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Abstract

In this paper, the vertex-degree function index Hf (G) is considered when function f(x) belongs
to four classes of functions determined by the following properties: strictly convex versus strictly
concave and strictly increasing versus strictly decreasing. Quasi-unicyclic graphs of given order
(or of given order and fixed number of pendant vertices) extremal relatively to vertex-degree func-
tion index for these classes of functions are determined. These conditions are fulfilled by several
topological indices of graphs.
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1. Introduction

Let G be a simple graph having V (G) and E(G) the vertex set and the edge set of G, respec-
tively. For any v ∈ V (G), we denote by d(v) the degree of v and by δ(G) the minimum degree
minv∈V (G) d(v). The set of neighbors of v is denoted by N(v). A vertex with degree one will also
be referred as a pendant vertex and a vertex adjacent to all other vertices as a universal vertex. Sup-
pose that V (G) = {v1, v2, . . . , vn} and the degree of vertex vi equals d(vi) = di for i = 1, 2, . . . , n,
then (d1, d2, . . . , dn) is called the degree sequence of G. We always will enumerate the degrees in
non-increasing order, i.e., d1 ≥ d2 ≥ . . . ≥ dn.
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For graph G and a subset X of V (G), G−X denotes the graph obtained from G by removing
the vertices of X and all edges incident to any of them. In particular, when X consists of only one
vertex v, G−{v} is denoted by G− v. Similar notation is G−uv, where uv ∈ E(G) and G+uv,
where uv /∈ E(G).

For two vertex-disjoint graphs G and H , the join G ∨H is obtained by joining by edges each
vertex of G to all vertices of H .

K1,n−1, Pn and Cn will denote the star, the path and the cycle on n vertices, respectively.
K1,n−1 + e is deduced from K1,n−1 by inserting a new edge between two pendant vertices of
K1,n−1. The wheel graph of order n is Cn−1 ∨K1.

A unicyclic graph G of order n is connected and has n edges. It consists of a cycle Cr, where
3 ≤ r ≤ n and some vertex-disjoint trees having each a vertex common with Cr, which will be
called pendant trees. We call G a quasi-unicyclic graph if there is v ∈ V (G) such that G − v is
a unicyclic graph; v is called a quasi-vertex. It is clear that every unicyclic graph which is not a
cycle has a pendant vertex, so it is also a quasi-unicyclic graph.

Every unicyclic graph contains a cycle Cr with r ≥ 3, those vertices are not pendant. Thus the
number of pendant vertices in a unicyclic graph of order n is 0 ≤ p ≤ n − 3. If a quasi-unicyclic
graph has a universal vertex, then the number p of pendant vertices verifies 0 ≤ p ≤ n − 4. If
G is a quasi-unicyclic graph then δ(G) ≤ 3 since by deleting a quasi-vertex v the graph G − v is
unicyclic and has δ(G− v) ≤ 2.

For other notations and definitions in graph theory, we refer [13].
The first Zagreb index M1(G) [5] is defined as M1(G) =

∑
v∈V (G) d(v)

2. The general first
Zagreb index (sometimes referred as ”zeroth-order general Randić index” [6]), denoted by 0Rα(G)
was defined [7] as 0Rα(G) =

∑
v∈V (G) d(v)

α, where α is a real number, α ̸∈ {0, 1}. For α = 2 it
is the first Zagreb index M1(G).

Extremal results concerning the first Zagreb index for quasi-unicyclic graphs were obtained in
[2].

Todeschini et al. [8] introduced a variant of Zagreb indices which are called the first and second
multiplicative Zagreb indices, and they are defined as:

Π1(G) =
∏

u∈V (G)

d(u)2, Π2(G) =
∏

uv∈E(G)

d(u)d(v) =
∏

u∈V (G)

d(u)d(u).

A generalized form of multiplicative Zagreb indices, which are called the first and second general
multiplicative Zagreb indices was proposed by Vetrı́k and Balachandran [10]. For a graph G, they
are defined as:

Pα
1 (G) =

∏
u∈V (G)

d(u)α, Pα
2 (G) =

∏
uv∈E(G)

(d(u)d(v))α =
∏

u∈V (G)

d(u)αd(u),

where α ∈ R\{0}.
In [10] the minimum and maximum general multiplicative Zagreb indices of trees with given

order and number of branching vertices, pendant vertices or segments were obtained. Extremal
results concerning general multiplicative Zagreb indices for unicyclic graphs were obtained in [1],
for trees and unicyclic graphs with given matching number in [11], for trees and quasi-trees with
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perfect matchings and with given order and number of pendant vertices in [3], for quasi-unicyclic
graphs with given order, fixed number of pendant vertices and with perfect matchings in [4].

The sum lordeg index is one of the Adriatic indices introduced in [12] and it is defined by
SL(G) =

∑
v∈V (G) d(v)

√
ln d(v) =

∑
v∈V (G):d(v)≥2

d(v)
√

ln d(v).

The vertex-degree function index Hf (G) was defined in [14] as

Hf (G) =
∑

v∈V (G)

f(d(v))

for a function f(x) defined on positive real numbers. The problem of minimizing vertex-degree
function index Hf (G) for k-generalized quasi-unicyclic graphs of given order was solved in [9]
for functions f(x) which are strictly increasing and strictly convex.

In this paper we will impose to function f(x) to be strictly convex or strictly concave, and
strictly increasing or strictly decreasing, respectively which yields four disjoint sets of functions
f(x).

The rest of the paper is organized as follows. In Section 2, we deduce some preliminary results.
In Section 3, we solve the problem of maximizing or minimizing the vertex-degree function index
Hf (G) for quasi-unicyclic graphs G with given order if f(x) belongs to each of these four sets and
characterize the extremal graphs.

2. Preliminary results

In what follows we shall use many times a well known property of strictly convex functions:

Lemma 2.1. Let y > 0 and x ≥ y + 2. If function f(x) is strictly convex, then

f(x) + f(y) > f(x− 1) + f(y + 1).

In the case of strictly concave functions this inequality must be reversed.

Proof. The function f(x) being strictly convex, φ(x) = f(x + 1) − f(x) is a strictly increasing
function. Since x − 1 ≥ y + 1 > y it follows that φ(x − 1) > φ(y), or f(x) − f(x − 1) >
f(y + 1)− f(y).

Lemma 2.2. Let f(x) be a strictly convex function defined on positive real numbers. Then

f(n)− (n− 2)f(3) + (n− 3)f(2) > 0 (1)

for every n ∈ N, n ≥ 4.

Proof. f(x) being strictly convex, then for every x1, x2 and λ1, λ2 > 0 with λ1 + λ2 = 1, we have
Jensen inequality: λ1f(x1) + λ2f(x2) > f(λ1x1 + λ2x2). If we choose x1 = n, x2 = 2, λ1 =
1/(n− 2), λ2 = (n− 3)/(n− 2), this yields (1).

Note that a similar result holds by replacing strictly convex by strictly concave and by reversing
inequality in (1).
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Lemma 2.3. Let n, p ∈ N, n ≥ 4 and 1 ≤ p ≤ n− 3. If function f(x) is strictly convex (concave),
then g(n, p) = f(p + 2) + (n − p − 1)f(2) + pf(1) is strictly increasing (strictly decreasing,
respectively) in p.

Proof. If f(x) is strictly convex, then g(n, p+1) > g(n, p) is equivalent to f(p+3)− f(p+2)−
f(2) + f(1) > 0, which is true by Lemma 2.1.

For integers n,m such that n ≥ 1 and m ≥ n denote by Dn,m the set of n-tuples of integers
x = (x1, x2, . . . , xn) such that x1 ≥ x2 ≥ · · · ≥ xn ≥ 1 and

∑n
i=1 xi = m. Let the function

F (x) =
∑n

i=1 f(xi). If f(x) is a strictly convex function, then by Lemma 2.1 the minimum of
F (x) is reached if and only if |xi − xj| ≤ 1 for every 1 ≤ i < j ≤ n, or equivalently, if and
only if x1 + x2 + · · · + xn is an equipartition of m, having almost equal parts. It follows that the
point of minimum of F (x) on Dn,m is unique. A similar result follows for the maximum of F (x)
if f(x) is strictly concave. If f(x) is strictly convex the maximum of F (x) is reached when the
first component of x is as greatest as possible and an analogous result holds for the minimum of
F (x) if f(x) is strictly concave.

Lemma 2.4. Let G be a unicyclic graph of order n with p pendant vertices, where n ≥ 4, 1 ≤ p ≤
n− 3 and f(x) be a strictly concave function. Then

Hf (G) ≥ f(p+ 2) + (n− p− 1)f(2) + pf(1)

and extremal graphs consist of one cycle and p paths attached to a unique vertex of this cycle.

Proof. It follows that the degree sequence of G has the form (d1, d2, . . . , dn−p, 1, ..., 1), where
d1 ≥ d2 ≥ · · · ≥ dn−p ≥ 2. Then minHf (G) is equal to the minimum of F (x), where x ∈ Dn,2n

and has the last p components equal to 1 if this minimum is reached for a graphical sequence.
This happens only if the degree sequence of G is (p+ 2, 2n−p−1, 1p), where the exponent indicates
multiplicity. This degree sequence has many graphical realizations, which may be characterized as
follows: the class of extremal graphs consists of cycles with p paths attached to the same vertex of
the cycle.

Note that a similar result holds by replacing strictly concave by strictly convex, and minimum
by maximum, respectively.

3. Main results

Theorem 3.1. Let G be a quasi-unicyclic graph of order n ≥ 4. If f(x) is strictly concave and
strictly increasing (strictly convex and strictly decreasing, respectively), then minimum (maximum,
respectively) of Hf (G) equals

f(n− 1) + 2f(2) + (n− 3)f(1).

In this case, the extremal graph is unique, namely K1,n−1 + e.
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Proof. Suppose that f(x) is strictly concave and strictly increasing. Let v be a quasi-vertex such
that G− v is a unicyclic graph. If Hf (G) is minimum it follows that d(v) = 1, which implies that
G is a unicyclic graph with p pendant vertices, where 1 ≤ p ≤ n − 3. From Lemmas 2.3 and 2.4
we get that Hf (G) is minimum only for p = n− 3, when G = K1,n−1 + e. The proof is similar if
f(x) is strictly convex and strictly decreasing.

Theorem 3.2. Let G be a quasi-unicyclic graph of order n ≥ 4. If f(x) is strictly concave and
strictly increasing (strictly convex and strictly decreasing, respectively), then maximum (minimum,
respectively) of Hf (G) equals

f(n− 1) + (n− 1)f(3).

Extremal graph is unique, the wheel graph Cn−1 ∨K1.

Proof. Suppose that f(x) is strictly concave and strictly increasing. The proof is by induction on
n ≥ 4. For n = 4 since f(x) is strictly increasing it follows that Hf (G) is maximum only for
G = C3 ∨ K1 = K4. Let n ≥ 5 and suppose that the property is true for all unicyclic graphs
of order n − 1. If G is a quasi-unicyclic graph of order n which maximizes Hf (G) and v is a
quasi-vertex of G, since f(x) is strictly increasing it follows that d(v) = n − 1 and v is unique
with this property. We also get δ(G) ∈ {2, 3}. If δ(G) = 3, then G = Cn−1 ∨ K1 and we are
done. Otherwise δ(G) = 2, therefore there exists u ∈ V (G) having d(u) = 2. Let w be the vertex
adjacent to u which is different from v. We get d(w) ≥ 3 since otherwise G − v would not be
connected and G − u is a quasi-unicyclic graph of order n − 1. By the induction hypothesis we
deduce:

Hf (G) = Hf (G− u) + f(2) + f(n− 1) + f(d(w))− f(n− 2)− f(d(w)− 1)

≤ f(2) + f(n− 1) + f(d(w))− f(d(w)− 1) + (n− 2)f(3).

We have

f(2) + f(n− 1) + f(d(w))− f(d(w)− 1) + (n− 2)f(3) ≤ f(n− 1) + (n− 1)f(3)

since this is equivalent to f(d(w)) + f(2) ≤ f(d(w) − 1) + f(3). By Lemma 2.1 equality holds
only if d(w) = 3 and G − u = Cn−2 ∨ K1. But G − u = Cn−2 ∨ K1 implies that d(w) = 4, a
contradiction. It follows that if δ(G) = 2 then G cannot be extremal. This concludes the proof.
The proof is similar when f(x) is strictly convex and strictly decreasing.

Theorem 3.3. Let G be a quasi-unicyclic graph of order n ≥ 4. If f(x) is strictly convex and
strictly increasing (strictly concave and strictly decreasing, respectively), then minimum (maxi-
mum, respectively) of Hf (G) equals

f(3) + (n− 2)f(2) + f(1).

There are n− 3 extremal graphs, which consists each of a cycle Ck and a path Pn−k+1 attached to
a vertex of the cycle for 3 ≤ k ≤ n− 1.
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Proof. Let f(x) be strictly convex and strictly increasing and G be a unicyclic graph such that
Hf (G) is minimum. If v is a quasi-vertex then d(v) = 1. It follows that G is a unicyclic graph
which is not a cycle. If G has exactly one pendant vertex, the theorem is true. Otherwise, G has at
least two pendant vertices and a unique cycle Ck. Let t be a pendant vertex different from v, which
belongs to a pendant tree attached to a vertex r ∈ V (C). We get d(r) ≥ 3. Denote by v1 and v2
the vertices adjacent with r on C and let G1 = G − rv1 + tv1. G1 is also a quasi-unicyclic graph
of order n which has a quasi-vertex which is pendant. We deduce

Hf (G1) = Hf (G) + f(d(r)− 1)− f(d(r)) + f(2)− f(1) < Hf (G),

a contradiction because by Lemma 2.1 f(d(r)) + f(1) > f(d(r)− 1) + f(2), f(x) being strictly
convex and d(r) ≥ 3. This concludes the proof.
A similar proof can be done when f(x) is strictly concave and strictly decreasing.

Theorem 3.4. If G is a quasi-unicyclic graph of order n ≥ 4 and f(x) is strictly convex and
strictly increasing (strictly concave and strictly decreasing, respectively), then maximum (mini-
mum, respectively) of Hf (G) equals

2f(n− 1) + 2f(3) + (n− 4)f(2).

Extremal graph is unique, namely (K1,n−2 + e) ∨K1.

Proof. Let f(x) be strictly convex and strictly increasing and G be a unicyclic graph such that
Hf (G) is maximum. Since f(x) is strictly increasing it follows that there is a quasi-vertex v which
is a universal vertex. The proof is by induction on n ≥ 4. For n = 4 we get that G − v = C3,
G = K4 and the proof was done. Let n ≥ 5 and suppose that the property is valid for all quasi-
unicyclic graphs of order n− 1.
We have two cases to consider: Case 1. δ(G) = 3 and Case 2. δ(G) = 2.

Case 1. If δ(G) = 3 it follows that G = Cn−1 ∨K1. We get

Hf ((K1,n−2 + e) ∨K1) > Hf (Cn−1 ∨K1)

since this is equivalent to 2f(n − 1) + 2f(3) + (n − 4)f(2) > f(n − 1) + (n − 1)f(3) or
f(n− 1)− (n− 3)f(3) + (n− 4)f(2) > 0. This inequality holds by Lemma 2.2. It follows that
G is not extremal, a contradiction.

Case 2. If δ(G) = 2 there exists a vertex u ∈ V (G) such that d(u) = 2. Suppose that
N(u) = {v, t}. We get d(t) ≤ n− 1 and G− u is a quasi-unicyclic graph of order n− 1. By the
induction hypothesis we obtain:

Hf (G) = Hf (G− u) + f(d(t))− f(d(t)− 1) + f(2) + f(n− 1)− f(n− 2)

≤ 2f(n− 2) + 2f(3) + (n− 5)f(2) + f(d(t))− f(d(t)− 1) + f(2) + f(n− 1)− f(n− 2)

≤ 2f(n− 1) + 2f(3) + (n− 4)f(2)

if and only if f(d(t))−f(d(t)−1) ≤ f(n−1)−f(n−2).This inequality holds since the function
f(x) − f(x − 1) is strictly increasing for x ≥ 2. Equality holds only for d(t) = n − 1 and
G− u = (K1,n−3 + e) ∨K1. In this case we get G = (K1,n−2 + e) ∨K1. The proof was done.
When f(x) is strictly concave and strictly decreasing the proof is analogous.
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In what follows we shall deduce results similar to theorems 3.1-3.4 for quasi-unicyclic graphs
of given order and a fixed number of pendant vertices.

Theorem 3.5. Let G be a quasi-unicyclic graph of order n with p pendant vertices, where n ≥ 4,
1 ≤ p ≤ n − 3 and f(x) be strictly concave and strictly increasing (strictly convex and strictly
decreasing, respectively). Then minimum (maximum, respectively) of Hf (G) equals

f(p+ 2) + (n− p− 1)f(2) + pf(1).

There are several extremal graphs, each consisting of one cycle Ck, where 3 ≤ k ≤ n − p and p
paths attached to a unique vertex of this cycle.

Proof. Since f(x) is strictly increasing it follows that the minimum of Hf (G) occurs when for
a quasi-vertex v we have d(v) = 1. In this case G is a unicyclic graph and one applies Lemma
2.4. The proof follows on the same way when f(x) is strictly convex and strictly decreasing,
respectively.

Theorem 3.6. Suppose that G is a quasi-unicyclic graph of order n with p pendant vertices, where
n ≥ 4, 1 ≤ p ≤ n − 3 and f(x) is strictly convex and strictly increasing (strictly concave and
strictly decreasing, respectively). Then minimum (maximum, respectively) of Hf (G) equals

rf(q + 3) + (n− p− r)f(q + 2) + pf(1),

where q = ⌊ p
n−p

⌋ and r = p − (n − p)⌊ p
n−p

⌋. A graph is extremal if and only if it has degrees
(q + 3)r, (q + 2)n−p−r, 1p. An example of an extremal graph consists of Cn−p and p pendant edges
attached to the vertices of this cycle such that the numbers of pendant edges attached to any two
vertices of Cn−p differ by at most one.

Proof. Let G be a quasi-unicyclic graph such that Hf (G) is minimum and let v be a quasi-
vertex. Since f(x) is strictly increasing, we deduce that d(v) = 1, thus implying that G is a
unicyclic graph of order n having p pendant vertices. In this case the degree sequence of G is x =
(d1, d2, . . . , dn−p, 1, . . . , 1) ∈ Dn,2n, the last p components are equal to one and

∑n−p
i=1 di = 2n−p.

We have minHf (G) = minF (x) if the point x of minimum is a graphical sequence. Since f(x)
is strictly convex it follows that this minimum is reached if and only if d1 − dn−p ≤ 1. We have
2n− p = 2(n− p) + p and ⌊2n−p

n−p
⌋ = 2+ ⌊ p

n−p
⌋. Let p = (n− p)q+ r, where 0 ≤ r ≤ n− p− 1.

It follows that q = ⌊ p
n−p

⌋, r vertices have degree q + 3 and n − p − r vertices have degree q + 2.
An extremal graph having this degree sequence may be obtained from Cn−p and p pendant edges
attached to the vertices of this cycle such that the numbers of edges attached to vertices of Cn−p

compose an equipartition of p. A similar situation occurs for the maximum of Hf (G) if f(x) is
strictly concave and strictly decreasing, respectively.

Theorem 3.7. Let G be a quasi-unicyclic graph of order n with p pendant vertices, where n ≥ 5,
1 ≤ p ≤ n − 4 and f(x) be a strictly concave and strictly increasing (strictly convex and strictly
decreasing, respectively) function. Then maximum (minimum, respectively) of Hf (G) equals

f(n− p− 1) + rf(q + 4) + (n− p− 1− r)f(q + 3) + pf(1),
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where q = ⌊ p
n−p−1

⌋ and r = p−(n−p−1)⌊ p
n−p−1

⌋. A graph is extremal if and only if it has degrees
n− p− 1, (q + 4)r, (q + 3)n−p−r−1, 1p. An example of an extremal graph consists of Cn−p−1 ∨K1

and p pendant edges attached to the vertices of Cn−p−1 such that the numbers of pendant edges
attached to any two vertices of the cycle differ by at most one.

Proof. Let G be a quasi-unicyclic graph of order n with p pendant vertices v1, . . . , vp such that
Hf (G) is maximum and v be a quasi-vertex. Since G − v is a unicyclic graph, then v cannot
be adjacent to any pendant vertex of G and since f(x) is strictly increasing it follows that v is
adjacent to all vertices of G which are not pendant. We get d(v) = n − p − 1. Also we obtain
|E(G−v)| = n−1, which implies

∑
u∈V (G)\{v,v1,...,vp} d(u) = 2(n−1)+n−p−1−p = 3n−2p−3.

In this case the degree sequence of G is x = (d1, d2, . . . , dn−p, 1, . . . , 1) ∈ Dn,4n−2p−4, the last p
components are equal to one, one component from d1, d2, . . . , dn−p is equal to n − p − 1 and
the sum of the components different from 1 and n − p − 1 is equal to 3n − 2p − 3. We have
maxHf (G) = maxF (x) if the point x of maximum is a graphical sequence. Since f(x) is
strictly concave it follows that this maximum is reached if and only if the components different
from 1 and n − p − 1 differ by at most one. Let 3n − 2p − 3 = (n − p − 1)s + r, where
0 ≤ r ≤ n− p− 2. Since ⌊3n−2p−3

n−p−1
⌋ = ⌊ p

n−p−1
⌋+3, it follows that s = q+3, where q = ⌊ p

n−p−1
⌋

and r = 3n − 2p − 3 − (n − p − 1)(⌊ p
n−p−1

⌋ + 3) = p − (n − p − 1)⌊ p
n−p−1

⌋. We obtain that r
vertices in G, different from v have degree q+4 and n− p− 1− r have degree q+3. An extremal
graph having this degree sequence may be obtained from the wheel Cn−p−1 ∨ K1 and p pendant
edges attached to the vertices of Cn−p−1 such that the numbers of edges attached to vertices of
Cn−p−1 compose an equipartition of p. A similar situation occurs for the minimum of Hf (G) if
f(x) is strictly convex and strictly decreasing, respectively.

Theorem 3.8. Suppose that G is a quasi-unicyclic graph of order n with p pendant vertices, where
n ≥ 5, 1 ≤ p ≤ n − 4 and f(x) is strictly convex and strictly increasing (strictly concave and
strictly decreasing, respectively). Then maximum (minimum, respectively) of Hf (G) equals

f(n− 1) + f(n− p− 1) + 2f(3) + (n− p− 4)f(2) + pf(1).

Extremal graph reaching this bound is unique and it is obtained from a vertex v and K1,n−2 + e by
joining v with non-pendant vertices and n− p− 4 pendant vertices of K1,n−2 + e.

Proof. Let G be a quasi-unicyclic graph of order n with p pendant vertices v1, . . . , vp such that
Hf (G) is maximum and let v be a quasi-vertex. As before, since G − v is a unicyclic graph, then
v cannot be adjacent to any pendant vertex of G and because f(x) is strictly increasing it follows
that v is adjacent to all vertices of G which are not pendant, which implies d(v) = n− p− 1. We
shall prove first that v1, . . . , vp are adjacent to the same vertex in G. Suppose that there exist two
vertices u, t ∈ V (G) such that they are adjacent each with some pendant vertices. Let d(u) = r
and d(t) = s, respectively and r, s ≥ 2 and r ≤ s. If we move one pendant edge from u to t we
get another quasi-unicyclic graph G1 of order n with p pendant vertices and

Hf (G)−Hf (G1) = f(r) + f(s)− f(s+ 1)− f(r − 1) < 0

by Lemma 2.1, since f(x) is strictly convex, a contradiction.
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Let C denote the unique cycle of F = G−v. We will prove that F has a unique pendant tree T
attached to a vertex y of C. F has two types of pendant vertices: pendant vertices v1, . . . , vp of G
and some other pendant vertices denoted by z1, . . . , zs which are adjacent also to the quasi-vertex
v in G. By a similar argument as before, we get that all p + s pendant vertices of F are adjacent
to a unique vertex w of F . It follows that F consists of a cycle C and a unique pendant tree T
attached to a vertex y of C.

We shall show that T is a star with y the central vertex in C.
If T is not a star with y the central vertex, it follows that T consists of a path y, . . . , w and

pendant edges wv1, . . . , wvp, wz1, . . . , wzs since all pendant vertices of F are adjacent to the same
vertex in G. Define another quasi-unicyclic graph of order n with p pendant vertices G2 = G −
{wv1, . . . , wvp, wz1, . . . , wzs} + {yv1, . . . , yvp, yz1, . . . , yzs}. Since all vertices of G which are
not pendant are adjacent with v, it follows that

Hf (G2)−Hf (G) = f(p+ s+ 4) + f(2)− f(p+ s+ 2)− f(4) > 0

by Lemma 2.1, a contradiction.
It remains to prove that the length of C is equal to three. Suppose that the length of C is k ≥ 4,

C = v1, v2, . . . , vk, v1 and the star has its center in v1. We obtain that in G− v vertex v1 is adjacent
to n− k − 1 pendant vertices. Let G3 = G− v2v3 + v1v3. G3 is a quasi-unicyclic graph of order
n with p pendant vertices where n− k − 1 ≥ p ≥ 1 and

Hf (G3)−Hf (G) = f(n− k + 3) + f(2)− f(n− k + 2)− f(3) > 0

by Lemma 2.1, a contradiction. This concludes the proof.
The extremal graph is the same also for the case of minimization when f(x) is strictly concave and
strictly decreasing, respectively.

4. Concluding remarks

In this paper we have solved an optimization problem concerning the vertex-degree function
index Hf (G) in four classes of functions f(x) for quasi-unicyclic graphs G of given order or of
given order and fixed number of pendant vertices. These classes are characterized by: A– strictly
convex and strictly increasing functions; B–strictly convex and strictly decreasing functions; C–
strictly concave and strictly increasing functions and D–strictly concave and strictly decreasing
functions.

All topological indices mentioned above are related to vertex-degree function indices Hf (G):
1) 0Rα(G) =

∑
v∈V (G) d(v)

α, corresponds to f(x) = xα, where x ≥ 1. For α > 1 f ∈ A ; for
0 < α < 1 f ∈ C; for α < 0 f ∈ B.

2) The first general multiplicative Zagreb index Pα
1 (G) =

∏
u∈V (G) d(u)

α is maximum/minimum
if and only if lnPα

1 (G) = α
∑

u∈V (G) ln d(u) is maximum/minimum. In this case f(x) = α lnx,
where x ≥ 1. For α > 0 f ∈ C and for α < 0 f ∈ B.

3) The second general multiplicative Zagreb index is Pα
2 (G) =

∏
u∈V (G) d(u)

αd(u). We have
lnPα

2 (G) = α
∑

u∈V (G) d(u) ln d(u) and f(x) = αx lnx, where x ≥ 1. For α > 0 f ∈ A and for
α < 0 f ∈ D.
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4) The sum lordeg index SL(G) =
∑

v∈V (G) d(v)
√

ln d(v) =
∑

v∈V (G):d(v)≥2

d(v)
√
ln d(v). We

get f(x) = x
√
lnx, where x ≥ 2 and f ∈ A.
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