Electronic Journal of Graph Theory and Applications

On the general sum-connectivity index of connected graphs with given order and girth

Ioan Tomescu
Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14, Bucharest, Romania
ioan@fmi.unibuc.ro

Abstract

In this paper, we show that in the class of connected graphs G of order $n \geq 3$ having girth at least equal to $k, 3 \leq k \leq n$, the unique graph G having minimum general sum-connectivity index $\chi_{\alpha}(G)$ consists of C_{k} and $n-k$ pendant vertices adjacent to a unique vertex of C_{k}, if $-1 \leq \alpha<0$. This property does not hold for zeroth-order general Randić index ${ }^{0} R_{\alpha}(G)$.

Keywords: Girth, pendant vertex, general sum-connectivity index, zeroth-order general Randić index, subadditive function, convex function, Jensen's inequality Mathematics Subject Classification : 05C35, 92E10, 05C22 DOI: 10.5614/ejgta.2016.4.1.1

1. Introduction

Let G be a simple graph having vertex set $V(G)$ and edge set $E(G)$. Let \mathcal{G}_{n} denote the set of connected graphs of fixed order n and size $m \geq n$. The girth of a graph $G \in \mathcal{G}_{n}$ will be denoted $g(G)$. The degree of a vertex $u \in V(G)$ is denoted $d(u)$ and $N(u)$ is the set of vertices adjacent with u. If $d(u)=1$ then u is called pendant; a pendant edge is an edge containing a pendant vertex. The minimum and maximum degrees of G are denoted $\delta(G)$ and $\Delta(G)$, respectively. For $A \subset E(G), G-A$ denotes the graph deduced from G by deleting the edges of A and the graph obtained by the deletion of an edge $u v \in E(G)$ is denoted $G-u v$. Conversely, if $A \subset E(\bar{G})$, $G+A$ is the graph obtained from G by adding the edges of A. If $x \in V(G), G-x$ denotes the

[^0]subgraph of G obtained by deleting x and its incident edges.
For $n \geq 3$ and $3 \leq k \leq n$, let $C_{k, n-k}$ denote the graph of order n consisting of a cycle C_{k} and $n-k$ pendant edges attached to a unique vertex of C_{k}. For other notations in graph theory, we refer [1].

The general sum-connectivity index of graphs was proposed by Zhou and Trinajstic [10]. It is denoted by $\chi_{\alpha}(G)$ and defined as

$$
\chi_{\alpha}(G)=\sum_{u v \in E(G)}(d(u)+d(v))^{\alpha}
$$

where α is a real number. A particular case of the general sum-connectivity index is the harmonic index, denoted by $H(G)$ and defined as

$$
H(G)=\sum_{u v \in E(G)} \frac{2}{d(u)+d(v)}=2 \chi_{-1}(G)
$$

The zeroth-order general Randić index, denoted by ${ }^{0} R_{\alpha}(G)$ is defined as

$$
{ }^{0} R_{\alpha}(G)=\sum_{u \in V(G)} d(u)^{\alpha}
$$

where α is a real number. For $\alpha=2$ this index is also known as first Zagreb index (see [4]).
For $-1 \leq \alpha<0 \mathrm{Du}$, Zhou and Trinajstić [2] showed that among the set of n-vertex unicyclic graphs with $n \geq 5, C_{3, n-3}$ is the unique graph with the minimum general sum-connectivity index and Tomescu and Kanwal [6] showed that in the same set of graphs having girth $k \geq 4$ the unique extremal graph is $C_{k, n-k}$. Zhong [9] proved that in the set of connected graphs of order n and m edges, where $m \geq n$, with girth $g(G) \geq k(3 \leq k \leq n)$, minimum harmonic index $H(G)$ is reached only for $C_{k, n-k}$. Other extremal properties of the general sum-connectivity index for trees were proposed in [3, 5].

In this paper, we study the minimum general sum-connectivity index $\chi_{\alpha}(G)$ in the class of connected graphs G of fixed order $n \geq 3$ and size $m \geq n$ with girth $g(G) \geq k$. Theorem 3.1 extends the above result of Zhong for every $-1 \leq \alpha<0$ (including the case of the harmonic index, when $\alpha=-1$), Corollary 3.3 those of Du , Zhou and Trinajstić, and Corollary 3.2 the result of Tomescu and Kanwal (which holds for unicyclic graphs, when $m=n$). In section 2 we state some parametric inequalities which will be used in the last section. In section 3 we determine the connected graphs G of order $n \geq 3$ with girth at least $k(3 \leq k \leq n)$ having minimum $\chi_{\alpha}(G)$ for $-1 \leq \alpha<0$.

2. Some preliminary results

Let $g(n, k)=(n-k)(n-k+3)^{\alpha}+2(n-k+4)^{\alpha}+(k-2) 4^{\alpha}$. Note that $g(n, k)=\chi_{\alpha}\left(C_{k, n-k}\right)$.
Lemma 2.1. [8] The function $f(n, k)=k(k+3)^{\alpha}+2(k+4)^{\alpha}+(n-k-2) 4^{\alpha}$ is strictly decreasing in $k \geq 0$ for $-1 \leq \alpha<0$.

Since $g(n, k)=f(n, n-k)$ we deduce the following property.
Corollary 2.1. The function $g(n, k)$ is strictly increasing in $k, 3 \leq k \leq n$ for $-1 \leq \alpha<0$.
Lemma 2.2. [8] The function

$$
\psi(x)=2(x+5)^{\alpha}+(x-1)(x+4)^{\alpha}-x(x+3)^{\alpha}
$$

defined for $x \geq 0$ and $-1 \leq \alpha<0$ is strictly decreasing.
Lemma 2.3. [7] Let uv be an edge of a graph G such that $d(u)+d(v)$ is minimum. If $-1 \leq \alpha<0$ then $\chi_{\alpha}(G-u v)<\chi_{\alpha}(G)$.

Lemma 2.4. [8] a) Let $x>0$. If $\alpha<0$ or $\alpha>1$ then $(1+x)^{\alpha}>1+\alpha x$.
b) Let $x>0$. If $\alpha<0$ or $1<\alpha<2$ then $(1+x)^{\alpha}<1+\alpha x+\frac{\alpha(\alpha-1)}{2} x^{2}$ (for $\alpha=2$ equality holds).

Lemma 2.5. The function $g(n, k)$ is strictly subadditive in n for $-1 \leq \alpha<0$, i.e.,

$$
\begin{equation*}
g\left(n_{1}+n_{2}, k\right)<g\left(n_{1}, k\right)+g\left(n_{2}, k\right), \tag{1}
\end{equation*}
$$

where $n_{1}, n_{2} \geq k \geq 3$.
Proof. By letting $n_{1}+n_{2}=n \geq 2 k, n_{1}=x$ we deduce $n_{2}=n-x$ and (1) leads to

$$
g(x, k)+g(n-x, k)>g(n, k)
$$

for every $k \leq x \leq n-k$. Using formula for $g(n, k)$ this inequality is equivalent to

$$
\begin{gather*}
(x-k)(x-k+3)^{\alpha}+2(x-k+4)^{\alpha}+(n-x-k)(n-x-k+3)^{\alpha}+2(n-x-k+4)^{\alpha}+(k-2) 4^{\alpha} \\
>(n-k)(n-k+3)^{\alpha}+2(n-k+4)^{\alpha} . \tag{2}
\end{gather*}
$$

Let
$\eta(x)=(x-k)(x-k+3)^{\alpha}+2(x-k+4)^{\alpha}+(n-x-k)(n-x-k+3)^{\alpha}+2(n-x-k+4)^{\alpha}$.
We have $\eta(x)=\eta(n-x)$; we can write $\eta(x)=\gamma(x)+\gamma(n-x)$, where

$$
\gamma(x)=(x-k)(x-k+3)^{\alpha}+2(x-k+4)^{\alpha} .
$$

We get

$$
\begin{gathered}
\gamma^{\prime \prime}(x)=\alpha(\alpha-1)(x-k)(x-k+3)^{\alpha-2}+2 \alpha(x-k+3)^{\alpha-1}+2 \alpha(\alpha-1)(x-k+4)^{\alpha-2} \\
\qquad \alpha(\alpha-1)(x-k)(x-k+3)^{\alpha-2}+2 \alpha(x-k+3)^{\alpha-1}+2 \alpha(\alpha-1)(x-k+3)^{\alpha-2} \\
=\alpha(x-k+3)^{\alpha-2}((\alpha+1)(x-k+2)+2)<0 .
\end{gathered}
$$

Similarly, $\gamma^{\prime \prime}(n-x)<0$, so $\eta^{\prime \prime}(x)<0$, hence $\eta(x)$ is a concave function. Because $\eta(x)=\eta(n-x)$ where $k \leq x \leq n-k$, so the minimum of $\eta(x)$ is reached at $x=k$ and $x=n-k$. Replacing $x=k$ in (2) yields

$$
\begin{equation*}
k 4^{\alpha}+(n-2 k)(n-2 k+3)^{\alpha}+2(n-2 k+4)^{\alpha}>(n-k)(n-k+3)^{\alpha}+2(n-k+4)^{\alpha} .(3) \tag{3}
\end{equation*}
$$

In order to prove (3) we shall consider a new variable $x=n \geq 2 k$ and the function

$$
\varphi(x)=(x-2 k)(x-2 k+3)^{\alpha}+2(x-2 k+4)^{\alpha}-(x-k)(x-k+3)^{\alpha}-2(x-k+4)^{\alpha}
$$

defined for $x \geq 2 k \geq 6$. We deduce

$$
\begin{gathered}
\varphi^{\prime}(x)=(x-2 k+3)^{\alpha-1}((x-2 k)(\alpha+1)+3)+2 \alpha(x-2 k+4)^{\alpha-1} \\
-(x-k+3)^{\alpha-1}((x-k)(\alpha+1)+3)-2 \alpha(x-k+4)^{\alpha-1}>(x-2 k+3)^{\alpha-1}(x(\alpha+1) \\
-2 k(\alpha+1)+3+2 \alpha)-(x-k+3)^{\alpha-1}(x(\alpha+1)-k(\alpha+1)+3)-2 \alpha(x-k+4)^{\alpha-1} \\
=E(x, k, \alpha)(x-k+4)^{\alpha-1} .
\end{gathered}
$$

We have

$$
\begin{gathered}
E(x, k, \alpha)=\left[1+\frac{k+1}{x-2 k+3}\right]^{1-\alpha}[x(\alpha+1)-2 k(\alpha+1)+3+2 \alpha] \\
-\left[1+\frac{1}{x-k+3}\right]^{1-\alpha}[x(\alpha+1)-k(\alpha+1)+3]-2 \alpha
\end{gathered}
$$

By Lemma 2.5 we get

$$
\begin{gathered}
E(x, k, \alpha)>\left[1+\frac{(1-\alpha)(k+1)}{x-2 k+3}\right][x(\alpha+1)-2 k(\alpha+1)+3+2 \alpha] \\
-\left[1+\frac{1-\alpha}{x-k+3}+\frac{\alpha(\alpha-1)}{2(x-k+3)^{2}}\right][x(\alpha+1)-k(\alpha+1)+3]-2 \alpha \\
=-\alpha k(1+\alpha)+\alpha(\alpha-1) F(x, k, \alpha)
\end{gathered}
$$

where

$$
F(x, k, \alpha)=\frac{(1+\alpha)(k-x)-3}{2(x-k+3)^{2}}-\frac{3}{x-k+3}+\frac{k+1}{x-2 k+3} .
$$

Finally,

$$
F(x, k, \alpha)>\frac{k-x-3}{(x-k+3)^{2}}-\frac{3}{x-k+3}+\frac{k+1}{x-2 k+3}=-\frac{4}{x-k+3}+\frac{k+1}{x-2 k+3}>0
$$

since $k \geq 3$ implies $\frac{k+1}{x-2 k+3}>\frac{4}{x-k+3}$.
Because $\varphi^{\prime}(x)>0$ it follows that $\varphi(x)$ is strictly increasing and (3) holds if it holds for $n=2 k$ and $k \geq 3$. Substituting $n=2 k$ in (3) yields

$$
(k+2) 4^{\alpha}>k(k+3)^{\alpha}+2(k+4)^{\alpha}
$$

which is true because $k \geq 3$.

Lemma 2.6. Let $G \in \mathcal{G}_{n}$ such that $g(G) \geq k$. We have $\Delta(G) \leq n-k+2$ and the bound is tight.
Proof. Let $v \in V(G)$ such that $d(v)=\Delta(G)$. Suppose that v belongs to a cycle in G and denote by C a shortest cycle containing v. It follows that v is adjacent to exactly 2 vertices of C, thus implying $\Delta(G) \leq n-l+2$, where l denotes the length of C. Since $l \geq g(G)$ we obtain $\Delta(G) \leq n-g(G)+2 \leq n-k+2$.
If v does not belong to any cycle in G, it follows that a shortest cycle of G contains at most one vertex in the set $N(v)$ and we deduce $\Delta(G)+1+g(G)-1 \leq n$, or $\Delta(G) \leq n-g(G)<n-k+2$. The bound is reached because $\Delta\left(C_{k, n-k}\right)=n-k+2$.

3. Main Results

Theorem 3.1. Let G be a connected graph of order $n \geq 3$ and size $m \geq n$ with girth $g(G) \geq k$ $(3 \leq k \leq n)$. If $-1 \leq \alpha<0$ then $\chi_{\alpha}(G) \geq g(n, k)=(n-k)(n-k+3)^{\alpha}+2(n-k+4)^{\alpha}+(k-2) 4^{\alpha}$. Equality holds if and only if $G=C_{k, n-k}$.

Proof. The proof is by induction on $m+n$. For $n=3$ we have $m=k=3, G=C_{3}$ and in this case the property holds. Also we can suppose that $n \geq k+1$, since for $n=k$ there exists a unique graph, namely $C_{n, 0}=C_{n}$. Let $m \geq n \geq 4$. Suppose the property is true for smaller values of $m+n$. Let $G \in \mathcal{G}_{n}$ having girth $g(G) \geq k$ such that $\chi_{\alpha}(G)$ is minimum. We shall consider two cases: A. $\delta(G)=1$ and B. $\delta(G) \geq 2$.
A. In this case there exists a pendant vertex $u \in V(G)$ and let $u v \in E(G)$. We have $d(v)=$ $d \geq 2$ and let $N(v) \backslash\{u\}=\left\{u_{1}, \ldots, u_{d-1}\right\}$. Since G is a connected graph containing at least one cycle, we get that there exists at least one vertex in $\left\{u_{1}, \ldots, u_{d-1}\right\}$ with degree at least 2 . Suppose there exists exactly one vertex in this set with degree at least 2 , say w. Let $d(w)=s \geq 2$ and let $N(w) \backslash\{v\}=\left\{v_{1}, \ldots, v_{s-1}\right\}$. Define $G_{1}=G-\left\{w v_{1}, \ldots, w v_{s-1}\right\}+\left\{v v_{1}, \ldots, v v_{s-1}\right\}$. It follows that $G_{1} \in \mathcal{G}_{n}$ and $g\left(G_{1}\right)=g(G) \geq k$. We deduce

$$
\chi_{\alpha}(G)-\chi_{\alpha}\left(G_{1}\right)=(d-1)\left[(d+1)^{\alpha}-(d+s)^{\alpha}\right]+\sum_{i=1}^{s-1}\left[\left(d\left(v_{i}\right)+s\right)^{\alpha}-\left(d\left(v_{i}\right)+d+s-1\right)^{\alpha}\right]>0
$$

since $d \geq 2$ and $s \geq 2$. This contradicts the assumption about the minimality of G.
So we deduce that there exist at least two vertices in $\left\{u_{1}, \ldots, u_{d-1}\right\}$ with degree at least 2 , thus implying $d \geq 3$. Let $G_{2}=G-u$. We have $G_{2} \in \mathcal{G}_{n-1}$ and $g\left(G_{2}\right)=g(G) \geq k$.
It follows that

$$
\chi_{\alpha}(G)=\chi_{\alpha}\left(G_{2}\right)+(d+1)^{\alpha}+\sum_{i=1}^{d-1}\left[\left(d+d\left(u_{i}\right)\right)^{\alpha}-\left(d+d\left(u_{i}\right)-1\right)^{\alpha}\right] .
$$

Since the function $h(x)=(d+x)^{\alpha}-(d+x-1)^{\alpha}$ has $h^{\prime}(x)>0$ for any $\alpha<0$, one has

$$
\sum_{i=1}^{d-1}\left[\left(d+d\left(u_{i}\right)\right)^{\alpha}-\left(d+d\left(u_{i}\right)-1\right)^{\alpha}\right] \geq 2\left[(d+2)^{\alpha}-(d+1)^{\alpha}\right]+(d-3)\left[(d+1)^{\alpha}-d^{\alpha}\right]
$$

equality holds if and only if two degrees of u_{1}, \ldots, u_{d-1} are equal to 2 , the remaining ones being 1.

By the induction hypothesis we obtain $\chi_{\alpha}\left(G_{2}\right) \geq g(n-1, k)$, which yields

$$
\chi_{\alpha}(G) \geq g(n-1, k)+2(d+2)^{\alpha}+(d-4)(d+1)^{\alpha}-(d-3) d^{\alpha}
$$

Inequality $g(n-1, k)+2(d+2)^{\alpha}+(d-4)(d+1)^{\alpha}-(d-3) d^{\alpha} \geq g(n, k)$ is equivalent to

$$
\begin{align*}
& (n-k-1)(n-k+2)^{\alpha}+2(d+2)^{\alpha}+(d-4)(d+1)^{\alpha}-(d-3) d^{\alpha} \\
& \geq(n-k-2)(n-k+3)^{\alpha}+2(n-k+4)^{\alpha} \tag{4}
\end{align*}
$$

Let $\varrho(x)=2(x+2)^{\alpha}+(x-4)(x+1)^{\alpha}-(x-3) x^{\alpha}$. Since $\varrho(x)=\psi(x-3)$, by Lemma 2.3 it follows that $\varrho(x)$ is strictly decreasing for $x \geq 3$ and $-1 \leq \alpha<0$. Note that by Lemma 2.7 we have $d \leq \Delta(G) \leq n-k+2$ since $g(G) \geq k$. This leads to the inequality $2(d+2)^{\alpha}+(d-$ $4)(d+1)^{\alpha}-(d-3) d^{\alpha} \geq 2(n-k+4)^{\alpha}+(n-k-2)(n-k+3)^{\alpha}-(n-k-1)(n-k+2)^{\alpha}$ and equality holds only for $d=n-k+2$. In this case (4) becomes an equality. Summarizing, we have $\chi_{\alpha}(G)=g(n, k)$ only if $G_{2}=C_{k, n-1-k}, d(v)=n-k+2$ and v is adjacent in G_{2} to $k-1$ pendant vertices and to 2 vertices of degree 2 . We have $\chi_{\alpha}(G) \geq g(n, k)$ and equality holds only if $G=C_{k, n-k}$.
B. In this case $\delta(G) \geq 2$. We shall prove that $\chi_{\alpha}(G)>g(n, k)$. Since $\delta(G) \geq 2$ we may assume that $m \geq n+1$ because $m=n$ implies G is 2-regular, hence $G=C_{n}=C_{n, 0}$ and $\chi_{\alpha}\left(C_{n}\right)=g(n, n)>g(n, k)$ for every $3 \leq k \leq n-1$ by Corollary 2.2.

Let $e=u v \in E(G)$ such that $d(u)+d(v)$ is minimum. By Lemma 2.4 we have $\chi_{\alpha}(G-u v)<$ $\chi_{\alpha}(G)$. Since $m \geq n+1, g(G-u v) \geq k$ holds since the cyclomatic number of G is equal to two. We shall consider two subcases B1 and B2, according to e is a cut-edge in G or not, respectively.

B1. e being a cut-edge, $G-e$ has two components, say G_{1} and G_{2}, where $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. By denoting $\left|V\left(G_{i}\right)\right|=n_{i}$ for $1 \leq i \leq 2$ we get $n=n_{1}+n_{2}$. Because $\delta(G) \geq 2$ and $g(G) \geq k$ we obtain that each G_{i} has at least one cycle and $g\left(G_{i}\right) \geq g(G) \geq k$, which implies $n_{i} \geq k$ for $1 \leq i \leq 2$. By induction, since $G_{i} \in \mathcal{G}_{n_{i}}$ for each i, we deduce $\chi_{\alpha}(G)>\chi_{\alpha}(G-e)=\chi_{\alpha}\left(G_{1}\right)+\chi_{\alpha}\left(G_{2}\right) \geq g\left(n_{1}, k\right)+g\left(n_{2}, k\right)>g(n, k)$ by Lemma 2.6.

B2. In this case $G-e$ is a connected graph of order n and size $m-1$, with $m-1 \geq n$ and $g(G-e) \geq k$. By induction $\chi_{\alpha}(G-e) \geq g(n, k)$, which implies $\chi_{\alpha}(G)>g(n, k)$ and the proof is complete.

Since extremal graph $C_{k, n-k}$ has girth equal to k, we deduce the following corollary.
Corollary 3.1. Let G be a connected graph of order $n \geq 3$ and size $m \geq n$ with girth $g(G)=k$ $(3 \leq k \leq n)$. If $-1 \leq \alpha<0$ then $\chi_{\alpha}(G) \geq g(n, k)$. Equality holds if and only if $G=C_{k, n-k}$.

Since $H(G)=2 \chi_{-1}(G)$, the result also holds for the harmonic index.
If $-1 \leq \alpha<0$ note that $C_{k, n-k}$ is not extremal for zeroth-order general Randić index ${ }^{0} R_{\alpha}(G)$. If G_{1} denotes the graph consisting of C_{n-2} and two pendant edges incident to two distinct vertices of C_{n-2}, then we get ${ }^{0} R_{\alpha}\left(G_{1}\right)<{ }^{0} R_{\alpha}\left(C_{n-2,2}\right)$. This inequality is equivalent to $2 \cdot 3^{\alpha}<2^{\alpha}+4^{\alpha}$,
which is valid by Jensen's inequality.
Because by Corollary 2.2 the minimum of the function $g(n, k)$ is reached only for $k=3$, an extremal property deduced by other means for unicyclic graphs in [2] follows:

Corollary 3.2. If $-1 \leq \alpha<0$, in the class of connected graphs G of fixed order n and variable size $m \geq n, \chi_{\alpha}(G)$ is minimum if and only if $G=C_{3, n-3}$.

Acknowledgement

The author is indebted to the referees for some useful remarks.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics 244, Springer 2008.
[2] Z. Du, B. Zhou and N. Trinajstić, Minimum general sum-connectivity index of unicyclic graphs, J. Math. Chem. 48 (2010), 697-703.
[3] Z. Du, B. Zhou and N. Trinajstić, On the general sum-connectivity index of trees, Appl. Math. Letters 24 (2011), 402-405.
[4] X. Li and I. Gutman, Mathematical aspects of Randić-type molecular structure descriptors Mathematical Chemistry Monographs No. 1, Univ. Kragujevac, 2006.
[5] I. Tomescu and S. Kanwal, Ordering trees having small general sum-connectivity index, MATCH Commun. Math. Comput. Chem. 69 (2013), 535-548.
[6] I. Tomescu and S. Kanwal, Unicyclic graphs of given girth $k \geq 4$ having smallest general sum-connectivity index, Discrete Appl. Math. 164 (2014), 344-348.
[7] I. Tomescu, 2-Connected graphs with minimum general sum-connectivity index, Discrete Appl. Math. 178 (2014), 135-141.
[8] I. Tomescu and M. Arshad, On the general sum-connectivity index of connected unicyclic graphs with k pendant vertices, Discrete Appl. Math. 181 (2015), 306-309.
[9] L. Zhong, On the harmonic index and the girth for graphs, Romanian J. Inf. Sci. Techn. 16(4) (2013), 253-260.
[10] B. Zhou and N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010), 210-218.

[^0]: Received: 20 July 2015, Revised: 30 November 2015, Accepted: 2 December 2015.

