k and |V (D)| = 2k+2, there are some vertices that have outdegree

at least 3, so AT (B2k) ≥ 4. It remains to show that AT (B2k) ≤ 4.
Let D1 be an orientation of B2k in which the edges of B2k are oriented in such a way by

orientating the cycle C2k in clockwise and orientating edge viuj as (vi, uj), i = 1, 2, . . . , 2k, j =
1, 2 (see Figure 5(a)). Since D1 has no odd directed cycle, it follows that D1 is an AT -orientation
with maximum outdegree 3. Therefore AT (B2k) ≤ 4.

Figure 5. (a). The AT -orientation D1 of B2k (k > 2). (b). The AT -orientation D2 of B2k+1 (k ≥ 1).

Lemma 4.4. If n is odd, then AT (Bn) = 4.

Proof. Assume V (Bn) = {v1, v2, . . . , v2k+1, u1, u2} and k ≥ 1. v1v2 · · · v2k+1v1 is an odd cycle,
denoted by C2k+1. Let G′ = B2k+1 − u2. G′ has an orientation D′ as the following way: orient
the edge vivi+1 as (vi, vi+1) for each 1 ≤ i ≤ 2k, the edge v2k+1v1 as (v1, v2k+1), the edge vju1 as
(vj, u1) for j = 3, 4, . . . , 2k, the unoriented edges between u1 and V (C2k+1) are oriented from u1

to V (C2k+1). It is easily seen that u1v1v2 · · · viu1 is an odd directed cycle and u1v2v3 · · · viu1 is an
even directed cycle when i is even, u1v1v2 · · · viu1 is an even directed cycle and u1v2v3 · · · viu1 is
an odd directed cycle when i is odd, where 3 ≤ i ≤ 2k. Therefore, D′ contains 2(2k − 2) directed
cycles.

Specifically D′ contains (2k − 2) odd directed cycles and (2k − 2) even directed cycles. It
is clear that the arc (v2, v3) is contained in all directed cycles. Since Eulerian subdigraph is the
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arc disjoint union of directed cycles and empty subdigraph is an even Eulerian subdigraph, D′ has
(2k − 2) odd Eulerian subdigraphs and (2k − 1) even Eulerian subdigraphs. Therefore diff(D′) =
|Ee(D′)| − |Eo(D′)| = 1 ̸= 0, D′ is an AT -orientation of G′.

Let D2 be obtained from D′ by adding arcs (vi, u2), i = 1, 2, . . . , 2k + 1 (see Figure 5(b)).
Observe that no arc incident to u2 is contained in a directed cycle of D2, so none of these arcs is
contained in an Eulerian subdigraph of D2, E(D2) = E(D′). Additionally, D2 is an orientation of
B2k+1 in which each vertex has outdegree at most 3. Therefore AT (B2k+1) ≤ 4.

Since χ(B2k+1) = 4, it follows that AT (B2k+1) ≥ 4. The result is established.

Remark 4.1. In Section 3, we conclude that χ(Rn) = ch(Rn) = AT (Rn). However, when n is
even and n > 4, by Lemma 4.1 and Lemma 4.3, χ(Bn) = 3 and AT (Bn) = 4. Furthermore, we
can prove Bn is not chromatic-choosable for all n.

In fact, let L be the list assignment of B6k (k ≥ 2) defined as L(u1) = {1, 2, 3}, L(u2) =
{4, 5, 6}, L(v1) = · · · = L(vk) = {1, 4, 5}, L(vk+1) = · · · = L(v2k) = {1, 4, 6}, L(v2k+1) =
· · · = L(v3k) = {2, 4, 5}, L(v3k+1) = · · · = L(v4k) = {2, 4, 6}, L(v4k+1) = · · · = L(v5k) =
{3, 4, 5}, L(v5k+1) = · · · = L(v6k) = {3, 4, 6}.

Now we can show that B6k is not L-colorable. Assume, for the sake of contradiction, that φ is
a proper L-coloring of B6k. Without loss of generality, let φ(u1) = 1, then the vertices v1, . . . , v2k
will use up colors 4, 5 and 6 (see Figure 6). Hence there is no available color for u2, a contradiction.

Figure 6. The case of φ(u1) = 1.

5. Conclusions

In this paper, we have obtained the exact value of the Alon-Tarsi number of two kinds of planar
graphs Rn and Bn mainly by the AT -orientation method and polynomial method. As is well
known, for a simple graph G, χ(G) ≤ ch(G) ≤ χp(G) ≤ AT (G). Therefore, as byproducts, we
also get that Rn is chromatic-choosable while Bn is not for all n.
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