Electronic Journal of Graph Theory and Applications

On (F, H)-sim-magic labelings of graphs

Yeva Fadhilah Ashari ${ }^{\text {a }}$, A.N.M. Salman ${ }^{\text {a,b }}$, Rinovia Simanjuntak ${ }^{*, a, b}$, Andrea Semaničová-Feňovčíkovác, Martin Bača ${ }^{\text {c }}$
${ }^{a}$ Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
${ }^{b}$ Center for Research Collaboration on Graph Theory and Combinatorics, Indonesia
${ }^{c}$ Department of Applied Mathematics and Informatics, Technical University in Košice, Slovakia

yevafadhilahashari@s.itb.ac.id, msalman@math.itb.ac.id, rino@itb.ac.id, andrea.fenovcikova@tuke.sk, martin.baca@tuke.sk
*corresponding author

Abstract

A simple graph $G(V, E)$ admits an H-covering if every edge in G belongs to a subgraph of G isomorphic to H. In this case, G is called H-magic if there exists a bijective function $f: V \cup$ $E \rightarrow\{1,2, \ldots,|V|+|E|\}$, such that for every subgraph H^{\prime} of G isomorphic to $H, w t_{f}\left(H^{\prime}\right)=$ $\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)$ is constant. Moreover, G is called H-supermagic if $f: V(G) \rightarrow$ $\{1,2, \ldots,|V|\}$. This paper generalizes the previous labeling by introducing the (F, H)-sim-(super) magic labeling. A graph admitting an F-covering and an H-covering is called (F, H)-sim-(super) magic if there exists a function f that is F-(super)magic and H-(super)magic at the same time. We consider such labelings for two product graphs: the join product and the Cartesian product. In particular, we establish a sufficient condition for the join product $G+H$ to be $\left(K_{2}+H, 2 K_{2}+H\right)$ -sim-supermagic and show that the Cartesian product $G \times K_{2}$ is $\left(C_{4}, H\right)$-sim-supermagic, for H isomorphic to a ladder or an even cycle. Moreover, we also present a connection between an α-labeling of a tree T and a $\left(C_{4}, C_{6}\right)$-sim-supermagic labeling of the Cartesian product $T \times K_{2}$.

Keywords: H-covering, H-(super)magic, (F, H)-sim-(super)magic, join product, Cartesian product Mathematics Subject Classification: 05C70, 05C76, 05C78
DOI: 10.5614/ejgta.2023.11.1.5

Received: 2 July 2022, Revised: 6 January 2023, Accepted: 4 February 2023.

1. Introduction

The graphs considered in this paper are finite and simple. Let G be a graph, with the vertex set $V(G)$ and the edge set $E(G)$. The cardinalities of $V(G)$ and $E(G)$ are called the order and the size of G, respectively. A labeling f of G is a map that assigns certain elements of G to positive or non-negative integers. In this paper, we consider a total labeling of G as a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots,|V(G)|+|E(G)|\}$. Under a total labeling f, the weight of a vertex $v \in V(G)$ is $w t_{f}(v)=f(v)+\sum_{v w \in E(G)} f(v w)$ and the weight of an edge $v w \in E(G)$ is $w t_{f}(v w)=f(v)+f(v w)+f(w)$.

Simanjuntak et al. [27] introduced an (a,d)-edge-antimagic total labeling $((a, d)$-EAT) as a total labeling f where the set of edge-weights $\left\{w t_{f}(v w) \mid v w \in E(G)\right\}$ constitutes a set of an arithmetic progression $\{a, a+d, \ldots, a+(|E(G)|-1) d\}$ for two integers $a>0$ and $d \geq 0$. When $d=0$, the ($a, 0$)-edge(vertex)-antimagic labeling was previously known as the edge-magic total labeling (EMT) and was introduced by Kotzig and Rosa [15] in 1970. When G has EMT or (a, d)-EAT labelings and the corresponding f labeling has the property $f(V(G))=\{1,2, \ldots$, $|V(G)|\}$, we say that G is super edge-magic total (SEMT) or super (a, d)-edge-antimagic total ((a, d)-SEAT), respectively.

Another variation of magic labeling called vertex-magic total labeling was introduced by MacDougal et al. [17]. A vertex-magic total labeling (VMT) of G is a total labeling where there exists a positive integer k such that the vertex-weight $w t_{f}(v)=k$ for every vertex v of G. If $\left\{w t_{f}(v) \mid v \in V(G)\right\}=\{a, a+d, \ldots, a+(|V(G)|-1) d\}$ for two integers $a>0$ and $d \geq 0$, the labeling f of G is called (a, d)-vertex-antimagic total labeling $((a, d)$-VAT), that was first introduced by Bača et al. [3]. Comprehensive surveys about the existence of magic and antimagic graphs can be found in $[4,5,11,29]$.

In 2005, as an extension of the edge-magic total labeling, Gutiérez and Lladó [12] introduced an H-magic labeling of a graph. A graph G admits an H-covering if every edge in $E(G)$ belongs to a subgraph of G isomorphic to a given graph H. A total labeling f of G is an H-magic labeling if there exists a positive integer k such that $w t\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)=k$ for every subgraph H^{\prime} of G isomorphic to H. In this case, G is called an H-magic graph. If $f(V)=\{1,2, \ldots,|V(G)|\}$, then G is said to be an H-supermagic graph. Current results on H-magic labelings can be seen in the survey [11].

In 2005, Exoo et al. [9] asked whether there exists a labeling of a graph that is simultaneously vertex-magic and edge-magic and called such labeling totally magic. Subsequently, in 2005, Bača et al. [6] extended a similar question for (a, d)-EAT labeling and (a, d)-VAT labelings; and defined the totally antimagic total (TAT) labeling.

Motivated by the two notions above, it is interesting to ask a similar question by considering the subgraph covering in G. Suppose that G simultaneously admits an F-covering and an H-covering. We propose a new notion of a labeling called an (F, H)-sim-magic labeling as a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots,|V(G)|+|E(G)|\}$ where there exist two positive integers k_{F} and k_{H} (not necessarily the same) such that

$$
w t_{f}\left(F^{\prime}\right)=\sum_{v \in V\left(F^{\prime}\right)} f(v)+\sum_{e \in E\left(F^{\prime}\right)} f(e)=k_{F}
$$

and

$$
w t_{f}\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)=k_{H},
$$

for each subgraph F^{\prime} of G isomorphic to F and each subgraph H^{\prime} of G isomorphic to H. We say that G is (F, H)-sim-magic. Furthermore, if $f(V(G))=\{1,2, \ldots,|V(G)|\}, G$ is said to be (F, H)-sim-supermagic.

The simplest example of a (F, H)-sim-magic graph can be deduced from previously known H-magic labelings. For odd m and n at least three, the disjoint union of m cycles $m C_{n}$ is both SEMT [10] and C_{n}-supermagic [1, 18]. Although the C_{n}-supermagic labelings described in [1, 18] are not SEMT, the SEMT labeling of $3 C_{3}$ described in [10] is also C_{3}-supermagic (see Figure 1). This implies that $3 C_{3}$ is $\left(K_{2}, C_{3}\right)$-sim-supermagic.

Figure 1. $\mathrm{A}\left(K_{2}, C_{3}\right)$-sim-supermagic graph.
An interesting fact for (F, H)-sim-magic labeling is that although a graph is both F-magic and H-magic, such a graph does not need to be (F, H)-sim-magic. An example is the fan F_{n} with vertex-set $V\left(F_{n}\right)=\left\{v_{i} \mid 0 \leq i \leq n\right\}$ and edge-set $E\left(F_{n}\right)=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{v_{0} v_{i} \mid 1 \leq\right.$ $i \leq n\}$. It is known that, for every $n \geq 3, F_{n}$ is EMT (see [28]) and C_{3}-supermagic (see [21]). However, for every $n \geq 3, F_{n}$ is not (K_{2}, C_{3})-sim-magic as stated in the following theorem.

Theorem 1.1. Let $n \geq 3$ be a positive integer. A fan F_{n} is not $\left(K_{2}, C_{3}\right)$-sim-magic.
Proof. Suppose that F_{n} is a $\left(K_{2}, C_{3}\right)$-sim-magic graph and let f be a $\left(K_{2}, C_{3}\right)$-sim-magic labeling of F_{n} with a magic constant pair $\left(k_{1}, k_{2}\right)$. Consider the weights of two C_{3} cycles $v_{0} v_{1}, v_{1} v_{2}, v_{2} v_{0}$ and $v_{0} v_{2}, v_{2} v_{3}, v_{3} v_{0}$. As these weights are equal, we have

$$
\sum_{i=0}^{2} f\left(v_{i}\right)+f\left(v_{0} v_{1}\right)+f\left(v_{1} v_{2}\right)+f\left(v_{2} v_{0}\right)=\sum_{i=1}^{3} f\left(v_{i}\right)+f\left(v_{0} v_{2}\right)+f\left(v_{2} v_{3}\right)+f\left(v_{3} v_{0}\right)
$$

and so

$$
\begin{equation*}
f\left(v_{1}\right)+f\left(v_{1} v_{0}\right)+f\left(v_{1} v_{2}\right)=f\left(v_{3}\right)+f\left(v_{2} v_{3}\right)+f\left(v_{0} v_{3}\right) . \tag{1}
\end{equation*}
$$

Adding $f\left(v_{0}\right)$ to both sides of Equation (1) and using the fact that all edges have the same edge weight, we obtain $f\left(v_{1} v_{2}\right)=f\left(v_{2} v_{3}\right)$, a contradiction.

In this paper, we study simultaneous labelings for two product graphs: the join product and Cartesian product graphs. In particular, we investigate a sufficient condition for the join product
graph $G+H$ to be ($K_{2}+H, 2 K_{2}+H$)-sim-supermagic (Section 3). We construct $\left(C_{4}, H\right)$-simsupermagic labelings for the Cartesian product $G \times K_{2}$, where H is isomorphic to a ladder or an even cycle (Section 4). Finally, in the last section, we provide relationships between an α-labeling of a tree T and a (C_{4}, C_{6})-sim-supermagic labeling of the Cartesian product $T \times K_{2}$.

Throughout the paper, we shall use the following definitions and notations. The degree of a vertex v is denoted by $\operatorname{deg}(v)$. For a connected graph H, a graph G is H-free if G does not contain H as a subgraph. Notations for some classes of graphs can be seen in Table 1.

Table 1. Classes of graphs

Notation	Notes
C_{n}	A cycle on n vertices, $n \geq 3$.
K_{n}	A complete graph on n vertices, $n \geq 1$.
$K_{1, n}$	A star with one internal vertex and n leaves, $n \geq 2$.
P_{n}	A path on n vertices, $n \geq 2$.
$S_{n_{1}, n_{2}, \ldots, n_{k}}$	A caterpillar is a graph derived from a path $P_{k}, k \geq 2$, where for $i \in\{1,2, \ldots, k\}$, each $v_{i} \in V\left(P_{k}\right)$ is adjacent to $n_{i} \geq 0$ additional leaves.

2. Balanced and Anti Balanced Multisets

A multiset is a generalization of a set where repetition of elements is allowed. Let a and b be two integers. We use the notation $[a, b]$ to define the set of consecutive integers $\{a, a+1, \ldots, b\}$. So $[a, b]=\emptyset$, if $a>b$. For an integer k, the addition $k+[a, b]$ means $[a+k, b+k]$ and for a multiset of integers Y, we denote $\sum_{x \in Y} x$ by $\sum Y$. Let x be an element of a multiset Y. Then, the multiplicity of x, denoted by $m_{Y}(x)$, is the number of occurrences of x in Y. Let X and Y be two multisets. A multiset sum $X \biguplus Y$ is a union of X and Y, where $m_{X \biguplus Y}(x)=m_{X}(x)+m_{Y}(x)$ for each $x \in X \biguplus Y$. For example, if $X=\{a\}$ and $Y=\{a, a, b\}$, then, $X \biguplus Y=\{a, a, a, b\}$.

We shall utilize the notions of a k-balanced partition of a multiset introduced by Maryati et al. [19] and a (k, δ)-anti balanced partition of a multiset introduced by Inayah et al. [13] to construct labelings in Sections 3 and 4. Let k and δ be two positive integers, and X be a multiset containing positive integers. X is said to be (k, δ)-anti balanced if there exist k subsets of X, say $X_{1}, X_{2}, \ldots, X_{k}$, such that for every $i \in[1, k],\left|X_{i}\right|=\frac{|X|}{k}, \biguplus_{i=1}^{k} X_{i}=X$, and for each $i \in[1, k-1]$, $\sum X_{i+1}-\sum X_{i}=\delta$. For every $i \in[1, k], X_{i}$ is called a (k, δ)-anti balanced subset of X. In the case that there exists a positive integer θ such that $\sum X_{i}=\theta$ for every $i \in[1, k]$, then X is called k-balanced with $X_{i} \mathrm{~s}$ as k-balanced subsets of X.
Lemma 2.1. [18] Let x, y, and k be three integers, where $1 \leq x<y$ and $k>1$. If $X=[x, y]$ and $|X|$ is a multiple of $2 k$, then X is k-balanced with $\sum X_{i}=\frac{|X|}{2 k}(x+y)$ for every $i \in[1, k]$.
Lemma 2.2. Let x and k be positive integers, $k \geq 2$. If

$$
X= \begin{cases}{[x, x+2 k-1],} & \text { for odd } k \\ {[x, x+2 k] \backslash\left\{x+\frac{k}{2}\right\},} & \text { for even } k\end{cases}
$$

then X is $(k, 1)$-anti balanced with $\sum X_{i}=2 x+i+3\left\lfloor\frac{k}{2}\right\rfloor$ for every $i \in[1, k]$.

Proof. For each $i \in[1, k]$, define $X_{i}=\left\{a^{i}, b^{i}\right\}$, where $a^{i}=x-1+\left\lceil\frac{i+1}{2}\right\rceil+2(1-(i \bmod 2))\left\lfloor\frac{k}{2}\right\rfloor$ and $b^{i}=x+\left\lfloor\frac{k}{2}\right\rfloor+\left\lceil\frac{i}{2}\right\rceil+2(i \bmod 2)\left\lfloor\frac{k}{2}\right\rfloor$. Thus, $\biguplus_{i=1}^{k} X_{i}=X$ and we have $\left|X_{i}\right|=2$ and $\sum X_{i}=2 x+i+3\left\lfloor\frac{k}{2}\right\rfloor$ for each $i \in[1, k]$. Since $\sum X_{i+1}-\sum X_{i}=1$ for every $i \in[1, k-1], X$ is a $(k, 1)$-anti balanced.

Lemma 2.3. Let x and k be positive integers, $k \geq 2$. If $X=[x, x+2 k-1]$, then X is ($k, 2$)-anti balanced with $\sum X_{i}=2(x+i-1)+k$ for every $i \in[1, k]$.

Proof. Define $X_{i}=\{x-1+i, x+i+k-1\}$ for each $i \in[1, k]$. Hence, $\biguplus_{i=1}^{k} X_{i}=X,\left|X_{i}\right|=2$, and $\sum X_{i}=2(x+i-1)+k$ for every $i \in[1, k]$. We have that X is $(k, 2)$-anti balanced since $\sum X_{i+1}-\sum X_{i}=2$ for every $i \in[1, k-1]$.

3. Labelings for Join Product Graphs

Let $G \cup H$ denote the disjoint union of G and H. Then, the join product $G+H$ of two disjoint graphs G and H is the graph $G \cup H$ together with all the edges joining vertices of G and vertices of H. The study of H-magicness of join product graphs has been conducted for some particular families of graphs, as summarized in Table 2.

Table 2. Known join product graphs which are H-magic

Join product	H	Reference
$P_{n}+K_{1}, n \geq 3$	C_{3}	Ngurah et al. [21] and Ovais et al. [22]
	C_{4}	Ovais et al. [22]
$C_{n}+K_{1}, n$ odd, $n \geq 5$	C_{3}	Lladó and Moragas [16]
n even, $n \geq 4$	C_{3}	Roswitha et al. [25]
$C_{n}+K_{1}, n \geq 3$	C_{4}	Semaničová-Feňovčíková et al. [26]
$K_{1, n}+K_{1}, n \geq 3$	C_{3}	Ngurah et al. [21]
$n K_{2}+K_{1}, n \geq 2$	C_{3}	Lladó and Moragas [16]

The following theorem provides a sufficient condition for the join product graph $G+H$ to be $\left(K_{2}+H, 2 K_{2}+H\right)$-sim-supermagic.

Theorem 3.1. Let G and H be two connected graphs such that G admits a $2 K_{2}$-covering and $G+H$ contains exactly $|E(G)|$ subgraphs isomorphic to $K_{2}+H$. If G is SEMT, then $G+H$ is $\left(K_{2}+H, 2 K_{2}+H\right)$-sim-supermagic.

Proof. Let g be a super edge-magic total (SEMT) labeling of G with the magic constant m_{g}. Let $V(G)=\left\{v_{i} \mid v_{i}=g^{-1}(i)\right.$ and $\left.i \in[1, p]\right\}, V(H)=\left\{u_{i} \mid i \in[1, r]\right\}, E(G)=\left\{e_{i} \mid i \in[1, q]\right\}$, and $E(H)=\left\{k_{i} \mid i \in[1, s]\right\}$. Hence, $|V(G)|=p,|E(G)|=q,|V(H)|=r,|E(H)|=s$. Thus, $V(G+H)=V(G) \cup V(H)$ and $E(G+H)=E(G) \cup E(H) \cup\left\{u_{i} v_{j} \mid i \in[1, r]\right.$ and $\left.j \in[1, p]\right\}$.

Consider $Y=[1, p+q+r+s+p r]$ as the set of all labels of vertices and edges in $G+H$. Then, we divide the proof into three cases.

Case 1. r is even.
Partition Y into five subsets, namely $A=[1, r], B=r+[1, p], C=(r+p)+[1, p r], D=(r+p+$
$p r)+[1, q]$ and $E=(r+p+p r+q)+[1, s]$. Since r is even, $|C|$ is a multiple of $2 p$. By Lemma 2.1, we have that C is p-balanced with $\sum C_{i}=\frac{p r}{2 p}(r+p+1+r+p+p r)=\frac{1}{2} r(p(r+2)+2 r+1)$ for each $i \in[1, p]$.

Next, label the vertices and edges in $G+H$ by total labeling f as defined in the following steps.

1. For each $i \in[1, r], f\left(u_{i}\right)=i$.
2. For each $i \in[1, p], f\left(v_{i}\right)=i+r$.
3. For each $j \in[1, p]$ and $i \in[1, r], f\left(u_{i} v_{j}\right)=m_{i}$, where $m_{i} \in C_{j}$.
4. For each $e_{i} \in E(G)$ and $i \in[1, q], f\left(e_{i}\right)=g\left(e_{i}\right)+r+p r$.
5. For each $k_{i} \in E(H)$ and $i \in[1, s], f\left(k_{i}\right)=m_{i}$, where $m_{i} \in E$ and no two distinct edges in $E(H)$ are assigned the same number.

Thus, we get $\bigcup_{i=1}^{r}\left\{f\left(u_{i}\right)\right\}=A, \bigcup_{i=1}^{p}\left\{f\left(v_{i}\right)\right\}=B, \bigcup_{j=1}^{p}\left\{f\left(u_{i} v_{j}\right) \mid i \in[1, r]\right\}=C,\left\{f\left(v_{i} v_{j}\right) \mid v_{i} v_{j} \in\right.$ $E(G)\}=D$, and $\left\{f\left(u_{i} u_{j}\right) \mid u_{i} u_{j} \in E(H)\right\}=E$. Clearly, f is a bijective function from $V(G+$ $H) \cup E(G+H)$ to Y.

Let F be a subgraph of $G+H$ isomorphic to $K_{2}+H$. It is clear that F contains exactly one edge of $E(G)$, say $v_{x} v_{y}$ for some distinct $x, y \in[1, p]$. Then, $V(F)=V(H) \cup\left\{v_{x}, v_{y}\right\}$ and $E(F)=E(H) \cup\left\{v_{x} v_{y}\right\} \cup\left\{u_{i} v_{j} \mid j \in\{x, y\}, i \in[1, r]\right\}$. Thus,

$$
\begin{aligned}
w t_{f}(F)= & \sum_{i=1}^{r} f\left(u_{i}\right)+f\left(v_{x}\right)+f\left(v_{y}\right)+\sum_{e \in E(H)} f(e)+f\left(v_{x} v_{y}\right)+\sum_{i=1}^{r}\left[f\left(u_{i} v_{x}\right)+f\left(u_{i} v_{y}\right)\right] \\
= & {\left[g\left(v_{x}\right)+g\left(v_{y}\right)+g\left(v_{x} v_{y}\right)\right]+3 r+p r+\frac{1}{2} r(r+1)+s(r+p+p r+q)+\sum_{i=1}^{s} i } \\
& +r(p(r+2)+2 r+1)
\end{aligned}
$$

Since $\left[g\left(v_{x}\right)+g\left(v_{y}\right)+g\left(v_{x} v_{y}\right)\right]=m_{g}$, we see that $w t_{f}(F)$ is independent of F.
Now, let F^{\prime} be a subgraph of $G+H$ isomorphic to $2 K_{2}+H$. It is clear that F^{\prime} contains two non-adjacent edges of $E(G)$. Then, $w t_{f}\left(F^{\prime}\right)=2 w t_{f}(F)-\left(\sum_{u \in V(H)} f(u)+\sum_{e \in E(H)} f(e)\right)$. So, $w t_{f}\left(F^{\prime}\right)$ is independent of F^{\prime}.

Case 2. r is odd and p is odd.
Partition Y into five subsets, namely $A=[1, r], B=r+[1,2 p], C=(r+2 p)+[1, p(r-1)]$, $D=(r+p+p r)+[1, q]$, and $E=(r+p+p r+q)+[1, s]$. By Lemma 2.2, B is $(p, 1)$-anti balanced with $\sum B_{i}=2(r+1)+3\left\lfloor\frac{p}{2}\right\rfloor+i$ for every $i \in[1, p]$. Since g is an injective function, $g^{-1}(i)=v_{i}$ for every $i \in[1, p]$. This gives $\sum B_{i}=2(r+1)+3\left\lfloor\frac{p}{2}\right\rfloor+i=2(r+1)+3\left\lfloor\frac{p}{2}\right\rfloor+g\left(v_{i}\right)$ for every $i \in[1, p]$. The cardinality of C is a multiple of $2 p$. By Lemma 2.1, C is p-balanced with $\sum C_{i}=\frac{p(r-1)}{2 p}(r+2 p+1+r+2 p+p(r-1))=\frac{1}{2}(r-1)(2 r+3 p+p r+1)$ for every $i \in[1, p]$.

Next, label the vertices and edges in $G+H$ by total labeling f as defined in the following steps.

1. For each $i \in[1, r], f\left(u_{i}\right)=i$.
2. For each $i \in[1, p], f\left(v_{i}\right)=\min \left\{x \mid x \in B_{i}\right\}$.
3. For each $i \in[1, p], f\left(u_{1} v_{i}\right)=b_{i}$, where $b_{i} \in B_{i} \backslash\left\{f\left(v_{i}\right)\right\}$.
4. For each $j \in[1, p]$ and $i \in[2, r], f\left(u_{i} v_{j}\right)=m_{i}$, where $m_{i} \in C_{j}$.
5. For each $e_{i} \in E(G)$ and $i \in[1, q], f\left(e_{i}\right)=g\left(e_{i}\right)+r+p r$.
6. For each $k_{i} \in E(H)$ and $i \in[1, s], k_{i}=m_{i}$, where $m_{i} \in E$ and no two distinct edges are assigned the same number.

Thus, we get $\bigcup_{i=1}^{r}\left\{f\left(u_{i}\right)\right\}=A, \bigcup_{i=1}^{p}\left\{f\left(v_{i}\right), f\left(u_{1} v_{i}\right)\right\}=B, \bigcup_{j=1}^{p}\left\{f\left(u_{i} v_{j}\right) \mid i \in[2, r]\right\}=C$, $\left\{f\left(v_{i} v_{j}\right) \mid v_{i} v_{j} \in E(G)\right\}=D$, and $\left\{f\left(u_{i} u_{j}\right) \mid u_{i} u_{j} \in E(H)\right\}=E$. Clearly, f is a bijective function from $V(G+H) \cup E(G+H)$ to Y.

Let F be a subgraph of $G+H$ isomorphic to $K_{2}+H$. It is clear that F contains exactly one edge of $E(G)$, say $v_{x} v_{y}$ for some distinct $x, y \in[1, p]$. Then, $V(F)=V(H) \cup\left\{v_{x}, v_{y}\right\}$ and $E(F)=E(H) \cup\left\{v_{x} v_{y}\right\} \cup\left\{u_{i} v_{j} \mid j \in\{x, y\}, i \in[1, r]\right\}$. Thus,

$$
\begin{aligned}
w t_{f}(F)= & \sum_{i=1}^{r} f\left(u_{i}\right)+f\left(v_{x}\right)+f\left(v_{y}\right)+\sum_{e \in E(H)} f(e)+f\left(v_{x} v_{y}\right)+\sum_{i=1}^{r}\left[f\left(u_{i} v_{x}\right)+f\left(u_{i} v_{y}\right)\right] \\
= & {\left[g\left(v_{x}\right)+g\left(v_{y}\right)+g\left(v_{x} v_{y}\right)\right]+4(r+1)+6\left\lfloor\frac{p}{2}\right\rfloor+r+p r+\frac{1}{2} r(r+1) } \\
& +s(r+p+p r+q)+\frac{1}{2} s(s+1)+(r-1)(2 r+3 p+p r+1)
\end{aligned}
$$

Since $\left[g\left(v_{x}\right)+g\left(v_{y}\right)+g\left(v_{x} v_{y}\right)\right]=m_{g}$, we see that $w t_{f}(F)$ is independent on the choosing of F.
Now, let F^{\prime} be a subgraph of $G+H$ isomorphic to $2 K_{2}+H$. It is clear that F^{\prime} contains two non-adjacent edges of $E(G)$. Thus, $w t_{f}\left(F^{\prime}\right)=2 w t_{f}(F)-\left(\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)\right)$. So, $w t_{f}\left(F^{\prime}\right)$ is independent of F^{\prime}.

Case 3. r is odd and p is even.
Partition Y into five subsets, $A=[1, r-1] \cup\left\{r+\frac{p}{2}\right\}, B=[r, r+2 p] \backslash\left\{r+\frac{p}{2}\right\}, C=(r+2 p)+$ $[1, p(r-1)], D=(r+p+p r)+[1, q]$, and $E=(r+p+p r+q)+[1, s]$. By Lemma 2.2, B is $(p, 1)$-anti balanced with $\sum B_{i}=2 r+i+3\left\lfloor\frac{p}{2}\right\rfloor$ for each $i \in[1, p]$. Since g is an injective function, $g^{-1}(i)=v_{i}$ for every $i \in[1, p]$. Therefore, $\sum B_{i}=2 r+3\left\lfloor\frac{p}{2}\right\rfloor+i=2 r+3\left\lfloor\frac{p}{2}\right\rfloor+g\left(v_{i}\right)$ for every $i \in[1, p]$.

Now, the cardinality of C is a multiple of $2 p$. By Lemma 2.1, we have that C is p-balanced with $\sum C_{i}=\frac{p(r-1)}{2 p}(r+2 p+1+r+2 p+p r)=\frac{1}{2}(r-1)(2 r+3 p+p r+1)$ for every $i \in[1, p]$.

Next, label the vertices and edges in $G+H$ by the total labeling f defined in the following steps.

1. For each $i \in[2, r], f\left(u_{i}\right)=i-1$, and $f\left(u_{1}\right)=r+\frac{p}{2}$.
2. For each $i \in[1, p], f\left(v_{i}\right)=\min \left\{x \mid x \in B_{i}\right\}$.
3. For each $i \in[1, p], f\left(u_{1} v_{i}\right)=b_{i}$, where $b_{i} \in B_{i} \backslash\left\{f\left(v_{i}\right)\right\}$.
4. For each $j \in[1, p]$ and $i \in[2, r], f\left(u_{i} v_{j}\right)=m_{i}$, where $m_{i} \in C_{j}$.
5. For each $e_{i} \in E(G)$ and $i \in[1, q], f\left(e_{i}\right)=g\left(e_{i}\right)+r+p r$.
6. For each $k_{i} \in E(H)$ and $i \in[1, s], f\left(k_{i}\right)=m_{i}$, where $m_{i} \in E$ and no two distinct edges are assigned the same number.
Then, $\bigcup_{i=1}^{r}\left\{f\left(u_{i}\right)\right\}=A, \bigcup_{i=1}^{p}\left\{f\left(v_{i}\right), f\left(u_{1} v_{i}\right)\right\}=B, \bigcup_{j=1}^{p}\left\{f\left(u_{i} v_{j}\right) \mid i \in[2, r]\right\}=C,\left\{f\left(v_{i} v_{j}\right) \mid v_{i} v_{j} \in\right.$ $E(G+H)\}=D$ and $\left\{f\left(u_{i} u_{j}\right) \mid u_{i} u_{j} \in E(G+H)\right\}=E$. Clearly, f is a bijective function from $V(G+H) \cup E(G+H)$ to Y.

Let F be a subgraph of $G+H$ isomorphic to $K_{2}+H$. Then F contains exactly one edge of $E(G)$, say $v_{x} v_{y}$ for some distinct $x, y \in[1, p]$. Then, F has the form $V(F)=V(H) \cup\left\{v_{x}, v_{y}\right\}$ and $E(F)=E(H) \cup\left\{v_{x} v_{y}\right\} \cup\left\{u_{i} v_{j} \mid j \in\{x, y\}, i \in[1, r]\right\}$. Thus,

$$
\begin{aligned}
w t_{f}(F)= & \sum_{i=1}^{r} f\left(u_{i}\right)+f\left(v_{x}\right)+f\left(v_{y}\right)+\sum_{e \in E(H)} f(e)+f\left(v_{x} v_{y}\right)+\sum_{i=1}^{r} f\left(u_{i} v_{x}\right)+\sum_{i=1}^{r} f\left(u_{i} v_{y}\right) \\
= & {\left[g\left(v_{x}\right)+g\left(v_{y}\right)+g\left(v_{x} v_{y}\right)\right]+\sum_{i=2}^{r} i+\sum_{i=1}^{s} i+p\left(r^{2}+r(s+3)+s-\frac{5}{2}\right)+6\left\lfloor\frac{p}{2}\right\rfloor } \\
& +2 r^{2}+r s+q s+4 r .
\end{aligned}
$$

Since $\left[g\left(v_{x}\right)+g\left(v_{y}\right)+g\left(v_{x} v_{y}\right)\right]=m_{g}$, we see that $w t_{f}(F)$ is independent on the choosing of F.
Now, let F^{\prime} be a subgraph of $G+H$ isomorphic to $2 K_{2}+H . F^{\prime}$ contains two non-adjacent edges of $E(G)$. Thus, $w t_{f}\left(F^{\prime}\right)=2 w t_{f}(F)-\left(\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)\right)$. So, $w t_{f}\left(F^{\prime}\right)$ is independent of F^{\prime}.

An example of the labeling depicted in the proof of Theorem 3.1 can be seen in Figure 2 where a $\left(K_{5}, 2 K_{2}+C_{3}\right)$-sim-supermagic labeling of $S_{2,0,0,2}+C_{3}$ is presented.

Figure 2. A $\left(K_{5}, 2 K_{2}+C_{3}\right)$-sim-supermagic labeling of $S_{2,0,0,2}+C_{3}$
The following corollary is a consequence of Theorem 3.1 with $H=K_{1}$.
Corollary 3.1. Let G be a C_{3}-free connected graph containing a P_{5}. If G is SEMT graph, then $G+K_{1}$ is $\left(C_{3}, 2 K_{2}+K_{1}\right)$-sim-supermagic.

This corollary enlarges the classes of graphs known to be C_{3}-supermagic; since up to date, only the following join product graphs were known to be C_{3}-supermagic: $P_{n}+K_{1}, C_{n}+K_{1}, K_{1, n}+K_{1}$, and $n K_{2}+K_{1}$, where $n \geq 3[16,21,22,25]$.

$$
\text { On }(F, H) \text {-simultaneously-magic labelings of graphs } \quad \mid \quad \text { Y.F. Ashari et al. }
$$

4. Labelings for Cartesian Product Graphs

The Cartesian product of two graphs G and H, denoted by $G \times H$, is a graph whose vertex set is $V(G) \times V(H)=\{(u, v) \mid u \in V(G), u \in V(H)\}$ and for which two vertices (u_{1}, v_{1}) and $\left(u_{2}, v_{2}\right)$ are adjacent if and only if either $u_{1} u_{2} \in E(G)$ and $v_{1}=v_{2}$ or $v_{1} v_{2} \in E(H)$ and $u_{1}=u_{2}$.

In this section, we shall study (F, H)-sim-supermagic labeling for the Cartesian product of an arbitrary graph G with K_{2}. The following notations are used or vertices and edges in $G \times K_{2}$ For each $x \in V(G)$, let x and x^{\prime} be the corresponding vertices in the two copies of G in $G \times K_{2}$, and so $x x^{\prime} \in E\left(G \times K_{2}\right)$. For each $x y \in E(G)$, denote by $x y$ and $x^{\prime} y^{\prime}$ the corresponding edges in the two copies of G in $G \times K_{2}$.

We summarize the Cartesian product graphs $G \times K_{2}$ known to be H-magic in Table 3 .

Table 3. $G \times K_{2}$ that are H-magic

Cartesian product	H	Conditions and Reference
$G \times K_{2}$	C_{4}	G is C_{4}-free and SEMT of odd size [16]
$P_{m} \times K_{2}$	C_{4}	$m \geq 3$ [21]
$m K_{1, n} \times K_{2}$	C_{4}	$m \geq 2$ and $n \geq 1[1]$
$s\left(P_{n+1} \times K_{2}\right) \cup k\left(P_{n} \times K_{2}\right)$	C_{4}	$s \geq 1, k \geq 1$ and $n \geq 2[1]$
$m\left(P_{n} \times K_{2}\right)$	C_{4}	$m \geq 2$ and $n \geq 2[23]$
$P_{n} \times K_{2}$	$C_{2 m}$	$n \geq 4$ and $m \in\left[3,\left\lfloor\frac{n}{2}\right]+1\right][20]$
$P_{n} \times K_{2}$	$P_{m} \times K_{2}$	$n \geq 4$ and $m \in[3, n-1][20]$
$G \times K_{2}$	C_{4}	G is C_{4}-free, SEMT and a connected (p, q)-graph where p or q is odd [14]
$(2 G) \times K_{2}$	C_{4}	G is C_{4}-free, connected, bipartite (with partite sets U and $V)$ and G has a SEMT labeling f such that $f(U)=[1,\|U\|][14]$

In [20], Ngurah et al. constructed $\left(P_{m} \times K_{2}\right)$-supermagic labelings of the ladder $P_{n} \times K_{2}$ for every $m \in[3, n-1]$. A more general result by Baca et al. [7] established the following sufficient conditions for the Cartesian product $G_{1} \times G_{2}$ to be $\left(H \times G_{2}\right)$-supermagic as stated in the following theorem. On the other hand, in [14] and [16] it was proved that if G is connected of odd order or size, C_{4}-free, and SEMT, then $G \times K_{2}$ admits a C_{4}-supermagic labeling.
Theorem 4.1. [7] Let G_{1} be a graph of odd order $p_{1} \geq 3$ admitting an H-covering given by t subgraphs isomorphic to H. If G_{2} is a graph of even order $q_{2} \geq 2$ and odd size $p_{2} \geq 3$ and the graph $G_{1} \times G_{2}$ contains exactly t subgraphs isomorphic to $H \times G_{2}$, then $G_{1} \times G_{2}$ is $\left(H \times G_{2}\right)$ supermagic.

In the next theorem, we enlarge the classes of graphs known to be $\left(P_{m} \times K_{2}\right)$-supermagic [20] and extend sufficient conditions for the existence of a C_{4}-supermagic labeling of $G \times K_{2}$ [14, 16] without considering a SEMT labeling of G. Furthermore, our result settles the remaining cases of Theorem 4.1 for $p_{2}=1$ and $q_{2}=2$.

Theorem 4.2. Let G be a C_{4}-free connected graph of odd order $p \geq 5$. If G admits a P_{m}-covering for some $m \in[3, p-1]$, then $G \times K_{2}$ is $\left(C_{4}, P_{m} \times K_{2}\right)$-sim-supermagic.

Proof. Let p and q be the order and the size of G, respectively. Consider $A=[1,3 p+2 q]$ as the set of integers used to label vertices and edges in $G \times P_{2}$. Now, partition A into three sets $W=[1,2 p], X=[2 p+1,3 p]$, and $Y=[3 p+1,3 p+2 q]$. Since p is odd, by Lemma 2.2, W is $(p, 1)$-anti balanced with $\sum W_{i}=2+i+3\left\lfloor\frac{p}{2}\right\rfloor$ for every $i \in[1, p]$. Now, since $|Y|=2 q$, Lemma 2.1 ensures that Y is q-balanced with $\sum Y_{j}=\frac{2 q}{2 q}(3 p+1+3 p+2 q)=6 p+2 q+1$ for each $j \in[1, q]$.

Let g and h be bijections from $V(G)$ to $[1, p]$ and from $E(G)$ to $[1, q]$, respectively. Next, define a total labeling f of $G \times K_{2}$. For each $x \in V(G)$, label x and x^{\prime} in $G \times K_{2}$ by the elements of $W_{g(x)}$ chosen so that $f(x)<f\left(x^{\prime}\right)$ and define $f\left(x x^{\prime}\right)=3 p-g(x)+1$. For each $x y \in E(G)$, define f as a bijection from $\left\{x y, x^{\prime} y^{\prime}\right\}$ to $Y_{h(x y)}$ with $f(x y)<f\left(x^{\prime} y^{\prime}\right)$. Hence, $\bigcup_{v \in V\left(G \times K_{2}\right)}\{f(v)\}=W$ and $\bigcup_{e \in E\left(G \times K_{2}\right)}\{f(e)\}=X \cup Y$. Consequently, f is a bijective function from $V\left(G \times K_{2}\right) \cup E\left(G \times K_{2}\right)$ to A.

Since G is C_{4}-free, there are q subgraphs of $G \times K_{2}$ isomorphic to C_{4}. Let F be a subgraph of $G \times K_{2}$ isomorphic to C_{4}. Then, $V(F)=\left\{x, x^{\prime}, y, y^{\prime}\right\}$ and $E(F)=\left\{x x^{\prime}, y y^{\prime}, x y, x^{\prime} y^{\prime}\right\}$, where $x, y \in V(G)$ and $x y \in E(G)$. Therefore,

$$
\begin{aligned}
w t_{f}(F) & =f(x)+f\left(x^{\prime}\right)+f(y)+f\left(y^{\prime}\right)+f\left(x x^{\prime}\right)+f\left(y y^{\prime}\right)+f(x y)+f\left(x^{\prime} y^{\prime}\right) \\
& =\sum W_{g(x)}+\sum W_{g(y)}+3 p-g(x)+1+3 p-g(y)+1+\sum Y_{h(x y)} \\
& =12 p+6\left\lfloor\frac{p}{2}\right\rfloor+2 q+7,
\end{aligned}
$$

which is independent of F.
Moreover, as G admits a P_{m}-covering for some $m \in[3, p-1]$, we have that $G \times K_{2}$ admits a $\left(P_{m} \times K_{2}\right)$-covering. Let $H=x_{1} x_{2} \ldots x_{m}$ be a subgraph of G isomorphic to P_{m}. For each H, denote by $H^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{m}^{\prime}$ the corresponding subgraph in G^{\prime}. Thus, for each H, we obtain $H^{\prime \prime}$ with $V\left(H^{\prime \prime}\right)=\left\{x_{1}, x_{2}, \ldots, x_{m}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}\right\}$ and $E\left(H^{\prime \prime}\right)=E(H) \cup E\left(H^{\prime}\right) \cup\left\{x x^{\prime} \mid x \in V(H)\right\}$ as the corresponding subgraph in $G \times K_{2}$ isomorphic to $P_{m} \times K_{2}$. We can verify that there are exactly t subgraphs of $G \times K_{2}$ isomorphic to $P_{m} \times K_{2}$, where t is the number of subgraphs isomorphic to P_{m} in G. Thus,

$$
\begin{aligned}
w t_{f}\left(H^{\prime \prime}\right) & =\sum_{v \in V(H)} f(v)+\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E(H)} f(e)+\sum_{e \in E\left(H^{\prime}\right)} f(e)+\sum_{v \in V(H)} f\left(v v^{\prime}\right) \\
& =\sum_{v \in V(H)}\left[f(v)+f\left(v^{\prime}\right)\right]+\sum_{e \in E(H)}\left[f(e)+f\left(e^{\prime}\right)\right]+\sum_{v \in V(H)}[3 p-g(v)+1] \\
& =\sum_{v \in V(H)}\left[\sum W_{g(v)}\right]+\sum_{e \in E(H)}\left[\sum Y_{h(e)}\right]+\sum_{v \in V(H)}[3 p-g(v)+1] \\
& =3 m\left\lfloor\frac{p}{2}\right\rfloor+4 m+9 m p+2 m q-6 p-2 q-1
\end{aligned}
$$

which is independent of $H^{\prime \prime}$. Hence, $G \times K_{2}$ is $\left(C_{4}, P_{m} \times K_{2}\right)$-sim-supermagic.
An example of the labeling in the proof of Theorem 4.2 is depicted in Figure 3.
In [20], Ngurah et al. showed that the ladder $P_{n} \times K_{2}$ is $C_{2 m}$-supermagic for every $m \in$ $\left[3,\left\lfloor\frac{n}{2}\right\rfloor+1\right]$. Then it is natural to ask for which graphs G, the Cartesian product $G \times K_{2}$ is

Figure 3. A ($C_{4}, P_{m} \times K_{2}$)-sim-supermagic labeling of $C_{7} \times K_{2}$ for every $m \in[3,6]$.
$\left(C_{2 x}, C_{2 y}\right)$-sim-supermagic for some $x, y \in\left[3,\left\lfloor\frac{n}{2}\right\rfloor+1\right]$. We will answer this question in Theorem 4.3, but to do so, we need to recall the following notion that was first introduced by Simanjuntak et al. [27]. An injective function f from $V(G)$ onto the set $\{1,2, \ldots,|V(G)|\}$ is called (a,d)-edgeantimagic vertex labeling $((a, d)$-EAV) if the set of edge-weights $\{w(x y)=f(x)+f(y) \mid x y \in$ $E(G)\}=\{a, a+d, \ldots, a+(|E(G)|-1) d\}$, where $a>0$ and $d \geq 0$ are two integers. A graph G is said to be an (a, d)-edge-antimagic vertex $((a, d)$-EAV) graph if G has an (a, d)-EAV labeling. In [4], it was shown that a connected graph G that is not a tree has no (a, d)-EAV labeling for $d \neq 1$.

Lemma 4.1. [4] Let G be a connected graph that is not a tree. If G has an (a, d)-EAV labeling, then $d=1$.

The next theorem describes a construction of a $\left(C_{2 x}, C_{2 y}\right)$-sim-supermagic labeling of $G \times K_{2}$ from an (a,2)-EAV labeling for some $x, y \in\left[3,\left\lfloor\frac{n}{2}\right\rfloor+1\right]$. Due to Lemma 4.1, we restrict our consideration to trees.

Theorem 4.3. Let m, n and p be positive integers where $3 \leq m<p$. Let G be a tree on p vertices where $p \geq 5$, such that G admits a P_{m}-covering for some $m \in\left[3,\left\lfloor\frac{n}{2}\right\rfloor+1\right]$. If G is an (a, 2)-EAV graph, then $G \times K_{2}$ is $\left(C_{2 x}, C_{2 y}\right)$-sim-supermagic for all $x, y \in[2, m]$.

Proof. Let p and q be the order and the size of G, respectively. Let $g: V(G) \rightarrow\{1,2, \ldots, p\}$ be an ($a, 2$)-EAV labeling of G.

Since $\left|V\left(G \times K_{2}\right)\right|=2 p$ and $\left|E\left(G \times K_{2}\right)\right|=p+2 q$, the set of labels used to label vertices and edges of $G \times K_{2}$ is $A=[1,3 p+2 q]$. Now, partition A into three sets $W=[1,2 p], X=[2 p+1,3 p]$ and $Y=[3 p+1,3 p+2 q]$. By Lemma 2.3, W is $(p, 2)$-anti balanced with $\sum W_{i}=2 i+p$ for every $i \in[1, p]$. According to Lemma 2.3, Y is $(q, 2)$-anti balanced with $\sum Y_{j}=6 p+q+2 j$ for each $j \in[1, q]$.

Next, define a total labeling f of $G \times K_{2}$. For each $x \in V(G)$, label the corresponding vertices x and x^{\prime} in $G \times K_{2}$ by the elements of $W_{g(x)}$ chosen so that $f(x)<f\left(x^{\prime}\right)$. For each $x \in V(G)$, define $f\left(x x^{\prime}\right)=3 p+1-g(x)$. Now, for each $x y \in E(G)$, label the corresponding edges $x y$ and
$x^{\prime} y^{\prime}$ in $G \times K_{2}$ by the elements of Y_{r} where $r=\frac{1}{2}(2 q+a-g(x)-g(y))$ such that $f(x y)<f\left(x^{\prime} y^{\prime}\right)$. It follows easily that f depends on g. Then, f is a bijective function from $V\left(G \times K_{2}\right) \cup E\left(G \times K_{2}\right)$ to A.

Since G admits a P_{m}-covering for some $m \in\left[3,\left\lfloor\frac{n}{2}\right\rfloor+1\right], G \times K_{2}$ admits $C_{2 z}$-covering for every $z \in[2, m]$. Let $H=x_{1} x_{2} \ldots x_{z}$ be a subgraph of G isomorphic to P_{z} for an arbitrary $z \in[2, m]$. For each H, denote by $H^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{z}^{\prime}$ the corresponding subgraph in G^{\prime}. Thus, for each H, we obtain $H^{\prime \prime}$ as the corresponding subgraph in $G \times K_{2}$ isomorphic to $C_{2 z}$ where $V\left(H^{\prime \prime}\right)=V(H) \cup V\left(H^{\prime}\right)$ and $E\left(H^{\prime \prime}\right)=E(H) \cup E\left(H^{\prime}\right) \cup\left\{x_{1} x_{1}^{\prime}, x_{z} x_{z}^{\prime}\right\}$. We can verify that there are exactly t subgraphs of $G \times K_{2}$ isomorphic to $C_{2 z}$, where t is the number of subgraphs in G isomorphic to P_{z}. Thus,

$$
\begin{aligned}
w t_{f}\left(H^{\prime \prime}\right) & =\sum_{v \in V(H)} f(v)+\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{u v \in E(H)} f(u v)+\sum_{u v \in E\left(H^{\prime}\right)} f(u v)+f\left(x_{1} x_{1}^{\prime}\right)+f\left(x_{z} x_{z}^{\prime}\right) \\
& =\sum_{v \in V(H)}\left[f(v)+f\left(v^{\prime}\right)\right]+\sum_{u v \in E(H)}\left[f(u v)+f\left(u^{\prime} v^{\prime}\right)\right]+3 p+1-g\left(x_{1}\right)+3 p+1-g\left(x_{z}\right) \\
& =\sum_{v \in V(H)}\left[\sum W_{g(v)}\right]+\sum_{u v \in E(H)}\left[\sum Y_{\frac{1}{2}(2 q+a-g(u)-g(v))}\right]+6 p+2-g\left(x_{1}\right)-g\left(x_{z}\right) \\
& =7 z p+3 z q-3 q+a z-a+2,
\end{aligned}
$$

which is independent of $H^{\prime \prime}$.
Therefore, $G \times K_{2}$ is $\left(C_{2 x}, C_{2 y}\right)$-sim-supermagic for all $x, y \in[2, m]$.
An example of the labeling in Theorem 4.3 can be seen in Figure 4.

Figure 4. A $\left(C_{4}, C_{2 m}\right)$-sim-supermagic labeling of $P_{6} \times K_{2}$ for $m=3$ and 4
Note that the preceding theorem enlarges the classes of graphs known to be $C_{2 m}$-supermagic, as stated in Table 3. For instance, since every path P_{n} was shown to be (3,2)-EAV [27], an immediate consequence of Theorem 4.3 is that the ladder $P_{n} \times K_{2}$ is ($C_{4}, C_{2 m}$)-sim-supermagic for every $m \in\left[3,\left\lfloor\frac{n}{2}\right\rfloor+1\right]$.

In [2], Bača and Barrientos described a connection between an α-labeling and an ($a, 2$)-EAV labeling of graphs. An injective mapping $f: V(G) \rightarrow[0,|E(G)|]$ is said to be graceful labeling if $|f(x)-f(y)|$ are distinct for each $x y \in E(G)$. A graceful labeling f is called an α-labeling if there exists an integer λ such that for each edge $x y$ either $f(x) \leq \lambda<f(y)$ or $f(y) \leq \lambda<f(x)$ [24].

$$
\text { On }(F, H) \text {-simultaneously-magic labelings of graphs } \quad \mid \quad \text { Y.F. Ashari et al. }
$$

A graph G that admits an α-labeling is said to be an α-graph. From the definition of α-labeling, it follows that an α-graph is necessarily bipartite.

Let $\{A, B\}$ be the natural bipartition of the vertex set of an α-graph. Bača and Barrientos [2] presented the following theorem.

Theorem 4.4. [2] A tree T is a (3, 2)-EAV graph if and only if T is an α-graph and $\| A|-|B|| \leq 1$, where $\{A, B\}$ is the natural bipartition of the vertex set of T.

Theorem 4.3 together with Theorem 4.4 implies the relationship between an α-labeling of a tree T and a $\left(C_{4}, C_{6}\right)$-sim-supermagic labeling of the Cartesian product $T \times K_{2}$. Let $n \geq 2$ be a positive integer and let T be an α-tree and $||A|-|B|| \leq 1$, where $\{A, B\}$ is the natural bipartition of the vertex set of T. It is clear that $T \times K_{2}$ admits a C_{4}-covering and a C_{6}-covering only if T is not isomorphic to a star.

Corollary 4.1. Let T be an α-tree not isomorphic to a star on at least five vertices and let $\| A \mid-$ $|B| \mid \leq 1$, where $\{A, B\}$ is the natural bipartition of the vertex set of T. Then $T \times K_{2}$ is $\left(C_{4}, C_{6}\right)$ -sim-supermagic.

Figure 5 illustrates a $\left(C_{4}, C_{6}\right)$-sim-supermagic labeling of product graph $S_{2,1,0,1} \times K_{2}$.

Figure 5. A $\left(C_{4}, C_{6}\right)$-sim-supermagic labeling of $S_{2,1,0,1} \times K_{2}$.
A perfect matching of a graph is a matching (i.e., an independent edge set) in which every vertex of the graph is incident to exactly one edge of the matching. Brankovic et al. [8] posed the following conjecture for α-trees.

Conjecture 1. [8] All trees with maximum degree three and a perfect matching have an α-labeling.
Consider a tree T with a perfect matching. Since T is bipartite, by a perfect matching in T, we have a natural bipartition of the vertex-set of T, namely A and B, such that $\|A|-| B\| \leq 1$. As a direct consequence of Corollary 4.1 and Conjecture 1, the following holds.

Theorem 4.5. Let T be a tree on at least five vertices that are not isomorphic to a star, with a maximum degree three and containing a perfect matching. If Conjecture 1 is true, then $T \times K_{2}$ is $\left(C_{4}, C_{6}\right)$-sim-supermagic.

$$
\text { On }(F, H) \text {-simultaneously-magic labelings of graphs } \quad \mid \quad \text { Y.F. Ashari et al. }
$$

Although all our results in this section are restricted to trees, the proof of Theorem 7 in [16] implied that $C_{n} \times K_{2}$ is $\left(C_{4}, C_{2 m}\right)$-sim-supermagic for each odd $n \geq 5$ and $m=2$. Thus, it is interesting to seek conditions such that a Cartesian product of a non-tree graph G with K_{2} admits a $\left(C_{4}, C_{2 m}\right)$-sim-supermagic labeling.

Acknowledgement

Y.F. Ashari is supported by the PKPI/Sandwich-like-PMDSU Scholarship funded by the Indonesian Ministry of Research and Technology. Salman is supported by "Program Penelitian dan Pengabdian kepada Masyarakat-Institut Teknologi Bandung" (P3MI-ITB). R. Simanjuntak is supported by Penelitian Dasar Unggulan Perguruan Tinggi 2021-2023 No. 2/E1/KP.PTNBH/2021 funded by Indonesian Ministry of Education, Culture, Research and Technology. A. SemaničováFeňovčíková and M. Bača are supported by the Slovak Research and Development Agency under contract No. APVV-19-0153.

References

[1] M. Asif, G. Ali, M. Numan, and A. Semaničová-Feňovčíková, Cycle-supermagic labeling for some families of graphs, Util. Math. 103 (2017), 51-59.
[2] M. Bača and C. Barrientos, Graceful and edge-antimagic labelings, Ars Combin. 96 (2010) 505-513.
[3] M. Bača, F. Bertault, J.A. MacDougall, M. Miller, R. Simanjuntak, and Slamin, Vertexantimagic total labelings of graphs, Discuss. Math. Graph Theory 23 (2003), 67-83.
[4] M. Bača and M. Miller, Super Edge-Antimagic Graphs: A Wealth of Problems and Some Solutions, Brown Walker Press, Boca Raton (2008).
[5] M. Bača, M. Miller, J. Ryan, and A. Semaničová-Feňovčíková, Magic and Antimagic Graphs: Attributes, Observations and Challenges in Graph Labelings, Springer International Publushing, Switzerland AG (2019).
[6] M. Bača, M. Miller, O. Phanalasy, J. Ryan, and A. Semaničová-Feňovčíková, A.A. Sillasen, Totally antimagic total graphs, Australas. J. Combin. 61 (2015), 42-56.
[7] M. Bača, A. Semaničová-Feňovčíková, M.A. Umar, and D. Welyyanti, On H-antimagicness of Cartesian product of graphs, Turkish J. Math. 42 (2018), 339-348.
[8] L. Brankovic, C. Murch, J. Pond, and A. Rosa, Alpha-size of trees with maximum degree three and perfect matching, In Proceedings of the 16th Australasian Workshop on Combinatorial Algorithms, Ballarat, Australia (2005), pp. 47-56.
[9] G. Exoo, A.C.H. Ling, and J.P. McSorley, N.C.K. Philips, W.D. Wallis, Totally magic graphs, Discrete Math. 254 (2002), 103-113.

$$
\text { On }(F, H) \text {-simultaneously-magic labelings of graphs } \quad \mid \quad \text { Y.F. Ashari et al. }
$$

[10] R.M. Figueroa-Centeno, R. Ichishima, and F.A. Muntaner-Batle, On super edge-magic graphs, Ars Combin. 64 (2002), 81-95.
[11] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 23 (2020), \#DS6.
[12] A. Gutiérrez and A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005), 43-56.
[13] N. Inayah, R. Simanjuntak, A.N.M. Salman, and K.I.A. Syuhada, Super (a, d) - H-antimagic total labelings for shackles of a connected graph H, Australas. J. Combin. 57 (2013), 127138.
[14] T. Kojima, On C_{4}-supermagic labelings of the Cartesian product of paths and graphs, Discrete Math. 313 (2013), 164-173.
[15] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.
[16] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307 (2007), 2925-2933.
[17] J.A. MacDougall, M. Miller, Slamin, and W.D. Wallis, Vertex-magic total labelings of graphs, Util. Math. 61 (2002), 3-21.
[18] T.K. Maryati, A.N.M. Salman, and E.T. Baskoro, Supermagic coverings of the disjoint union of graphs and amalgamations, Discrete Math. 313(4) (2013), 397-405.
[19] T.K. Maryati, A.N.M. Salman, E.T. Baskoro, J. Ryan, and M. Miller, On H-supermagic labelings for certain shackles and amalgamations of a connected graph, Util. Math. 83 (2010), 333-342.
[20] A.A.G. Ngurah, A.N.M. Salman, and I.W. Sudarsana, On supermagic coverings of fans and ladders, SUT J. Math. 46 (2010), 67-78.
[21] A.A.G. Ngurah, A.N.M. Salman, and L.Susilowati, H-supermagic labelings of graphs, Discrete Math. 310 (2010), 1293-1300.
[22] A. Ovais, M.A. Umar, M. Bača, and A. Semaničová-Feňovčíková, Fans are cycle-antimagic, Australas. J. Combin. 68 (2017), 94-105.
[23] S.T.R. Rizvi, K. Ali, and M. Hussain, Cycle-supermagic labelings of the disjoint union of graphs, Util. Math. 104 (2017), 215-226.
[24] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs, Internat. Symposium, Rome, July 1996, Gordon and Breach, N. Y. and Dunod Paris (1967), 349-355.
[25] M. Roswitha, E.T. Baskoro, T.K. Maryati, N.A. Kurdhi, and I. Susanti, Further results on cycle-supermagic labeling, AKCE Int. J. Graphs Comb. 10(2) (2013), 211-220.
[26] A. Semaničová-Feňovčíková, M. Bača, M. Lascsáková, M. Miller, and J. Ryan, Wheels are cycle-antimagic, Electron. Notes Discrete Math. 48 (2015), 11-18.
[27] R. Simanjuntak, M. Miller, and F. Bertault, Two new (a, d)-antimagic graph labelings, In Proceedings of the 11th Australasian Workshop on Combinatorial Algorithms, Hunter Valley, Australia (2000), pp. 179-189.
[28] Slamin, M. Bača, Y. Lin, M. Miller, and R. Simanjuntak, Edge-magic total labelings of wheels, fans and friendship graphs, Bull. Inst. Combin. Appl. 35 (2002), 89-98.
[29] W.D. Wallis, Magic Graphs, Birkäusher Basel, Boston (2001).

