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Abstract

For an ordered subset S = {v1, . . . , vk} of vertices in a connected graph G and an edge e′ of G,
the edge metric S-representation of e′ = ab is the vector reG(e

′|S) = (dG(e
′, v1), . . . , dG(e

′, vk)) ,
where dG(e

′, vi) = min{dG(a, vi), dG(b, vi)}. A dominant edge metric generator for G is a vertex
cover S of G such that the edges of G have pairwise different edge metric S-representations. A
dominant edge metric generator of smallest size of G is called a dominant edge metric basis for
G. The size of a dominant edge metric basis of G is denoted by Ddime(G) and is called the
dominant edge metric dimension. In this paper, the concept of dominant edge metric dimension
(DEMD for short) is introduced and its basic properties are studied. Moreover, NP-hardness of
computing DEMD of connected graphs is proved. Furthermore, this invariant is investigated under
some graph operations at the end of the paper.
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1. Introduction

All graphs considered in this paper are connected and simple. For a graph G, a subset S of
V (G) with the property that every vertex of G is uniquely determined by its distances from the
members of S is called a generator of G. This parameter of graphs was first introduced by Slater
in 1975 [10]. This topic has attracted a lot of attention because of its plenty of applications in
modeling many real world problems. Some applications of this invariant in chemical problems
and navigation of robots are stated in [4] and [8]. One who is interested in these applications
may refer to [4] and [8] for more details. Moreover, some other versions of this parameter have
been introduced. For instance, Okamoto, Crosse, Phinezy, and Zhang defined the local metric
dimension of a graph in [9] and Kelenc, Tratnik, and Yero introduced the edge metric dimension
of a graph in [7]. In the present paper, we study a new version of metric generator which is a
combination of edge metric generator and vertex cover. The idea comes from [11] which gives
a combination of (vertex) metric dimension and dominating set. Before stating this concept, we
recall some definitions and notations. A vertex cover of a graph is a set of vertices such that each
edge of the graph is incident to at least one vertex of the set. The smallest cardinality of a vertex
cover is called the vertex cover number and is denoted by β. If u, v ∈ V (G), then dG(u, v) denotes
the number of edges on a shortest u, v-path in G. Also, if u ∈ V (G) and vw ∈ E(G), then the
distance between u and vw, denoted by dG(vw, u), is min{dG(u, v), dG(u,w)}.

For an ordered subset S = {v1, . . . , vk} of vertices in a connected graph G and a vertex u
of V (G), the metric S-representation of u is the vector rG(u|S) = (dG(u, v1), . . . , dG(u, vk)) .
Also, for an edge e′ of E(G), the edge metric S-representation of e′ is the vector reG(e

′|S) =
(dG(e

′, v1), . . . , dG(e
′, vk)) .

A subset S of VG is called metric generator for G if the vertices of G have pairwise different
metric S-representations. A metric generator of the smallest order is a metric basis for G, its order
being the metric dimension of G and denoted by dim(G).

A subset S of V (G) with the property that all the edges of G have pairwise different edge
metric S-representations is called an edge metric generator for G. The edge metric generator of
smallest size is said to be an edge metric basis for G, its order is named the edge metric dimension
of G and denoted by dime(G) (see [7]).

Now, let us define the dominant edge metric dimension as follows.
A dominant edge metric generator for G is a vertex cover S of G such that the edges of G have
pairwise different edge metric S-representations. A dominant edge metric generator of smallest
order is a dominant edge metric basis for G, its order being the dominant edge metric dimension
(DEMD for short) Ddime(G) of G. In the second section of this paper, NP-hardness of computing
DEMD of connected graphs is proved. In section 3 we present some basic properties of DEMD.
Finally, we devote ourselves to consider this invariant under some graph operations.

We remind that all notations and terminologies are standard here and taken mainly from the
standard books of graph theory. For instance, as usual we denote the path, the cycle, the star, and
the complete graph on n vertices by Pn, Cn, Sn and Kn, respectively. Moreover, the complement
of a graph G is a graph Gc on the same vertices such that two distinct vertices of Gc are adjacent
if and only if they are not adjacent in G. For a nonempty set V ′ ⊆ V (G), the subgraph G[V ′]
induced by V ′ is the subgraph of G whose vertex set is V ′ and whose edge set consists of all edges
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of G which have both ends in V ′.

2. Basic Results

In this section, we present basic results for the dominant edge metric dimension of graphs.
We also give some bounds for Ddime(G) and |E(G)|, according to pendant vertices of a graph
G and dominant edge metric dimension of G, respectively. It is obvious that for any graph
G, max{β(G), dime(G)} ≤ Ddime(G). Moreover, if G is a graph with n vertices, then 1 ≤
Ddime(G) ≤ n− 1.

The next theorem gives some formulas for Ddime(G), when G is complete, complete multi-
partite, cycle and, path, and wheel. Wheel graph, denoted by Wn, is the graph obtained by the join
of all vertices of Cn with K1. The proof is straightforward and we omit here.

Theorem 2.1. For each positive integers n and m,

(i) Ddime(Kn) = n− 1.

(ii) Ddime(Kn,m) = n+m− 1.

(ii) Ddime(Cn) =

{
3, if n = 4,

⌈n
2
⌉, if n ≥ 3.

(iii) Ddime(Pn) = ⌊n
2
⌋.

(iv) Ddime(Wn) =

{
4, if n = 2,

⌈n
2
⌉+ 1, if n ≥ 3.

The next theorem provides a characterization of all graphs with the dominant edge metric
dimension equal to 1 or 2. First, let us define two graphs H1 and H2 as depicted in the following
figure, which are necessary for our characterization.

(a) (b)

Figure 1. Graphs H1(a) and H2(b).

Theorem 2.2. Let G be a graph. Then

(i) Ddime(G) = 1 if and only if G ∈ {P1, P2},
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(ii) Ddime(G) = 2 if and only if G ∈ {P3, P4, P5, K3, H1, H2}.

Proof. (i) The inequality β(G) ≤ Ddime(G) implies that G is a star graph. Since dime(G) = 1,
the star graph G has not more than 2 vertices. Therefore G is isomorphic to P1 or P2. The converse
is trivial.

(ii) Let N(a) denote the set of neighbours of vertex a. Since β(G) ≤ Ddime(G) = 2, we can
consider two cases as follows.

Case 1. β(G) = 1.
In this case G ∼= Sn, for a positive integer n. Let S be a dominant edge metric basis of G. We

claim n = 3. For a contradiction, assume that n ̸= 3. If n ≤ 2 then Ddime(G) = 1, a contradiction.
If n ≥ 4, for covering edges of Sn, the center of Sn, say a, must be belongs to S. Now, there exist
at least two pendant vertices b and c of Sn such that b, c /∈ S. Thus reG(ba|V (G)) = reG(ca|V (G)),
so we reach a contradiction. Therefore G ∼= P3.

Case 2. β(G) = 2.
Let a, b ∈ V (G) and S = {a, b} be a dominant edge metric basis of G. Since S is a vertex cover

of G, hence for any vertex c ∈ V (G)\{a, b}, we have N(c) ⊆ {a, b}. We partition the vertices of
V (G)\{a, b} into sets Va, Vb, and Va,b, where, Va = {x | x ∈ V (G)\{a, b} and N(x) = {a}},
Vb = {x | x ∈ V (G)\{a, b} and N(x) = {b}}, and Va,b = {x | x ∈ V (G)\{a, b} and N(x) =
{a, b}}.

Now, we may have the following two subcases.
Subcase 2a. ab ∈ E(G).
We claim that |Va| ≤ 1. On the contrary, assume that |Va| ≥ 2. So, we can consider two

distinct vertices x and y in Va. Thus reG(xa|V (G)) = reG(ya|V (G)), a contradiction. In a similar
way, we have |Vb| ≤ 1 and |Va,b| ≤ 1.

First, assume that |Va,b| = 0. If |Va| = |Vb| = 0, then G ∼= P2, which is impossible. Hence,
at least one of Va and Vb is a non-empty set. If exactly one of Va and Vb is a non-empty set, then
G ∼= P3. If both of Va and Vb is non-empty, thus G ∼= P4.

Second, suppose that |Va,b| = 1. By the same method as above, if |Va| = |Vb| = 0, then
G ∼= K3. If exactly one of Va and Vb is non-empty or both of Va and Vb are non-empty, then
G ∼= H1 or G ∼= H2, respectively.

Subcase 2b. ab /∈ E(G).
Similar to the Subcase 2a, one can check that G ∈ {P3, P4, P5}.
The converse of the cases are trivial and the proof is completed.

Theorem 2.3. Let G be a graph with Ddime(G) = m. Then

|E(G)| ≤
m∑
i=1

i

(
m
i

)
+m(m− 1)/2.

Proof. Let S = {a1, a2, . . . , am} be a dominant edge metric basis of G, and Sai := {aiu ∈
E(G) | u ∈ V (G) \ S}, for 1 ≤ i ≤ m. We claim that E(G) = ∪m

i=1Sai ∪ E(G[S]). For this,
it is enough to show that E(G) ⊆ ∪m

i=1Sai ∪ E(G[S]). On the contrary, assume that there exists
xy ∈ E(G) such that xy /∈ ∪m

i=1Sai∪E(G[S]). Hence x, y /∈ S, and so edge xy can not be covered
by S, a contradiction.
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On the other hand, for any u ∈ V (G) \ S, we have N(u) ⊆ S. Now, if there exist u, v ∈
V (G) \ S, such that N(u) = N(v), then we can assume that a1 ∈ N(u) = N(v). Thus we have
reG(a1u|S) = reG(a1v|S), which means that any non-empty subset of vertices of S has at most one

common neighbours in V (G) \ S. Since the subsets of S of size i, can be chosen by
(
m
i

)
ways,

and for any common neighbours of i vertices of S, G has i distinct edges, we conclude that

| ∪m
i=1 Sai | ≤

m∑
i=1

i

(
m
i

)
.

Moreover, the induced subgraph G([S]), has at most m(m− 1)/2 edges. Consequently

| ∪m
i=1 Sai ∪ E(G[S])| ≤

m∑
i=1

i

(
m
i

)
+m(m− 1)/2,

and the proof is completed.

Theorem 2.4. Let G be a graph with |V (G)| ≥ 3 and m pendant vertices. Then m ≤ Ddime(G).

Proof. Let a be a pendant vertex and S be a dominant edge metric generator of G. Then there
exists b ∈ V (G) such that a ∼ b, and b is not a pendant vertex. Now, a or b must belong to S,
for covering edge ab. Without loss of generality, we may assume that b ∈ S. If there is another
pendant vertex, namely c, such that c ∼ b, then at least one of a or c must be belong to S, to satisfy
condition reG(ab|S) ̸= reG(cb|S). This means that for any pendant vertex of G, there exists at least
one element of S. Therefore m ≤ |S|.

In the next theorem, we improve Theorem 4.1 in [14] state that, for any connected graph G of
order n, if Gc has at least three components, then dime(G) = n− 1.

Theorem 2.5. Let G be a graph and Gc be disconnected. Then dime(G) = |V (G)| − 1.

Proof. Let H1, H2, . . . , Hm be connected components of Gc, with m ≥ 2.
First, suppose that there is a component of Gc, as H1, with |V (H1)| ≥ 2. So we can assume

v, u ∈ V (H1), and w ∈ V (H2). In G, vertices v and u (respectively w ) adjacent to all vertices
of components H2, H3, . . . , Hm (respectively H1, H3, . . . , Hm). Thus there exist edges vw and uw
in G. Now, for every vertex a ∈ V (G) \ {u, v, w}, we have dG(vw, a) = dG(uw, a) = 1 and
dG(vw,w) = dG(uw,w) = 0. Hence reG(vw|V (G) \ {u, v}) = reG(uw|V (G) \ {u, v}). This
implies that dime(G) = |V (G)| − 1.

Finally, assume that all connected components H1, H2, . . . , Hm have one vertex. Therefore
G = K|V (G)| and dime(G) = |V (G)| − 1.

Corollary 2.1. Let G be a graph and Gc be disconnected. Then Ddime(G) = |V (G)| − 1.
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3. DEMD Over Some Graph Products

As it is proved in section 2, computing DEMD of connected graphs is NP-hard. It is the reason
why we use some graph products to obtain DEMD for some product graphs in this section.

Let G and H be two graphs. The corona product G ◦H , is obtained by taking one copy of G
and |V (G)| copies of H; and by joining each vertex of the i-th copy of H to the i-th vertex of G,
where 1 ≤ i ≤ |V (G)| (see [13] for more details).

In the following theorem, we give a formula for DEMD of the corona product of two graphs G
and H .

Theorem 3.1. Let G and H be two graphs. Then

Ddime(G ◦H) = |V (G)||V (H)|.

Proof. In what follows, for g ∈ V (G), we will use the notation Hg to denote the copy of H in
G ◦ H corresponding to g. Let h ∈ V (H) and set Sh = V (G) ∪ (∪g∈V (G)(V (Hg − h)) where
Hg − h is the graph obtained from Hg by removing its vertex corresponding to h. It is clear that
V (Hg)’s are disjoint for distinct g. Moreover, Sh is a dominant edge metric generator of G ◦ H
and so Ddime(G ◦ H) ≤ |V (G)||V (H)|. Thus, it is sufficient to prove that Ddime(G ◦ H) ≥
|V (G)||V (H)|. To do this, let S ′ be a dominant edge metric generator of G ◦H . Suppose, on the
contrary that there exist two vertices h, h′ ∈ Hg such that h, h′ /∈ S ′. Thus,

dG◦H(gh, u) = dG◦H(gh
′, u) =

{
dG(g, u), if u ∈ V (G),

dG(g, g
′) + 1, if u ∈ V (Hg′) and g′ ̸= g,

for each u ∈ S ′ \ V (Hg); and dG◦H(gh, u) = dG◦H(gh
′, u) = 1 for each u ∈ S ′ ∩ V (Hg) which

contradicts the choice of S ′. Therefore, |S ′ ∩Hg| ≥ |V (H)| − 1.
Now suppose that g /∈ S ′ and |S ′ ∩ V (Hg)| = |V (H)| − 1. In this case, g must be a member

of S ′, because S ′ is a vertex cover of G ◦H . Therefore, |S ′| ≥ |V (G)||V (H)|. This completes the
proof.

Figure 2. P3 ◦K2 and its dominant edge metric generator which is colored with white.

By an inductive argument, one can derive the following implication of Theorem 3.1. The proof
is very similar to the proof of Theorem 3.1 and we omit here.

Theorem 3.2. Let G1, . . . , Gn be graphs. Then

Ddime(G1 ◦G2 ◦ · · · ◦Gn) =
n∏

i=1

|V (Gi)|.
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Figure 3. T3,3.

Example 3.3. A Caterpillar is a tree in which all the vertices are within distance 1 of a central path
[1]. These graphs were first studied in a series of papers by Harary and Schwenk. Then the graph
Tl,t = Pl ◦ K̄t is called a Caterpillar (see Figure 3). Therefore, by Theorem 3.1, we will have

Ddime(Tl,t) = lt.

One can easily check that dime(Tl,t) = l(t− 1). It shows that Ddime(G)− dime(G) could be
increased to any arbitrary positive integer number. Thus, we can conclude that for every positive
integers m and n with n ≥ m, there exists a graph G such that Ddime(G) = n and dime(G) = m.
Note that if n > m, then we can choose l = n − m and take G = Tl,t for arbitrary positive
integer t ≥ 1. Thus, by the above results, we will have Ddime(G) = Ddime(Tl,t) = lt and
dime(G) = dime(Tl,t) = l(t− 1). Hence, n−m = Ddime(G)− dime(G) = lt− l(t− 1) = l as
required. In the case that m = n, the graph G can be considered G = Kn+1 and so Ddime(G) =
dime(G) = (n+ 1)− 1 = n.

The edge corona G ⋄ H of graphs G and H is obtained by taking one copy of G and |E(G)|
disjoint copies of H associated to the edges of G, and for every edge gg′ ∈ E(G) joining g and g′

to every vertex of the copy of H associated to gg′, see [5, 12] for more details.
The following theorem will state the exact value of DEMD of edge corona product of two

graphs G and H .

Theorem 3.4. If G and H are two graphs, then

Ddime(G ⋄H) = |E(G)|(|V (H)| − 1) + |V (G)|.

Proof. For g ∈ V (G), the notation Hgg′ stands for the copy of H in G ⋄H corresponding to edge
gg′ ∈ E(G). Let h ∈ V (H) and set Sh = V (G)∪(∪g∈V (G)V (Hg−h)) where Hgg′−h is the graph
obtained from Hgg′ by removing its vertex corresponding to h. One can easily check that S is a
dominant edge metric generator of G ⋄H and so Ddime(G ⋄H) ≤ |E(G)|(|V (H)|− 1)+ |V (G)|.
To prove Ddime(G ◦H) ≥ |V (G)||V (H)|, let S ′ be a dominant edge metric generator of G ⋄H .
Suppose, by way of contradiction, there exist two vertices h, h′ ∈ Hgg′ such that h, h′ /∈ S ′. Thus,

dG⋄H(gh, u) = dG⋄H(gh
′, u) =

{
dG(gg

′, u), if u ∈ V (G),

dG(gg
′, g′′g′′′) + 1, if u ∈ V (Hg′′g′′′) and gg′ ̸= g′′g′′′,

for each u ∈ S ′ \ V (Hgg′); and dG⋄H(gh, u) = dG⋄H(gh
′, u) = 1 for each u ∈ S ′ ∩ V (Hgg′) which

contradicts the choice of S ′. Therefore,

|S ′ ∩ (∪gg′∈E(G))V (Hgg′)| ≥ |E(G)|(|V (H)| − 1).
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Now, suppose that h ∈ V (Hgg′) \ S ′ and |S ′ ∩ V (Hgg′)| = (|V (H)| − 1). Since S ′ is a vertex
cover of G ⋄H , then it must have at least two vertices of {g, g′, h} for covering edges gh, g′h and
gg′. Therefore, |S ′| ≥ |E(G)|(|V (H)| − 1) + |V (G)| and the proof is completed.

Figure 4. P3 ⋄K2 and its dominant edge metric generator which is colored with white.

It is interesting to consider the dominant edge metric generator for some other kinds of product
between two graphs. Of course, the proofs for some of them are very similar to the proof of
Theorem 3.4. For instance, if G + H is the join of two graphs G and H , then we can state the
following result. The proof can be obtained by a similar argument applied in Theorem 3.4 and it is
not appeared here.

Theorem 3.5. Let G and H be two graphs. Then Ddime(G+H) = |V (G)|+ |V (H)| − 1.

4. Complexity Issues

The edge metric dimension problem is the problem of determining the edge metric dimension
of a given graph G. Recently, in [7], the authors proved that the decision version of the edge metric
dimension problem is NP-complete on connected graphs. The problem of finding a minimum
vertex cover is a classical optimization problem in computer science. Its decision version was one
of Karp’s 21 NP-complete problems and is therefore a classical NP-complete problem (see [6] for
more details).

It is natural to ask whether our similar problem for the dominant edge metric dimension is
NP-complete by knowing the NP-completeness of two problems mentioned on above. However,
one does not immediately deduce that this problem is NP-complete. Indeed, our primary aim in
this section is to present a detailed proof for the NP-completeness of our problem. First, let us start
with the following decision problem.

DEMD problem: Let G be a connected graph of order n and r be a positive integer such that
1 ≤ r ≤ n− 1 where n ≥ 3. Is Ddime(G) ≤ r?

Recall that the DEMD problem is the decision version of the problem of computing Ddime(G)
for a given connected graph G. Our proof for showing the NP-completeness of DEMD problem
is based on a reduction from the minimum vertex cover problem for connected graphs. For more
details on the reduction technique for proving the NP-completeness of a problem in general, we
refer the reader to [3]. Now, we are in the position to prove that the DEMD problem is NP-
complete.

Theorem 4.1. The DEMD problem is NP-complete.
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Proof. We first show that DEMD∈ NP. Let G be a connected graph of order n and let S be a subset
of V (G). We are going to check that S is a dominate edge metric generator of G. It is easy to
see that there exists a polynomial-time algorithm that checks whether S is a vertex cover for G.
Similarly, verifying that S is an edge metric generator of S can be performed in polynomial time.
Thus, DEMD∈ NP.

To show NP-hardness, we give a reduction from the minimum vertex cover problem for con-
nected graphs. Let G = (V,E) be a connected graph with V = {v1, v2, . . . , vn}. We construct
G′ = (V ′, E ′) from G such a way that

V ′ = V ∪X ∪ Y,

E ′ = E ∪ E1 ∪ E2,

where X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, E1 =
{
xiyi

∣∣ 1 ≤ i ≤ n
}

and E2 ={
vixi

∣∣ 1 ≤ i ≤ n
}

. As an example, consider the graphs G4 and G′
4 as they are shown in Figure 5.

v1v2

v3 v4

(a) The graph G4

v1v2

v3 v4

x1x2

x3 x4

y1y2

y3 y4

(b) The graph G′
4

Figure 5. The graphs G4 and G′
4.

We claim that Ddime(G
′) = β(G) + n. Suppose B = {b1, b2, . . . , bβ(G)} is a vertex cover of

minimum size of G and S = {x1, x2, · · · , xn, b1, b2, . . . , bβ(G)} is an ordered set. It is easy to see
that S is a vertex cover for G′. Now, we claim that S is a dominant edge metric generator for G′.
For this purpose, since S is a vertex cover, we need to show that S is an edge metric generator for
G′. In order to show that the edges of G′ have pairwise different edge metric S-representations, let
e1 and e2 be two arbitrary distinct edges of G′. In what follows, reG(e

′|S)i refers to the ith entry of
reG(e

′|S).
We distinguish five cases as the following.
Case 1. e1 ∈ E1.

Suppose e1 = xiyi where i ∈ {1, 2, . . . , n}. In this case, if e2 = wz where w ̸= xi, w ̸= yi, z ̸= xi

and z ̸= yi, then reG′(e1|S)i = 0 and reG′(e2|S)i ̸= 0, thus reG′(e1|S) ̸= reG′(e2|S). Otherwise,
without loss of generality, if w = xi, then z ̸= yi since e1 and e2 are distinct. Thus, z = vi, because
xi has only two adjacent vertices vi and yi. Since G′ has at least three vertices, there exists a vertex
vj such that i ̸= j. Therefore, dG′(vj, xi) = dG′(vj, vi) + 1 and dG′(vj, yi) = dG′(vj, vi) + 2 which
implies that dG′(e2, vj) < dG′(e1, vj). Hence, reG′(e2|S)j < reG′(e1|S)j . Therefore, reG′(e1|S) ̸=
reG′(e2|S).

Case 2. e2 ∈ E1.
The proof of this case is similar to the proof of Case 1.

Case 3. e1 ∈ E2.
Suppose e1 = xivi where i ∈ {1, 2, . . . , n}. In this case, if e2 = wz where w ̸= xi, w ̸= vi, z ̸= xi
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and z ̸= vi, then reG′(e1|S)i = 0 and reG′(e2|S)i ̸= 0, thus reG′(e1|S) ̸= reG′(e2|S). Otherwise,
without loss of generality, if w = vi, then since e1 and e2 are distinct, we should have z ̸= xi.
Thus, z ∈ V (G). Suppose that z = vj for some j ∈ {1, 2, . . . , n}. Then dG′(e2, xj) = 1 and
dG′(e1, xj) = 2. Therefore, reG′(e1|S) ̸= reG′(e2|S).

Case 4. e2 ∈ E2.
The proof of this case is similar to the proof of Case 3.

Case 5. {e1, e2} ⊂ E(G).
Suppose e1 = vsvt and e2 = vrvq where {s, t, r, q} ⊂ {1, 2, . . . , n}. Since e1 and e2 are two
distinct edges, without loss of generality, suppose that vs ̸= vr. Therefore, dG′(e1, xr) > 1 and
dG′(e2, xr) = 1. Thus, reG′(e1|S)r > 1 and reG′(e2|S)r = 1. Hence, reG′(e1|S) ̸= reG′(e2|S).

In each of the above five cases, we have reG′(e1|S) ̸= reG′(e2|S). Since e1 and e2 were cho-
sen arbitrarily from E ′, it indicates that the edges of G′ have pairwise different edge metric S-
representations. Now, we claim that Ddime(G

′) = |S|. Suppose on the contrary that there is a
dominant edge metric generator S ′ of G′ such that |S ′| < |S|. Since S ′ is a vertex cover for G′, ev-
ery edge xiyi is covered by S ′ for 1 ≤ i ≤ n. Hence xi ∈ S ′ or yi ∈ S ′. The graph G′ has n edges
xiyi for 1 ≤ i ≤ n which they have no vertex in common. Therefore, the subgraph G of G′ is cov-
ered by S ′ with at most w vertices where w = |S ′| − n. On the other hand, |S| = β(G) + n. Thus,
w = |S ′| − n < |S| − n = β(G). Hence, G is covered by at most w vertices such that w < β(G).
But this contradicts the minimality of β(G). Therefore, Ddime(G

′) = |S| = β(G) + n.
It is easy to see that constructing G′ from G can be done in polynomial time. Therefore, if there

exists a polynomial-time algorithm for computing Ddime(G
′) then there exists a polynomial-time

algorithm for computing β(G).
The well known theorem in graph theory, König’s theorem, states that, in any bipartite graph,

the number of edges in a maximum matching is equal to the number of vertices in a minimum
vertex cover. We recall that maximum matchings can be found in polynomial time for any graph.
Thus, the proof of Theorem 4.1 does not apply for proving the NP-compleness of the DEMD prob-
lem on bipartite graphs. Therefore, there is an interesting question about the complexity of this
new problem. We leave it as the following open question.

Problem A. Let G be a connected bipartite graph G of order n and r be a positive integer such that
1 ≤ r ≤ n− 1 where n ≥ 3. Is Ddime(G) ≤ r?

Open Problem. Is the problem A NP-complete?

The classical metric dimension problem can be formulated as an Integer Linear Programming
(ILP) problem [2]. Also, there exists a simple ILP model for the vertex cover problem. Motivated
by the previous results for the similar problems, we consider here an ILP model for computing
Ddime(G) for a given connected graph G. We note that our model is based on the ILP model
introduced in [2] for the classical metric dimension problem. So we have maintained as far as
possible the terminology and notation of [2] for our new ILP model. Let G = (V,E) be a connected
graph of order n where V = {v1, v2, . . . , vn}. Let D′ = [d′ij] be an m by n matrix where m = |E|
such that d′ij = dG(ei, vj) for i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n} where ei ∈ E and vj ∈ V .
Consider the binary decision variables xi for i ∈ {1, 2, . . . , n} where xi ∈ {0, 1}. By xi = 1, we
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mean the vertex vi is on a dominant edge metric generator for G and xi = 0 otherwise. We define
the objective function F as follow.

F (x1, x2, . . . , xn) = x1 + x2 + . . .+ xn.

Minimizing F subject to the mn constraints

|d′i1 − d′j1|x1 + |d′i2 − d′j2|x2 + · · ·+ |d′in − d′jn|xn > 0,

such that ei ∈ E and vj ∈ V for i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, and also m constraints

xt + xk > 0,

such that vtvk ∈ E for {t, k} ⊆ {1, 2, . . . , n} is equivalent to finding a dominant edge metric
generator of G.
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