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Abstract

A Moore (r, z, k)-mixed graph G has every vertex with undirected degree r, directed in- and out-
degree z, diameter k, and number of vertices (or order) attaining the corresponding Moore bound
M(r, z, k) for mixed graphs. When the order of G is close to M(r, z, k) vertices, we refer to it as
an almost Moore graph. The first part of this paper is a survey about known Moore (and almost
Moore) general mixed graphs that turn out to be Cayley graphs. Then, in the second part of the
paper, we give new results on the bipartite case. First, we show that Moore bipartite mixed graphs
with diameter three are distance-regular, and their spectra are fully characterized. In particular,
an infinity family of Moore bipartite (1, z, 3)-mixed graphs is presented, which are Cayley graphs
of semidirect products of groups. Our study is based on the line digraph technique, and on some
results about when the line digraph of a Cayley digraph is again a Cayley digraph.
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1. Preliminaries

Mixed graphs can be suitable models for networks having both bidirectional and unidirectional
links. Thus, a mixed graph G = (V,E,A) has a set V = V (G) of vertices, a set E = E(G) of
edges, and a set A = A(G) of arcs or directed edges. For a given vertex u ∈ V , its undirected
degree r(u) is the number of edges incident to vertex u. Moreover, its out-degree z+(u) is the
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Figure 1. The Bosák (3, 1)-graph with diameter k = 2 and N = 18 vertices.

number of arcs emanating from u, whereas its in-degree z−(u) is the number of arcs going to u.
If z+(u) = z−(u) = z and r(u) = r, for all u ∈ V , then G is said to be an (r, z)-regular mixed
graph or, simply, an (r, z)-mixed graph, with whole degree d = r + z.

The distance from vertex u to vertex v is denoted by dist(u, v). Notice that, when z 6= 0,
dist(u, v) is not necessarily equal to dist(v, u). If the mixed graph G has diameter k, its distance
matrix Ai, for i = 0, 1, . . . , k, has entries (Ai)uv = 1 if dist(u, v) = i, and (Ai)uv = 0 otherwise.
So, A0 = I (the identity matrix) and A1 = A (the adjacency matrix of G).

Mixed graphs were first considered in the context of the degree/diameter problem by Bosák [1].
Similarly, in the case of regular graphs or digraphs, the (r, z, k) problem for mixed graphs consists
of finding the largest possible number of vertices N(r, z, k) in a mixed graph with maximum
undirected degree r, maximum directed out-degree z, and diameter k. For more results on this
problem on graphs (and mixed graphs), see the comprehensive survey by Miller and Širáň [18].
For more results on mixed graphs, see Buset, López, and Miret [4], Dalfó [5], Dalfó, Fiol, and
López [6], Erskine [9], Jørgensen [14], López, Pérez-Rosés, and Pujolàs [17], Nguyen, Miller, and
Gimbert [19], and Tuite and Erskine [20].

An example of a (3, 1)-regular mixed graph is shown in Figure 1. It was proposed by Bosák
[1], as an example of a mixed graph with maximum number of vertices (that is, attaining the
corresponding Moore bound) for r = 3, z = 1, and diameter k = 2.

Given a finite group Ω with generating set S ⊆ Ω, the Cayley graph Cay(Ω, S) has vertices
representing the elements of Ω, and arcs from ω to ωs for every ω ∈ Ω and s ∈ S. Notice that,
if s, s−1 ∈ S, then we have an edge (a digon or two opposite arcs) between ω and ωs. Thus, if
S = S1 ∪ S2 where S1 = S−11 and S2 ∩ S−12 = ∅, the Cayley graph Cay(Ω, S) is an (r, z)-mixed
graph with undirected degree r = |S1| and directed degree z = |S2|.

The existence of Moore (r, z, 2)-mixed graphs, usually called simply ‘Moore digraphs’, which
are Cayley, have been studied by some authors. Apart from the case r = 1, only three Moore
digraphs are known, which are also Cayley graphs. Namely, the already mentioned Bosák digraph,
and the two digraphs of Jørgensen [14]; see later Theorem 3.2 by Erskine [9]. Some proofs of the
non-existence of Cayley Moore digraphs for some order values have been given by López, Pérez-
Rosés, and Pujolàs [17], López, Miret, and Fernández [16] , Erskine [9], and Gavrilyuk, Hirasaka,
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and Kabanov [12].
In our study, we also use the line digraph technique. Recall that, given a digraph G, its line

digraph LG has vertices representing the arcs of G, and vertex uv of LG (corresponding to the arc
u → v in G) is adjacent to the vertices vw for any w adjacent from v in G. See Fiol, Yebra, and
Alegre [11].

The first part of this paper is a brief survey about known Moore (and almost Moore) general
mixed graphs that turn out to be Cayley graphs. More information about Cayley Moore mixed
graphs can be found in the paper by Erskine [9]. Our main contribution is described in the second
part of the paper, where we give new results on the bipartite case. This can be a follow-up of the
previous research on the degree/diameter problem for bipartite mixed graphs done by the authors
and López [7, 8]. In this context, we here show that Moore bipartite mixed graphs with diameter
three are distance-regular, and their spectra are fully characterized. In particular, an infinity family
of Moore bipartite (1, z, 3)-mixed graphs is presented, which are Cayley graphs of semidirect
products of groups.

2. Moore mixed graphs

The following result gives the maximum possible number of vertices, or Moore bound, of an
(r, z)-mixed graph with diameter k.

Theorem 2.1 (Buset, El Amiri, Erskine, Miller, and Pérez-Rosés [3]). The Moore bound for an
(r, z)-regular mixed graph with diameter k is

M(r, z, k) = A
uk+1
1 − 1

u1 − 1
+B

uk+1
2 − 1

u2 − 1
, (1)

where

u1 =
z + r − 1−

√
v

2
, u2 =

z + r − 1 +
√
v

2
,

A =

√
v − (z + r + 1)

2
√
v

, B =

√
v + (z + r + 1)

2
√
v

,

v = (z + r)2 + 2(z − r) + 1.

The largest value of M(r, z, k) for fixed k and given whole degree d is obtained when r = 0
and z = d (a d-regular digraph), which is

M(0, d, k) =
dk+1 − 1

d− 1
.

Nguyen, Miller, and Gimbert [19] proved that the Moore bound M(r, z, k) cannot be attained for
diameter k ≥ 3. In the case of diameter 2, we have the following result, which was proved by
using matrix and eigenvalue techniques.
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Figure 2. The unique three non-isomorphic (1, 1)-regular mixed graphs with diameter k = 3 and order N = 10.

Theorem 2.2 (Bosák, 1979). Let G be an (r, z)-mixed graph with diameter k = 2. Apart from the
trivial cases (z, r) = (1, 0), (0, 2), there must be a positive odd integer c such that

c | (4z − 3)(4z + 5) and r =
1

4
(c2 + 3).

In fact, the upper bound of Theorem 2.1 can be slightly improved, as shown in the next theorem.

Theorem 2.3 (Dalfó, Fiol, and López [8]). The order N of an (r, z)-regular mixed graph G with
diameter k ≥ 3 satisfies

N ≤M(r, z, k)− r,
where M(r, z, k) is the Moore bound given in (1).

For the case of diameter two, we get

N ≤M(r, z, 2) = (r + z)2 + z + 1.

Moreover, by using a simple parity argument (namely, when r is odd, N must be even), we
obtain the following result.

Proposition 2.1 (Dalfó, Fiol, and López [8]). Let G be an (r, z)-regular mixed graph of diameter
k ≥ 3 with order N . If r and z are odd and k ≡ 2 (mod 3), then

N ≤M(r, z, k)− r − 1.

For the case r = z = 1, Tuite and Erskine [21] gave an improved bound for Theorem 2.3.
For optimal (1, 1)-regular mixed graphs with diameter 3, we have the following result.

Proposition 2.2 (Dalfó, Fiol, and López [8]). Let G be a (1, 1)-regular mixed graph with diameter
k = 3 and maximum order N = 10 = M(1, 1, 3) − 1. Then G is isomorphic to one of the three
mixed graphs in Figure 2, satisfying the following properties:

• The mixed graph (a) is the line digraph of the cycle C5 (seen as a digraph, with five digons),
and it is isomorphic to the Cayley digraph of the dihedral group D5 = 〈r, s | r5 = s2 =
(rs)2 =1〉. That is,

LC5
∼= Cay(D5, {r, s}).
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Figure 3. The (1, 1)-regular mixed graph with diameter k = 3 and order N = 10 as the line digraph of the directed
cycle C5.

• The mixed graphs (a), (b), and (c) are isomorphic to their converse digraphs (obtained by
reversing the direction of the arcs) and cospectral, with spectrum{

2,
(
−1

2
+
√
5
2

)[2]
, 0[5],

(
−1

2
−
√
5
2

)[2]}
= sp(C5) ∪ {0[5]}.

3. Moore Cayley mixed graphs

It is natural to ask what d-regular Cayley digraphs G have the property that their line digraph
LG is also Cayley. Let K+

d (S) be the complete symmetric digraph with loops, and vertex set S
with cardinality d. A decomposition into permutations of K+

d (S) is a set Π of permutations of S
such that, for every arc (s, t), there is a unique π ∈ Π such that t = π(s). Note that this corresponds
to an arc-coloring of K+

d (S), where π is the ‘color’ of (s, t). A decomposition into permutations
Π = {πs : s ∈ S} is normal if, for some s1 ∈ S, the following conditions hold:

(i) πs1 = e (the identity).

(ii) πs(s1) = s for all s ∈ S.

That is, in terms of arc-coloring, all loops get the same color πs1 , and the arc (s1, s) is colored by
πs.

It is convenient to take normal decompositions for uniformly induced colorings.

Theorem 3.1 (Fiol, Fiol, and Yebra [10]). Let G = Cay(Ω, S) be a Cayley digraph, and Π =
{πs : s ∈ S} a normal decomposition into permutations of K+

d (S) with πs1 = e. Then the
line digraph LG is a Cayley digraph if and only if Π is a group of automorphisms of Ω. In this
case, LG is isomorphic to a Cayley digraph on the semidirect product Ω o Π, with generating set
S = {(s1, πs) : s ∈ S}.

The Kautz digraph K(d, 2), with degree d and diameter k = 2, can be defined as the line
digraph of the complete graph on d+ 1 vertices with every edge being a digon (two opposite arcs),
that is,

K(d, 2) = LKd+1.
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Figure 4. Left: The Kautz digraph K(2, 2) as the Cayley graph of the semidirect product (F3,+) o F∗
3. Right: The

Kautz digraph K(2, 2) as the Cayley graph of the dihedral group D3 = 〈a, b | a3 = b2 = (ab)2 = e〉.

Proposition 3.1 (Brunat, Espona, Fiol, and Serra [2]). The Kautz digraph K(d, 2) is a Cayley
graph if and only if d+ 1 is a prime power.

Proof. For completeness, we prove sufficiency. If d + 1 = pm, with p a prime, let Ω be the
additive group of the finite field Fd+1. For every s ∈ S = F∗d+1 = Fd+1 \ {0}, let πs be the
automorphism of Fd+1 defined by πs(x) = sx. Then, Π = {πs : s ∈ S} is a normal decomposition
into permutations of K+

d (S) with s1 = 1, and it is a group of automorphisms of Fd+1. Thus, by
Theorem 3.1, K(d, 2) = LKd+1

∼= Cay(Ω,S) is a Cayley digraph with Ω = (Fd+1,+)oF∗d+1 and
S = {(1, s) : s ∈ S}.

Therefore, the vertices of K(d, 2) correspond to the pairs (g, µ), with g ∈ (Fd+1,+) and µ ∈
S = F∗d+1, and the arcs correspond to the pairs (1, s), for s ∈ S. Then, the vertex (g, µ), through
the arc labeled (1, s), is adjacent to the vertex:

(g, µ)(1, s) = (g + πµ(1), πµ ◦ πs) = (g + µ, µs).

In Figure 4, we show the case r = z = 1, with the Kautz digraph K(2, 2) as the Cayley graph of
the semidirect product (F3,+)oF∗3. For instance, from vertex (1, 2) through the arc (1, 1), we get
the vertex (1, 2)(1, 1) = (1 + 2, 2 · 1) = (0, 2).

For the case r = 3 and z = 1, the following result is known.

Proposition 3.2 (López, Pérez-Rosés, and Pujolàs [17]). The Bosák graph is a mixed Cayley graph
that can be obtained from either S3 × Z3 or (Z3 × Z3) o Z2.

Besides, for the case (r, z, 2), Erskine [9] gave the next theorem.

Theorem 3.2 (Erskine [9]). The only Moore Cayley (r, z, 2)-mixed graphs with order N ≤ 485
are the following:

• r = 1 and z ≤ 20, where z + 2 is a prime power (Kautz graphs).

• r = 3 and z = 1 (Bosák’s graph [1]).

• r = 3 and z = 7 (the two Jørgensen’s graphs [14]).

Recall that Bosák’s graph is shown in Figure 1.

188



www.ejgta.org

Moore mixed graphs from Cayley graphs | C. Dalfó and M. A. Fiol

4. The bipartite case

For the bipartite mixed graphs, the following result gives a new upper bound.

Theorem 4.1 (Dalfó, Fiol, and López [7]). With A,B, u1, u2 defined as in (1), the Moore bound
for an (r, z)-regular bipartite mixed graph is

MB(r, z, k) = 2

(
A
uk+1
1 − u1
u21 − 1

+B
uk+1
2 − u2
u22 − 1

)
, r > 0.

The following result was also proved in [7].

Proposition 4.1 (Dalfó, Fiol, and López [7]). Bipartite mixed Moore graphs do not exist for any
r ≥ 1, z ≥ 1, and k = 2 or k ≥ 4.

4.1. The case of diameter 3
Now we concentrate on the case of diameter three. Let G be a Moore bipartite (r, z, 3)-mixed

graph with adjacency matrix

A =

(
0 A1

A2 0

)
.

In this case, we get
MB(r, z, 3) = 2

[
(r + z)2 − r + 1

]
. (2)

In particular, MB(1, z, 3) = 2(1 + z)2 and MB(r, 1, 3) = 2r2 + 3(r + 1).
By analogy with the case of graphs, we say that a digraph or mixed graph G, with diameter

k and adjacency matrix A, is distance-regular if there exist polynomials p0(x), p1(x), . . . , pk(x),
with deg pi = i, that applied to A give the corresponding distance matrices Ai = pi(A) for
i = 0, 1, . . . , k. In the following result, we show that this is the case for Moore bipartite mixed
graphs of diameter three.

Lemma 4.1. The Moore bipartite mixed graph with diameter 3 is distance-regular.

Proof. Let G be a Moore bipartite (r, z, 3)-mixed graph with adjacency matrix A. Let us prove
that its distance polynomials are the following.

p0(x) = 1,

p1(x) = x,

p2(x) = x2 − r,

p3(x) =
x3 − (r − 1)x

r + z
− x.

The first two polynomials are trivial because of A0 = I and A1 = A. In the expression of p2(x),
we must consider that there are r paths from every vertex to itself. (Indeed, they arise by following
an undirected edge in both directions.) Concerning p3(x), notice that, since the diameter is k = 3,
there should exist just one path of length 0 or 2 from any vertex u to any other vertex v of its partite
set. Such paths correspond to the 1’s of the matrix A0 + A2 = p0(A) + p2(A). Therefore, there
are exactly r + z paths of length 1 or 3 from u to any vertex w of the other partite set. Hence,
A1 + A3 = 1

r+z
(A0 + A2)A and, A3 = p3(A) with the claimed polynomial p3(x).
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Figure 5. A Moore bipartite (2, 1, 3)-mixed graph.

From this last lemma, we can derive the spectra of Moore bipartite mixed graphs of diameter
3.

Proposition 4.2. The spectrum of a Moore bipartite (r, z, 3)-mixed graph G with order n given by
(2) is

spG =
{
±(r + z),±

√
r − 1

[n−2
2

]
}
.

Proof. The eigenvalue r + z is due to the regularity of G. Moreover, the sum of the distance
polynomials equals the Hoffman polynomial H that applied to A gives the all-1 matrix J (see
Hoffman and McAndrew [13]):

H(A) =
3∑
i=0

pi(A) =
1

r + z
A3 + A2 +

1− r
r + z

A− (r − 1)I = J .

Note that J has eigenvalues n with multiplicity 1 and 0 with multiplicity n − 1. Then, the other
eigenvalues of G are the roots of the polynomial H(x) = 1

r+z
x3 + x2 + 1−r

r+z
x + 1 − r, namely,

−(r+z),±
√
r − 1. In fact, the eigenvalue r+z can also be obtained as the solution of H(x) = n.

Since G is bipartite, its spectrum is symmetric around 0. So, since the multiplicity of ±(r + z) is
1, the one of ±

√
r − 1 is equal to n−2

2
.

For instance, for the Moore bipartite mixed graph of Figure 5 with r = 2, z = 1, diameter 3,
and 16 vertices, the distance polynomials are p0 = 1, p1 = x, p2 = x2 − 2, and p3 = 1

3
(x3 −

4x), and its spectrum is {±3,±1[7]}. This mixed graph can be constructed as the Cayley graph
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Figure 6. The two bipartite (1, 1, 3)-mixed graphs attaining the Moore bound.

Cay(Ω, {α, β, γ}), where Ω is the direct product of the dihedral group with 8 elements with the
cyclic group of 2 elements, with standard presentation

D8 × Z2 = 〈a, b, c | a4 = b2 = c2 = e, bab−1 = a−1, ac = ca, bc = cb〉,

and generators α = a, β = b, and γ = abc (in Figure 5, they give rise to arcs, solid edges, and
dotted edges, respectively).

Observe that, according to Proposition 4.2, the Moore bipartite mixed graphs of diameter 3
could exist for any value of r and z. Instead, in the case of general Moore mixed graphs of
diameter 2, some conditions must be satisfied for their existence (see Theorem 1).

The distance polynomials are orthogonal with respect to the scalar product

〈f, g〉G =
1

n
tr[f(A)g(A)>],

so that ‖pi‖2G = pi(r + z) = |Gi(u)| gives the number of vertices at distance i ∈ [0, k] from any
vertex u of G.

Next, we present an infinite family of Moore bipartite mixed graphs with diameter 3, and we
show that they are Cayley graphs of a semidirect product of groups. More precisely, we prove that
bipartite mixed Moore graphs with diameter k = 3 and r = 1, on 2(1 + z)2 vertices, exist for
any value of z ≥ 1. In particular, when z = 1, there exist two non-isomorphic Moore bipartite
(1, 1, 3)-mixed graphs.

Lemma 4.2. Let G be a (1, 1)-regular bipartite mixed graph with diameter k = 3 and maximum
order N = 8 = MB(1, 1, 3). Then G is isomorphic to one of the two bipartite mixed graphs shown
in Figure 6.

In fact, the first mixed graph of Figure 6 is a particular example of the infinite family described
in the following result.

Theorem 4.2. Let Dn = 〈a, b | an = b2 = (ab)2 = e〉 be the dihedral group with 2n elements,
and let Cn be the cycle group with elements in Zn. Then, the Moore bipartite (1, z, 3)-mixed graph
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Figure 7. The complete bipartite graph K3,3 as the Cayley graph of the dihedral group D3 = 〈a, b | a3 = b2 = (ab)2 =
e〉 with generating set having involutive elements s0 = b, s1 = ab, and s2 = a2b.

G, with z = n − 1 and 2n2 vertices, is isomorphic to the Cayley graph on the semidirect product
Dn o Cn, with generating elements (b, i) for i = 0, 1, . . . , n− 1:

G = LKn,n
∼= Cay(Dn o Cn, {(b, 0), (b, 1), . . . , (b, n− 1)}).

Proof. The proof proceeds as follows. First, notice that the complete bipartite graph Kn,n is iso-
morphic to the Cayley graph of the dihedral group Dn = 〈a, b | an = b2 = (ab)2 = e〉 with
generating set

S = {si = aib : i = 0, 1, . . . , n− 1}.

With this presentation, the independent sets of Kn,n are V1 = {ai : i = 0, 1, . . . , n − 1} and
V2 = V1b = S. Moreover, since aba = b−1 = b, we have

s2i = aibaib = ai−1bai−1b = · · · = abab = bb = e,

so that all generators in S are involutive. The set of permutations πh ≡ πsh , for h = 0, . . . , n− 1,
of the elements of S, defined as

πh(si) = si+h, si ∈ S,

with addition understood modulo n, satisfies π0 = e (the identity) and πh(s0) = sh. Thus, Π =
{π0, . . . , πn−1} is a normal decomposition into permutations of K+

n (S). To show that Π is a group
of automorphisms of Dn, let us see first that it can be extended to the elements of V1. With this
aim, we define πh(sis0) := π(sh)π(s0). Then, from ai = aibb = sib = sis0, for i = 0, . . . , n− 1,
we have

πh(a
i) = πh(sis0) = πh(si)πh(s0) = si+hsh = ai+hbahb = aibb = ai.

From this, it is readily seen that the elements of Π are automorphisms of Dn. For instance,

πh(a
isj) = πh(a

i+jb) = πh(si+j) = si+j+h = aiaj+hb

= aisj+h = πh(a
i)πh(sj),
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Figure 8. LK3,3 = Cay(D3 o C3, {(b, 0), (b, 1), (b, 2)}).

and, assuming that i ≥ j (and using again that ajbaj = b),

πh(sisj) = πh(a
ibajb) = πh(a

i−jbb) = πh(si−js0)

= πh(si−j)πh(s0) = si−j+hsh = ai−j+hbahb = ai+hbaj+hb

= si+hsj+h = πh(si)πh(sj).

Consequently, Π is a group automorphism of Dn, isomorphic to the cycle group, Π ∼= Cn, fixing
each element of V1, and the result follows from Theorem 3.1.

By way of example, for r = 1 and z = 2, the Cayley graphs isomorphic to K3,3 and to the line
digraph LK3,3 are shown in Figure 7 and Figure 8, respectively. Note that in the last figure, each
vertex is labeled in two ways: as a vertex of the line digraph LK3,3, and as a vertex of a Cayley
graph on the group D3 o C3. We see, for instance, that as a line digraph, the vertex 54 is adjacent,
through the dotted arc, to vertex 43. Accordingly, as a Cayley graph, vertex (a2, 1) is adjacent,
through the generator (b, 1), to

(a2, 1) · (b, 1) = (a2π1(b), 2) = (a2π1(s0), 2) = (a2s1, 2) = (a2ab, 2) = (b, 2).

By Proposition 4.2, these Moore bipartite (1, z, 3)-mixed graphs have distance polynomials
p0 = 1, p1 = x, p2 = x2 − 1, and p3 = 1

z+1
x3 − x, and spectrum {±(1 + z),±0[n−2]}.
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[6] C. Dalfó, M. A. Fiol, and N. López, Sequence mixed graphs, Discrete Appl. Math. 219 (2017),
110–116.
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[18] M. Miller and J. Širáň, Moore graphs and beyond: A survey of the degree/diameter problem,
Electron. J. Combin. 20(2) (2013), #DS14v2.

[19] M. H. Nguyen, M. Miller, and J. Gimbert, On mixed Moore graphs, Discrete Math. 307
(2007), 964–970.

[20] J. Tuite and G. Erskine, On total regularity of mixed graphs with order close to the Moore
bound, Graphs Combin. 35 (2019), no. 6, 1253–1272.

[21] J. Tuite and G. Erskine, On networks with order close to the Moore bound, Graphs Combin.
38 143 (2022).

195


