Electronic Journal of Graph Theory and Applications

On some covering graphs of a graph

Shariefuddin Pirzada ${ }^{\text {a }}$, Hilal A. Ganie ${ }^{\text {b }}$, Merajuddin Siddique ${ }^{\mathrm{c}}$
${ }^{a}$ Department of Mathematics, University of Kashmir, Srinagar, Kashmir, India
${ }^{b}$ Department of Mathematics, University of Kashmir, Srinagar, Kashmir, India
${ }^{c}$ Department of Applied Mathematics, Aligarh Muslim University, Aligarh, India
pirzadasd@kashmiruniversity.ac.in, hilahmad1119kt@gmail.com

Abstract

For a graph G with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, let S be the covering set of G having the maximum degree over all the minimum covering sets of G. Let $N_{S}[v]=\{u \in S: u v \in$ $E(G)\} \cup\{v\}$ be the closed neighbourhood of the vertex v with respect to S. We define a square matrix $A_{S}(G)=\left(a_{i j}\right)$, by $a_{i j}=1$, if $\left|N_{S}\left[v_{i}\right] \cap N_{S}\left[v_{j}\right]\right| \geq 1, i \neq j$ and 0 , otherwise. The graph G^{S} associated with the matrix $A_{S}(G)$ is called the maximum degree minimum covering graph (MDMC-graph) of the graph G. In this paper, we give conditions for the graph G^{S} to be bipartite and Hamiltonian. Also we obtain a bound for the number of edges of the graph G^{S} in terms of the structure of G. Further we obtain an upper bound for covering number (independence number) of G^{S} in terms of the covering number (independence number) of G.

Keywords: Covering graph, maximum degree, covering set, maximum degree minimum covering graph, covering number, independence number
Mathematics Subject Classification : 05C15,05C50, 05C30
DOI:10.5614/ejgta.2016.4.2.2

1. Introduction

Let G be finite, undirected, simple graph with n vertices and m edges having vertex set $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. When the graph G is to be specified, the number of edges is denoted by $m(G)$. A subset S of the vertex set $V(G)$ is said to be covering set of G if every edge of G is incident to at least one vertex in S. A covering set with minimum cardinality among all covering sets

Received: 9 June 2015, Revised 25 May 2016, Accepted: 4 September 2016.
of G is called the minimum covering set of G and its cardinality is called the (vertex)covering number of G, denoted by α_{0}. Let $C(G)=\{S \subset V(G)$: S is a minimum covering set of $G\}$. If $U=\left\{u_{1}, u_{2} \ldots, u_{r}\right\}$ is a subset of $V(G)$ and $d_{U}\left(u_{i}\right), i=1,2, \ldots, r$ denote the degree of the vertex u_{i} in G, which is in U, then we call $d_{U}\left(u_{1}\right) \leq d_{U}\left(u_{2}\right) \leq \cdots \leq d_{U}\left(u_{r}\right)$ as the degree sequence of U. If $U=\left\{u_{1}, u_{2} \ldots, u_{r}\right\}$ and $W=\left\{w_{1}, w_{2} \ldots, w_{r}\right\}$ be any two subsets of $V(G)$ having degree sequences $d_{U}\left(u_{1}\right) \leq d_{U}\left(u_{2}\right) \leq \cdots \leq d_{U}\left(u_{r}\right)$ and $d_{W}\left(w_{1}\right) \leq d_{W}\left(w_{2}\right) \leq \cdots \leq d_{W}\left(w_{r}\right)$, respectively, then we say the degrees of U dominates the degrees of W if $d_{W}\left(w_{i}\right) \leq d_{U}\left(u_{i}\right)$ for all $i=1,2, \ldots, r$. The minimum covering set $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of G is said to be a maximum degree minimum covering set (shortly MDMC-set) of the graph G if the degrees of the vertices in S dominates the degrees of the vertices in any other minimum cover of G. Let $C_{M D}(G)=\{S \subset V(G): S$ is a maximum degree minimum covering set of $G\}$. Further, let $A(G)=\left(a_{i j}\right)$, where $a_{i j}=1$ if v_{i} adjacent to v_{j} and 0 otherwise, be the adjacency matrix of the graph G and let $N_{S}[v]=\{u \in S \subset C(G): u v \in E(G)\} \cup\{v\}$ be the closed neighbourhood of the vertex $v \in V(G)$ with respect to S. We define a square matrix $A_{S}(G)=\left(a_{i j}\right)$ of order n, by

$$
a_{i j}=\left\{\begin{array}{lr}
1, & \text { if }\left|N_{S}\left[v_{i}\right] \cap N_{S}\left[v_{j}\right]\right| \geq 1, i \neq j, \\
0, & \text { otherwise } .
\end{array}\right.
$$

Now corresponding to every $(0,1)$-square matrix of order n with zero diagonal entries there is a simple graph on n vertices, therefore corresponding to the n-square matrix $A_{S}(G)$ defined above we have a simple graph of order n, we denote such a graph by G^{S} and call it the minimum covering graph (MC-graph) of G. As the minimum covering set of a graph G need not be unique, it can be seen that if S_{1} and S_{2} are any two minimum covering sets of G, with different degree sequences, then the minimum covering graphs (MC-graphs) $G^{S_{1}}$ and $G^{S_{2}}$ are non isomorphic. However, if S_{1} and S_{2} have the same degree sequences, then the MC-graphs $G^{S_{1}}$ and $G^{S_{2}}$ are isomorphic.

For example, consider the graph G as shown in Figure 1, the set of minimum covering sets of G is $C(G)=\left\{S_{1}=\{1,3,4\}, S_{2}=\{2,3,4\}, S_{3}=\{5,1,3\}, S_{4}=\{6,2,4\}\right\}$. Among these covering sets the pairs S_{1}, S_{2} and S_{3}, S_{4} are degree equivalent and S_{1}, S_{2} are maximum degree minimum covering sets (MDMC-sets) of G. That is, $S_{1}, S_{2} \in C_{M D}(G)$. Let $G^{S_{i}}, i=1,2,3,4$ be the minimum covering graphs of G with respect to S_{i}. Clearly $G^{S_{1}}$ and $G^{S_{2}}$ are isomorphic; $G^{S_{3}}$ and $G^{S_{4}}$ are isomorphic, while as $G^{S_{1}}$ is not isomorphic to $G^{S_{3}}$; and $G^{S_{2}}$ is not isomorphic to $G^{S_{4}}$ (see Figure 1 below).

Figure 1. Graph G and its minimum covering sets.
From this example, it follows that for minimum covering sets having different degree sequences, we obtain different MC-graphs. Therefore, to get a unique (up to isomorphism) MCgraph of the graph G, we consider the MDMC-set of the graph G. The unique graph G^{S} in this case is called the maximum degree minimum covering graph (MDMC-graph) of G. It is clear from
the definition of G^{S} that if two vertices u and v are adjacent in G, they are adjacent in G^{S} and if u and v are non adjacent in G they are adjacent in G^{S} if they share at least one common neighbour with S. So, it follows that G^{S} is connected if and only if G is connected. Also, since G and G^{S} are the graphs on the same vertex set, it follows that G is a spanning subgraph of G^{S}.

The motivation behind our interest in the study of minimum covering graphs of a graph G is to explore some interesting properties of G which changes (or does not change) when edges between non-adjacent vertices are added in G under some definite rule.

Let $B_{S}=\left(b_{i j}\right)$, where $b_{i j}=\left\{\begin{array}{rr}1, & \text { if } v_{i} \text { adjacent to } v_{j}, \\ 1, & \text { if } v_{i}=v_{j} \in S, \\ 0, & \text { otherwise, }\end{array}\right.$
be a matrix of order $|S| \times n$, whose rows are indexed by the vertices in any MDMC-set S of the graph G and whose columns are indexed by the vertices of G. Define an n-square matrix R as the product of B_{S}^{t} and B_{S}, that is, $R=B_{S}^{t} B_{S}$, where B_{S}^{t} is the transpose of B_{S}. It is easy to see that the $i j^{t h}$-entry of the matrix $R=\left(r_{i j}\right)$ is

$$
r_{i j}= \begin{cases}\left|N_{S}\left[v_{i}\right] \cap N_{S}\left[v_{j}\right]\right|, & \text { if } i \neq j, \\ \left|N_{S}\left[v_{i}\right]\right|, & \text { if } i=j .\end{cases}
$$

The matrix R is a sort of covering matrix of G, so we call it as the covering matrix of G. Replacing each non-zero entry in the matrix R by 1 and diagonal entries by 0 , we obtain the matrix $A_{S}(G)$ defined above. From this it follows that except for diagonal elements the matrix A_{S} is the $(0,1)$ analogue of the matrix R (see Spectral Graph Theory and the Inverse Eigenvalue Problem of a Graph $[2,3]$). This gives another motivation for the study/discussion of the graphs associated with the matrix $A_{S}(G)$.

Since the graph G^{S} associated with the $A_{S}(G)$ is the spanning supergraph of the graph G, then clearly $|V(G)|=\left|V\left(G^{S}\right)\right|$ and $m\left(G^{S}\right) \geq m(G)$. At the first sight, the following problems about MDMC-graph G^{S} of the graph G will be of interest.

1. Knowing the graph G and MDMC-set S, what can we say about the degrees of the vertices of G^{S}.
2. To obtain an upper bound for the number of edges $m\left(G^{S}\right)$ of G^{S}.
3. Is the graph G^{S} always Hamiltonian, Eulerian, bipartite.
4. If $\alpha_{0}^{S}, \alpha_{1}^{S}, \beta_{0}^{S}$ and $\beta_{1}^{S}\left(\alpha_{0}, \alpha_{1}, \beta_{0}\right.$ and $\left.\beta_{1}\right)$ are the vertex covering number, the edge covering number, the vertex independence number and the edge independence number of G^{S} (respectively G), then to find the relation between these parameters.
5. To find the relation between the chromatic and domination numbers of the graphs G^{S} and G.
6. How the spectra of G^{S} and G under various graph matrices are related.
7. When is the graph G^{S} regular.
8. If $G_{1} \cong G_{2}$, then obviously $G_{1}^{S} \cong G_{2}^{S}$. In case $G_{1}^{S} \cong G_{2}^{S}$, what about G_{1} and G_{2} are they isomorphic.
9. What can be the relation between the vertex connectivity (edge connectivity) of G^{S} and G.
10. How the line graph of G^{S} and the line graph of G are related.
11. For any two graphs G and H, what are the possible relations between the graphs G^{S} and H^{S} under various graph operations with G and H.

There are many other graph theoretical and spectral questions that one can ask about the graph G^{S}. Here we answer some of these questions.

The subgraph of G whose vertex set U and whose edge set is the set of those edges of G that have both ends in U is denoted by $\langle U\rangle$ and is called the subgraph of G induced by U. A subset U of $V(G)$ is called an independent set of G if no two vertices of U are adjacent in G. An independent set with maximum cardinality among all the independent sets of G is called the maximum independent set and its cardinality is called the (vertex)independence number of G, denoted by β_{0}.

In the rest of this paper, the set $S \subset V(G)$ will denote the MDMC-set of the graph G, unless otherwise stated. If two vertices u and v are adjacent, we denote it by $u \sim v$ and the edge between them by $e=u v$. We denote the complete graph on n vertices by K_{n}, the empty graph on n vertices by $\overline{K_{n}}$, the path on n-vertices by P_{n}, the cycle on n vertices by C_{n}, the complete bipartite graph with partite sets of cardinalities p and $q, p+q=n$ by $K_{p, q}$ and the graph obtained by joining each vertex of K_{p} with every vertex of $\overline{K_{q}}$ by $K_{p} \vee \overline{K_{q}}$, such a graph is called the complete split graph. For other undefined notations and terminology from graph theory, the readers are referred to [1, 6].

The paper is organized as follows. In Section 2, some basic properties of G^{S} are considered. In Section 3, we study the degree sequence and obtain an upper bound for the number of edges in G^{S} in terms of the structure of G and characterise the extremal graphs. In Section 4, we obtain the conditions for the MDMC-graph G^{S} to be bipartite and Hamiltonian. Lastly, in Section 5, we obtain an upper bound for the covering number (independence number) of G^{S} in terms of the covering number (respectively independence number) of G and discuss the equality case.

2. Basic properties of MDMC-graphs

In this section, we discuss some basic properties of the MDMC-graph of a graph G. Let G^{S} be the MDMC-graph of G with respect to MDMC-set $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Using the fact that G^{S} is obtained by adding edges between the non adjacent vertices of G which share a common neighbour in S, we have the following relations which can easily verified:

For any MDMC-set S, the MDMC-graphs of the complete graph and empty graph are respectively the complete graph and empty graph that is, $K_{n}^{S}=K_{n}$ and ${\overline{K_{n}}}^{S}=\overline{K_{n}}$. For the complete bipartite graph $K_{p, q}$ with $p \leq q$, the MDMC-set S is the partite set with cardinality p and the MDMC-graph $K_{p, q}^{S}$ is the complete split graph $K_{q} \vee \overline{K_{p}}$. In particular $K_{1, n-1}^{S}=K_{n}$. For the path $P_{n}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, if n is odd, the MDMC-set is $S=\left\{u_{2}, u_{4}, \ldots, u_{n-1}\right\}$ and the MDMCgraph P_{n}^{S} is the graph $P_{n} \cup\left\{u_{1} u_{3}, u_{3} u_{5}, \cdots, u_{n-2} u_{n}\right\}$. Clearly P_{n}^{S} consists of $\left\lfloor\frac{n}{2}\right\rfloor$ copies of K_{3}. On the other hand if n is even, the MDMC-set is $S=\left\{u_{2}, u_{4}, \ldots, u_{n-2}, u_{n-1}\right\}$ and the MDMCgraph P_{n}^{S} is the graph $P_{n} \cup\left\{u_{1} u_{3}, u_{3} u_{5}, \ldots, u_{n-3} u_{n-1}, u_{n-2} u_{n}\right\}$. It is easy to see that P_{n}^{S} consists of $\frac{n}{2}$ copies of K_{3}. For the cycle $C_{n}=\left\{u_{1}, u_{2}, \ldots, u_{n}, u_{1}\right\}$, if n is even, the MDMC-set is $S=\left\{u_{2}, u_{4}, \ldots, u_{n-2}\right\}$ and the MDMC-graph C_{n}^{S} is the graph $C_{n} \cup\left\{u_{1} u_{3}, u_{3} u_{5}, \ldots, u_{n-1} u_{1}\right\}$.

On the other hand if $n \geq 5$ is odd, the MDMC-set of C_{n}^{S} is $S=\left\{u_{1}, u_{3}, \ldots, u_{n-2}, u_{n}\right\}$ and the MDMC-graph C_{n}^{S} is the graph $C_{n} \cup\left\{u_{2} u_{4}, u_{4} u_{6}, \ldots, u_{n-3} u_{n-1}, u_{n-1} u_{1}, u_{n} u_{2}\right\}$. We have seen that the MDMC-graph of a complete graph is the complete graph itself, however if W_{n} is the wheel graph on n vertices, then $W_{n}^{S}=K_{n}$. Therefore, we have the following observation.

Lemma 2.1. If G contains a dominant vertex, that is, a vertex of degree $n-1$, then $G^{S}=K_{n}$.
Proof. Suppose that G contains a vertex v of degree $n-1$. Then the set S being an MDMC-set must contain the vertex v. Since every other vertex of G is adjacent to v, it follows that each vertex of G shares at least one vertex with S. Therefore by the definition of G^{S}, the result follows.

From the definition, it is clear that if $G_{1} \cong G_{2}$, then $G_{1}^{S_{1}} \cong G_{2}^{S_{2}}$, where S_{1} and S_{2} are respectively the MDMC-sets in G_{1} and G_{2}. However if $G_{1}^{S_{1}} \cong G_{2}^{S_{2}}$, then G_{1} need not be isomorphic to G_{2}, as is clear from Lemma 2.1.

3. Degrees and conditions for MDMC-graph to be bipartite

Let $S=\left\{v_{1}, v_{2} \ldots, v_{k}\right\}$ be an MDMC-set of G. For $i=1,2, \ldots, n$, let $d\left(v_{i}\right)$ and $d^{\prime}\left(v_{i}\right)$ be respectively, the degrees of the vertices of the graphs G and G^{S}. For any two vertices v_{i} and v_{j}, let $\pi_{v_{i}}\left(v_{j}\right)=\left\{v_{k} \in V(G): v_{k}\right.$ is adjacent to v_{j}; and v_{k} is not adjacent to $\left.v_{i}\right\}$, that is, $\pi_{v_{i}}\left(v_{j}\right)$ is the set of neighbours of v_{j} which are not the neighbours of v_{i} and let $\theta\left(v_{i}\right)=\sum_{v_{i} v_{j} v_{s} v_{v} v_{i}} 1$ be the number of 4 -cycles in G containing the vertex v_{i}, with $v_{j}, v_{t} \in S$ and v_{i} not adjacent to v_{s}. Using the fact G^{S} is obtained from G by adding edges between non-adjacent vertices which have a common neighbour in S, we have the following observations.

$$
d^{\prime}\left(v_{i}\right)=\left\{\begin{array}{lr}
\sum_{\substack{v_{j} \in S \\
v_{j} \sim v_{i} \\
d\left(v_{i}\right),}} d\left(v_{j}\right)-\theta\left(v_{i}\right), & \text { if } v_{i} \in V(G)-S \tag{1}\\
\text { if } v_{i} \in S
\end{array}\right.
$$

if S is an independent set in G and

$$
\begin{equation*}
d^{\prime}\left(v_{i}\right)=d\left(v_{i}\right)+\sum_{\substack{v_{j} \in S \\ v_{j} \sim v_{i}}}\left|\pi_{v_{i}}\left(v_{j}\right)\right|-\theta\left(v_{i}\right), \text { for all } v_{i} \in V(G), \tag{2}
\end{equation*}
$$

if S is not an independent set in G.
Using this observation, we have the following result.
Theorem 3.1. If $d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)$ are the degrees of the vertices of graph G having MDMCset $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, then $d^{\prime}\left(v_{)}, d^{\prime}\left(v_{2}\right), \ldots, d^{\prime}\left(v_{n}\right)\right.$ are the degrees of the vertices of the graph G^{S}, where for $i=1,2, \ldots, n, d^{\prime}\left(v_{i}\right)$ are given by equation (1), if S is independent and by equation (2), if S is not independent.

Example 3.2. Consider the graph G in Figure 1, the degrees of the vertices of G are 3, 3, 2, 2, 1, 1, with MDMC-set $S=\left\{v_{1}, v_{3}, v_{4}\right\}$, where v_{i} corresponds to vertex i. Since the set S is not independent in G, the degree of the vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ and v_{6} in G^{S} are given by $d^{\prime}\left(v_{1}\right)=$ $d\left(v_{1}\right)+\sum_{\substack{v_{j} \in S \\ v_{j} \sim v_{1}}}\left|\pi_{v_{1}}\left(v_{j}\right)\right|-\theta\left(v_{1}\right)=2+\left|\pi_{v_{1}}\left(v_{4}\right)\right|-\theta\left(v_{1}\right)=2+2-0=4$, as v_{4} is the only vertex in S adjacent to v_{1} and there is no 4 -cycle $v_{1} v_{j} v_{r} v_{s} v_{1}$, with $v_{j}, v_{s} \in S$ and v_{1} not adjacent to v_{r}. Also $d^{\prime}\left(v_{2}\right)=d\left(v_{2}\right)+\sum_{\substack{v_{j} \in S \\ v_{j} \sim v_{2}}}\left|\pi_{v_{2}}\left(v_{j}\right)\right|-\theta\left(v_{2}\right)=2+\left|\pi_{v_{2}}\left(v_{1}\right)\right|+\left|\pi_{v_{2}}\left(v_{3}\right)\right|-\theta\left(v_{2}\right)=2+1+2-1=4$, as $v_{1}, v_{3} \in S$ are adjacent to v_{2} and there is only one 4 -cycle of the form $v_{2} v_{j} v_{r} v_{s} v_{2}$, with $v_{j}, v_{s} \in S$ and v_{2} not adjacent to v_{r}. Proceeding similarly, it can be seen that the degrees of the vertices v_{3}, v_{4}, v_{5} and v_{6} are respectively as $5,5,3$ and 3 . Thus the degrees of the vertices of the graph G^{S} are $5,5,4,4,3,3$, which is clear from the graph $G^{S_{1}}$ in Figure 1.

Figure 2. Graph H and graph H^{S}.
Example 3.3. Consider the graph H in Figure 2, the degrees of the vertices of the graph H are $4,3,2,2,2,2,1,1,1$, with MDMC-set $S=\left\{v_{2}, v_{4}, v_{6}\right\}$, where v_{i} corresponds to vertex i. Since the set S is independent in H, the degree of the vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}$ and v_{9} in H^{S} are given by $d^{\prime}\left(v_{2}\right)=d\left(v_{2}\right)=2, d^{\prime}\left(v_{4}\right)=d\left(v_{4}\right)=3, d^{\prime}\left(v_{6}\right)=d\left(v_{6}\right)=4, d^{\prime}\left(v_{1}\right)=\sum_{\substack{v_{j} \in S \\ v_{j} \sim v_{1}}} d\left(v_{j}\right)-\theta\left(v_{1}\right)=$ $d\left(v_{2}\right)+d\left(v_{4}\right)-\theta\left(v_{1}\right)=2+3-1=4$, as $v_{2}, v_{4} \in S$ are adjacent to v_{1} and there is only one 4 -cycle of the form $v_{1} v_{j} v_{r} v_{s} v_{1}$, with $v_{j}, v_{s} \in S$ and v_{1} not adjacent to v_{r}. Proceeding similarly, it can be seen that the degrees of the vertices $v_{3}, v_{5}, v_{7}, v_{8}$ and v_{9} are $4,7,4,4$ and 4 . Thus the degrees of the vertices of the graph H^{S} are $7,4,4,4,4,4,4,3,2$, which is clear from the Figure 2.

We now obtain an upper bound for the number of edges $m\left(G^{S}\right)$ of the graph G^{S} and characterise the extremal graphs which attain this bound.

Theorem 3.4. For $k<n$, let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, be the MDMC-set of the graph G and let G^{S} be the MDMC-graph of G.
(i) If S is an independent set in G, then $2 m\left(G^{S}\right) \leq k(n-k)(n-k+1)-\sum_{v_{i} \in V(G)-S} \theta\left(v_{i}\right)$, with equality if and only if $G \cong K_{k, n-k}$, and
(ii) if S is not an independent set in G, then $2 m\left(G^{S}\right) \leq 2 m+k(\Delta-1)(n-1)-\sum_{v_{i} \in V(G)} \theta\left(v_{i}\right)$, with equality if and only if G is a graph with each vertex $v_{i} \in S$ of same degree $\Delta=\max \left\{d_{i}, i=\right.$ $1,2, \ldots, n\}$ and $\langle S\rangle=K_{k}$, such that $\pi_{v_{i}}\left(v_{j}\right)=\phi$, for all $v_{i} \in V(G)$ and $v_{j} \in S$.

Proof. (i). For $i=1,2, \ldots, n$, let $d\left(v_{i}\right)$ and $d^{\prime}\left(v_{i}\right)$ be respectively the degrees of the vertices of the graphs G and G^{S}. Since $\sum_{v_{i} \in V(G)} d_{i}=2 m$ and S is an independent set in G, from equation (1) it follows that

$$
\begin{aligned}
2 m\left(G^{S}\right)= & \sum_{v_{i} \in V\left(G^{S}\right)} d^{\prime}\left(v_{i}\right)=\sum_{v_{i} \in S} d^{\prime}\left(v_{i}\right)+\sum_{v_{i} \in V\left(G^{S}\right)-S} d^{\prime}\left(v_{i}\right) \\
& =\sum_{v_{i} \in S} d\left(v_{i}\right)+\sum_{v_{i} \in V(G)-S}\left(\sum_{\substack{v_{j} \in S \\
v_{i} \sim v_{j}}} d\left(v_{j}\right)-\theta\left(v_{i}\right)\right) \\
& \leq k(n-k)+k(n-k)(n-k)-\sum_{v_{i} \in V(G)-S} \theta\left(v_{i}\right) \\
& =k(n-k)(n-k+1)-\sum_{v_{i} \in V(G)-S} \theta\left(v_{i}\right) .
\end{aligned}
$$

Equality will occur if and only if

$$
\sum_{v_{i} \in S} d\left(v_{i}\right)=k(n-k) \quad \text { and } \quad \sum_{\substack{v_{j} \in S \\ v_{i} \sim v_{j}}} d\left(v_{j}\right)=k(n-k)(n-k) .
$$

Since S is an independent set with $|S|=k$, the first of these equalities will hold if each vertex in S is of degree $n-k$. Also the set $V(G)-S$ is an independent set in G as the set S is independent covering set. So for the second of these equalities to hold it follows from the first equality and the fact that the set $V(G)-S$ is an independent set in G having cardinality $n-k$, each vertex in $V(G)-S$ is of degree k. Thus, it follows that the sets S and $V(G)-S$ are independent, such that each vertex in S is of degree $n-k$ and each vertex in $V(G)-S$ is of degree k. This is only possible if and only if $G \cong K_{k, n-k}$. Conversely, if $G \cong K_{k, n-k}$, then it is easy to see that equality occurs.
(ii). Now, if S is not an independent set in G, it follows from equation (2) that

$$
\begin{aligned}
2 m\left(G^{S}\right) & =\sum_{v_{i} \in V\left(G^{S}\right)} d^{\prime}\left(v_{i}\right)=\sum_{v_{i} \in S} d^{\prime}\left(v_{i}\right)+\sum_{v_{i} \in V\left(G^{S}\right)-S} d^{\prime}\left(v_{i}\right) \\
& =\sum_{v_{i} \in S}\left(d\left(v_{i}\right)+\sum_{\substack{v_{j} \in S \\
v_{i} \sim v_{j}}}\left|\pi_{v_{i}}\left(v_{j}\right)\right|-\theta\left(v_{i}\right)\right)+\sum_{\substack{v_{i} \in V(G)-S}}\left(d\left(v_{i}\right)+\sum_{\substack{v_{j} \in S \\
v_{i} \sim v_{j}}}\left|\pi_{v_{i}}\left(v_{j}\right)\right|-\theta\left(v_{i}\right)\right) \\
& =2 m+\sum_{\substack{v_{i} \in S}} \sum_{\substack{v_{j} \in S \\
v_{i} \sim v_{j}}}\left|\pi_{v_{i}}\left(v_{j}\right)\right|+\sum_{v_{i} \in V(G)-S} \sum_{\substack{v_{j} \in S \\
v_{i} \sim v_{j}}}\left|\pi_{v_{i}}\left(v_{j}\right)\right|-\sum_{v_{i} \in V(G)} \theta\left(v_{i}\right) \\
& \leq 2 m+\sum_{v_{i} \in S} \sum_{\substack{v_{j} \in S \\
v_{i} \sim v_{j}}}\left(d\left(v_{j}\right)-1\right)+\sum_{v_{i} \in V(G)-S} \sum_{\substack{v_{j} \in S \\
v_{i} \sim v_{j}}}\left(d\left(v_{j}\right)-1\right)-\sum_{v_{i} \in V(G)} \theta\left(v_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq 2 m+k(k-1)(\Delta-1)+k(n-k)(\Delta-1)-\sum_{v_{i} \in V(G)} \theta\left(v_{i}\right) \\
& =2 m+k(n-1)(\Delta-1)-\sum_{v_{i} \in V(G)} \theta\left(v_{i}\right) .
\end{aligned}
$$

Equality occurs if and only if $\left|\pi_{v_{i}}\left(v_{j}\right)\right|=d\left(v_{j}\right)-1=\Delta-1, \quad \sum_{v_{i} \in S} \sum_{v_{j} \in S}\left(d\left(v_{j}\right)-1\right)=$ $k(k-1)(\Delta-1)$ and $\sum_{v_{i} \in V(G)-S} \sum_{\substack{v_{j} \in S \\ v_{i} \sim v_{j}}}\left(d\left(v_{j}\right)-1\right)=k(n-k)(\Delta-1)$. The first of these equalities implies that $v_{j} \in S$ has no common neighbour with any $v_{i} \in V(G)$ and $d\left(v_{j}\right)=\Delta$. The second equality implies that $\langle S\rangle$ is a complete graph on k-vertices and the third equality implies that every vertex $v_{i} \in V(G)-S$ is adjacent to each vertex in S. Combining all these we obtain the graph as mentioned in the hypothesis.

The following is an immediate consequence of part (i) of the Theorem 3.4.
Corollary 3.5. If n is even and $S=\left\{v_{1}, v_{2}, \ldots, v_{\frac{n}{2}}\right\}$ is an independent MDMC-set in G, then $2 m\left(G^{S}\right) \leq \frac{1}{8} n^{2}(n+2)-\sum_{v_{i} \in V(G)-S} \theta\left(v_{i}\right)$, with equality if and only if $G \cong K_{\frac{n}{2}, \frac{n}{2}}$.

Let $N\left(v_{i}\right)=\left\{v_{j} \in V(G): v_{j} \sim v_{i}\right\}$ be the neighbourhood of v_{i} in G and let G be a tree with r-pendent vertices. We have the following observation about the number of edges in G^{S}.

Theorem 3.6. Let G be a tree with r-pendant vertices and let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a MDMC-set in G.
(i) If S is an independent set, then $2 m\left(G^{S}\right) \leq \Delta(2 n-k-r)$, with equality if and only if every vertex in S is of degree $\Delta=\max \left\{d_{i}, i=1,2, \ldots, n,\right\}$ and
(ii) if S is not an independent set, then $2 m\left(G^{S}\right) \leq 2 m+2(\Delta-1)(k-1)+\Delta(2 n-2 k-r)$, with equality if and only if every vertex in S is of degree Δ and $\langle S\rangle=P_{k}$, a path of length $k-1$.

Proof. (i). If S is an independent MDMC-set in G which is a tree with r-pendant vertices, then $d^{\prime}\left(v_{1}\right)=d\left(v_{i}\right)$, for all $v_{i} \in S$ and no pendant vertex of G is in S. If $v_{i} \in V(G)-S$ is not a pendant vertex, then $\sum_{\substack{v_{j} \in S \\ v_{i} \sim v_{j}}} d\left(v_{j}\right)-\theta\left(v_{i}\right) \leq d\left(v_{j}\right)+d\left(v_{s}\right)$, where $v_{j}, v_{s} \in N\left(v_{i}\right) \cap S$ and if $v_{i} \in V(G)-S$ is a pendant vertex, then $\sum_{\substack{v_{j} \in S \\ v_{i} \sim v_{j}}} d\left(v_{j}\right)-\theta\left(v_{i}\right) \leq d\left(v_{j}\right)$, for $v_{j} \in N\left(v_{i}\right) \cap S$. Therefore,

$$
\begin{aligned}
& 2 m\left(G^{S}\right)=\sum_{v_{i} \in S} d\left(v_{i}\right)+\sum_{v_{i} \in V(G)-S} \sum_{v_{j} \in S} d\left(v_{j}\right) \\
& \leq k \Delta+r \Delta+2(n-k-r) \Delta \\
& v_{i} \sim v_{j} \\
&=\Delta(2 n-k-r)
\end{aligned}
$$

It is easy to see that equality occurs if and only if $d\left(v_{j}\right)=\Delta$, for all $v_{j} \in S$.
(ii). If S is not an independent MDMC-set in G and $v_{i} \in S$, then for the vertices v_{j} and v_{s}, we have

$$
\sum_{\substack{v_{j} \in S \\
v_{i} \sim v_{j}}}\left|\pi_{v_{i}}\left(v_{j}\right)\right|-\theta\left(v_{i}\right) \leq\left\{\begin{array}{lr}
d\left(v_{j}\right)+d\left(v_{s}\right)-2, & \text { if } v_{i} \text { has two neighbours in } S, \\
d\left(v_{j}\right)-1, & \text { if } v_{i} \text { has one neighbour in } S .
\end{array}\right.
$$

If $F=N\left(v_{i}\right) \cap S$, then for $v_{i} \in V(G)-S$, there is a vertex $v_{s} \in F$ so that

$$
\sum_{\substack{v_{j} \in S \\
v_{i} \sim v_{j}}}\left|\pi_{v_{i}}\left(v_{j}\right)\right|-\theta\left(v_{i}\right) \leq\left\{\begin{array}{lr}
d\left(v_{j}\right)+d\left(v_{s}\right), & \text { if } v_{j}, v_{s} \in F, v_{i} \text { not a pendant vertex }, \\
d\left(v_{j}\right), & \text { if } v_{j} \in F, v_{i} \text { a pendant vertex. }
\end{array}\right.
$$

Therefore, we have

$$
\begin{aligned}
2 m(G) S & =\sum_{v_{i} \in V(G)} d\left(v_{i}\right)+\sum_{\substack{v_{i} \in V(G)}} \sum_{\substack{v_{j} \in S \\
v_{i} \sim v_{j}}}\left|\pi_{v_{i}}\left(v_{j}\right)\right|-\sum_{v_{i} \in V(G)} \theta\left(v_{i}\right) \\
& \leq 2 m+(k-2)(2 \Delta-2)+2(\Delta-1)+2 \Delta(n-k-r)+r \Delta \\
& =2 m+2(\Delta-1)(k-1)+\Delta(2 n-2 k-r) .
\end{aligned}
$$

Equality will occur if and only if each vertex of S is of degree Δ and $\langle S\rangle$ is connected. Since G is a tree, therefore $\langle S\rangle$ must be a path on k vertices and every vertex not in S should be a pendant vertex.

A graph G is said to be bipartite if its vertex set $V(G)$ can be partitioned in two disjoint subsets V_{1} and V_{2}, such that every edge in G has one end in V_{1} and another in V_{2}. It is well known that a graph G is bipartite if and only if it contains no odd cycles (cycles with odd number of vertices) [5]. The following result characterizes the bipartite MDMC-graphs.

Theorem 3.7. Let G be a connected graph and S be an MDMC-set in G. Then G^{S} is bipartite if and only if $G \cong K_{2}$.
Proof. Let G^{S} be the MDMC-graph of G. Since G is connected, it follows that the graph G^{S} is connected. If G^{S} is bipartite, then it contains no odd cycles. We claim that G contains no vertex v_{i}, such that $d\left(v_{i}\right) \geq 2$. If possible suppose there is a vertex (say) $v_{j} \in V(G)$, such that $d\left(v_{j}\right) \geq 2$. By definition, the graph G^{S} is obtained from the graph G by adding edges between the non-adjacent vertices in G which share a neighbour in S, so we have the following cases to consider.

Since $d\left(v_{j}\right) \geq 2$, there are at least two vertices $v_{r}, v_{s} \in V(G)$ which are adjacent to v_{j}. Clearly v_{r} is not adjacent to v_{s}, because if they are adjacent, then $v_{j} v_{r} v_{s} v_{j}$ will be a 3-cycle in G and hence in G^{S}, which is bipartite. If $v_{j} \in S$, then v_{r} and v_{s} share a common neighbour v_{j} in S and so they are adjacent in G^{S}. Therefore, giving a 3 -cycle in G^{S}, which is bipartite, a contradiction.

On the other hand, if $v_{j} \notin S$, then both v_{r} and v_{s} must be in S. Since v_{r} is not adjacent to v_{s}, there must exist vertices $v_{l}, v_{t} \in V(G)$, such that v_{l} is adjacent to v_{r}; and v_{t} is adjacent to v_{s}, for
otherwise S can not be an MDMC-set in G. Therefore, it follows that v_{j} and v_{l} share a common neighbour in S and so will be adjacent in G^{S}, giving rise to a 3-cycle, again a contradiction. Thus, if the connected graph G^{S} is bipartite, then the graph G is connected with no vertex of degree greater than or equal to two. It is easy to see that the only possible graph with this property is K_{2}. Converse follows from the fact that $K_{2}^{S}=K_{2}$.

4. Characterization of Hamiltonian MDMC-graphs

A graph G is said to be Eulerian if and only if each of its vertex is of even degree [1, 6, 7]. If the graph G is Eulerian and S is a MDMC-set in G, then the graph G^{S} need not be Eulerian. For example, consider the 4-cycle C_{4} which is Eulerian, but $C_{4}^{S}=K_{4}-e$, where e is an edge, is not Eulerian. It is clear from the degrees of the vertices of the graph G^{S} that if the MDMC-set S is an independent set in G, then G^{S} is Eulerian if and only if every vertex in S is of even degree and there are even number of 4 -cycles of the form $v_{i} v_{j} v_{r} v_{s} v_{i}$, with $v_{j}, v_{s} \in S$ and v_{i} is not adjacent to v_{r}. However, if S is not independent in G, the characterization of G^{S} to be Eulerian seems a difficult problem and so we have the following.

Problem 4.1. If S is not an independent set in G, characterize the graphs G such that G^{S} is Eulerian?

A graph G is said to be Hamiltonian if it contains a spanning cycle (a cycle which passes through all the vertices) [1,7]. Since the graph G is a spanning subgraph of the graph G^{S}, it follows that if G is Hamiltonian then G^{S} is also Hamiltonian. However, if G^{S} is Hamiltonian, then G need not be so. For example the graph $G^{S}=K_{n}$ is Hamiltonian, but the graph $G=K_{1, n-1}$ is non-Hamiltonian with MDMC-set S consisting of a single vertex. The Hamiltoniancity of the graph G^{S} depends in general on the MDMC-set S of the graph G, which can be seen in the following result.

Theorem 4.2. Let G be a connected graph and let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}, k<n$ be an MDMC-set in G :
(I) If S is an independent set, then G^{S} is Hamiltonian if every vertex of the graph $\langle S\rangle$ lies on a cycle and there is no non-pendent cut edge, otherwise it is non-Hamiltonian.
(II) If S is not an independent set, then the graph G^{S} is Hamiltonian, if either $\langle S\rangle$ is a connected subgraph of G or $\langle S\rangle$ consists of a connected component together with some isolated vertices which lie on cycles and there is no non-pendent cut edge.

Proof. (I). Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an independent set in G and let each vertex of the induced subgraph $\langle S\rangle$ lie on some cycle in G. Suppose that G does not contain a non-pendent cut edge. Since S is an independent set, the graph G is either 1-connected or 2-connected [1, 7].

Case (i). If G is a 1 -connected graph having no pendant vertex then there will be a vertex $v_{i} \in S$ which is the cut vertex and which lies on at least two cycles. Let $u_{i_{j}}, w_{i_{j}}$ be the neighbours of the vertex v_{i} on the cycles $H_{j}, j \geq 2$. Clearly these vertices will be mutually adjacent in the graph G^{S} and thus forms a cycle around v_{i}, which traces all these vertices. This cycle together
with the cycles in G containing v_{i} gives a Hamiltonian cycle in G^{S} around v_{i}. Since every vertex of S is either a cut vertex, which lies on more than one cycle or is a non cut vertex which lies on one or more cycles in G, it follows that the above process can be continued for each of the vertices $v_{i} \in S$, which is a cut vertex. In this way we obtain Hamiltonian cycles around each of the cut vertices $v_{i} \in S$. These cycles together with the cycles holding other vertices of S in G gives a Hamiltonian cycle in G^{S}. On the other hand if G has pendant vertices, then again there will be a vertex $v_{i} \in S$ which is the cut vertex and which lies on at least two cycles; or at least two cycles and some pendant edges; or a cycle and some pendant edges.

Subcase (i). If v_{i} lies on at least two cycles and there are pendant edges on the other vertices in S, then G^{S} is Hamiltonian follows from the above case and the fact that every pendant vertex will be adjacent to at least two vertices on the cycle in G^{S} and the pendant vertices on the same vertex will be mutually adjacent in G^{S}.

Subcase (ii). If v_{i} lies on at least two cycles and some pendant edges, then there can be pendant edges on the other vertices in S. Let $u_{i_{j}}, w_{i_{j}}$ be the neighbours of the vertex v_{i} on the cycles H_{j}, $j \geq 2$ and $t_{i_{j}}, j \geq 1$ be the neighbours of v_{i} which corresponds to pendant edges. Since v_{i} is the common neighbour of the vertices $u_{i_{j}}, w_{i_{j}}, j \geq 2$ and $t_{i_{j}}, j \geq 1$, they will be mutually adjacent in G^{S} and thus forms a cycle around v_{i} which traces all these vertices. Also since every pendant vertex will be adjacent to at least two vertices on the cycle in G^{S} and the pendant vertices on the same vertex will be mutually adjacent in G^{S} they will form a cycle. Since G is connected these cycles together gives a Hamiltonian cycle in G^{S}.

Subcase (iii). The case when v_{i} lies on a cycle and some pendant edges follows similar to the cases considered above.

Case (ii). If G is 2-connected with no pendant vertices, since S is independent with each vertex on a cycle, the graph G is itself Hamiltonian and so will be the graph G^{S}. On the other hand if G is a 2 -connected graph having pendant vertices, then the graph G will contain a cycle tracing all the vertices of G other than the pendant vertices. Also any pendant vertex at $v_{i} \in S$ in G will be adjacent to at least two vertices on the cycle in G^{S} and the pendant vertices adjacent at the same vertex will be mutually adjacent in G^{S}, so they will induce a complete graph with the neighbours of v_{i} in G^{S}. These complete graphs at each such vertex $v_{i} \in S$ together with the cycle containing the vertices of S gives the Hamiltonian cycle in G^{S}.

Now, suppose that S is an independent set in G having at least one vertex say v_{t} which does not lie on a cycle in G. Let $u_{i} \in V(G)-S, i \geq 2$ be the neighbours of v_{t} in G. Clearly none of u_{i} will be on a cycle in G, because if some u_{i} lie on a cycle in G then it must be in S, which is not the case. Since G is connected, at least one of u_{i}, say u_{1}, will be adjacent to some $v_{j} \in S$. In the graph G^{S} all the $u_{i}^{\prime} s$ are mutually adjacent and thus $u_{i}^{\prime} s$ together with v_{t} induces a complete graph. Let this complete graph be H_{1}. Also the vertex u_{1} will be adjacent to all the neighbours of the vertex v_{j} and thus forms another complete graph H_{2}. The complete graphs H_{1} and H_{2} so obtained have the property that they have one common vertex namely u_{1} and there is no edge having one end in H_{1} and another in H_{2}. Thus, in G^{S} the induced subgraph H on the vertex set $V\left(H_{1}\right) \cup V\left(H_{2}\right)$ will disturb the Hamiltonicity of G^{S} (because a graph obtained by fusing a vertex of a Hamiltonian graph with a vertex of another Hamiltonian graph is not Hamiltonian) [1, 3, 7] .
(II). Let S be not independent set in G such that the induced subgraph $\langle S\rangle$ is connected. Without loss of generality, assume that $\langle S\rangle=P_{k}=v_{1} v_{2} \ldots v_{k}$. We have the following cases to consider.

Case (i). Let us suppose that the graph G has no cycle. Let v_{1}, v_{2} be any two vertices of S and let $u_{i}, i=1,2, \ldots, d_{1}$ and $w_{j}, j=1,2, \ldots, d_{2}$ be respectively the neighbours of the vertices v_{1} and v_{2}, where $u_{1}=v_{2}$ and $w_{1}=v_{1}$. Since G is acyclic, the vertices $u_{i}, i=1,2, \ldots, d_{1}$ are mutually non-adjacent in G with a common neighbour $v_{1} \in S$, so they are mutually adjacent in G^{S}. Indeed these vertices together with v_{1} will induce a complete graph of order $d_{1}+1$, say H_{1}. Similarly, the neighbours $w_{j}, j=1,2, \ldots, d_{2}$ of v_{2} will be mutually adjacent in G^{S} and so together with v_{2} induces a complete graph of order $d_{2}+1$, say H_{2}. Let $H=\left\langle V\left(H_{1}\right) \cup V\left(H_{2}\right)\right\rangle$. We claim that H is Hamiltonian. Being complete graphs, both H_{1} and H_{2} are Hamiltonian. Let $v_{1} u_{2} \ldots u_{d_{1}} u_{1} v_{1}$ be a Hamiltonian cycle in H_{1} and $v_{2} w_{2} \ldots w_{d_{2}} w_{1} v_{2}$ be a Hamiltonian cycle in H_{2}. Since $u_{1}=v_{2}$ and $w_{1}=v_{1}$, we get $v_{1} u_{2} \ldots u_{d_{1}} u_{1}=v_{2} w_{2} \ldots w_{d_{2}} w_{1}=v_{1}$ as a Hamiltonian cycle in H. Thus if $k=2$, the graph $G^{S}=H$ is Hamiltonian. Assume that the result holds if $S=\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$. We show it also holds for $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. For $i=1,2, \ldots, k$, let H_{i} be the complete graph induced by the neighbours of v_{i} together with v_{i}. Let $U=\left\langle V\left(H_{1}\right) \cup V\left(H_{2}\right) \cdots \cup V\left(H_{k-1}\right)\right\rangle$. By induction hypothesis, the graph U is Hamiltonian. Let $X=\left\langle V(U) \cup V\left(H_{k}\right)\right\rangle$. By the case $k=2$, it follows that the graph X is Hamiltonian. Since $X=G^{S}$, it follows that the graph G^{S} is Hamiltonian.

Case (ii). On the other hand if G contains cycles, then the vertices in S can have common neighbours. Let $u_{i}(1 \leq i \leq t)$ and $w_{j}(1 \leq j \leq r), t+r=d_{1}$ be the neighbours of $v_{1} \in S$; and $q_{i}(1 \leq i \leq p)$ and $w_{j}(1 \leq j \leq r), p+r=d_{2}$ be the neighbours of $v_{2} \in S$, where $u_{t}=v_{2}$ and $q_{p}=v_{1}$. As two non-adjacent vertices having a common neighbour in S are made adjacent in G^{S}, it follows that the graph Y_{1} induced by the neighbours of v_{1} together with v_{1} will be a complete graph of order $d_{1}+1$ and therefore Hamiltonian. Let $v_{1} u_{1} u_{2} \ldots u_{t} w_{1} w_{2} \ldots w_{r} v_{1}$ be a Hamiltonian cycle in Y_{1}. Similarly let $v_{2} q_{1} q_{2} \ldots q_{p} w_{1} w_{2} \ldots w_{r} v_{2}$ be a Hamiltonian cycle in the graph Y_{2} induced by the neighbours of v_{2} together with v_{2}. Then $v_{1} u_{1} u_{2} \ldots u_{t}=v_{2} w_{1} w_{2} \ldots w_{r} q_{1} q_{2} \ldots q_{p}=v_{1}$ is a Hamiltonian cycle in $Y=\left\langle V\left(Y_{1}\right) \cup V\left(Y_{2}\right)\right\rangle$. Proceeding inductively as above, we see that the result follows in this case as well.

Lastly, suppose that the graph induced by the vertices in S consists of a connected component and some isolated vertices, which lie on cycles and there is no non-pendent cut edge in G. Let $\langle S\rangle=\left\langle S_{1}\right\rangle \cup\left\{v_{t+1}, v_{t+2}, \ldots, v_{k}\right\}$, where $\left\langle S_{1}\right\rangle$ is the connected component of $\langle S\rangle$ induced by $v_{1}, v_{2}, \ldots, v_{t}$; and $v_{t+1}, v_{t+2}, \ldots, v_{k}$ are the isolated vertices, which lie on the cycles in G. The result now follows by using case (i) of part I and case (i) and (ii) of part II and the fact that G is connected.

From the above theorem, it is clear that the Hamiltoniancity of the supergraph G^{S} depends upon the induced graph $\langle S\rangle$.

5. Independence and Covering number of MDMC-graphs

An independent set of vertices in G with maximum cardinality is called maximum independent set (or vertex independent set) and its cardinality is called independence number of G and is denoted by $\beta_{0}=\beta_{0}(G)[1,6,7]$. The cardinality of a minimum (vertex) covering set in G is called covering number of G and is denoted by $\alpha_{0}=\alpha_{0}(G)$. It is easy to see that the set S is a minimum
covering set in G if and only if $V(G)-S$ is a maximum independent set in $G[1,6,7]$. So if $|V(G)|=n$, then

$$
\begin{equation*}
\alpha_{0}+\beta_{0}=n \tag{3}
\end{equation*}
$$

We first obtain a connection between the vertex covering number α_{0}^{S} of G^{S} and the vertex covering number α_{0} of G.

Theorem 5.1. Let S be an MDMC-set of a connected graph $G\left(G \neq K_{n}\right)$ having independence number β_{0} and covering number α_{0} and let α_{0}^{S} be the covering number of the graph G^{S}. Then $\alpha_{0}^{S}=n-\alpha_{0}=\beta_{0}$, if either S is independent; or $\langle S\rangle=P_{k}$ and G is acyclic.

Proof. For $k=\alpha_{0}$, let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an independent MDMC-set of G and let $S^{\prime}=$ $V(G)-S=\left\{v_{k+1}, v_{k+2}, \ldots, v_{n}\right\}$ be the complement of S in G. Since the set S is a maximum degree minimum covering set, it is a minimum covering set, therefore it follows from equation (3) the set S^{\prime} is a maximum independent set of G, and $\alpha_{0}+\beta_{0}=n$, where $\beta_{0}=n-k$. The set S being independent implies each vertex $v_{i} \in S, i=1,2, \ldots, k$ has its neighbours among the vertices $S^{\prime}=\left\{v_{k+1}, v_{k+2}, \ldots, v_{n}\right\}$, so the set S^{\prime} is also a covering set of G. As the graph G^{S} is obtained from G by joining pairs of non-adjacent vertices which have a common neighbour in S, it follows that any two vertices $v_{j}, v_{t} \in S^{\prime}, 1+k \leq j, t \leq n$, which have a common neighbour in S are adjacent in G^{S}, while as the vertices within S will remain non-adjacent in G^{S} and so the set S will be independent in G^{S}. Clearly the set S^{\prime} is a covering set in G^{S}, because G^{S} is simply G together with some additional edges between the vertices in S^{\prime}.

We claim that the set S^{\prime} is a minimum covering set of G^{S}. If not, let X^{\prime} be a covering set of G^{S} with $\left|X^{\prime}\right|<\left|S^{\prime}\right|$ and let $X=V\left(G^{S}\right)-X^{\prime}$ be its complement in G^{S}. By equation (3) the set X is an independent set of G^{S} with $|S|<|X|$. Clearly the set X can not contain all the vertices $v_{i} \in S, i=1,2, \cdots, k$, because if it is so, then $X=S \cup\left\{u_{i}: u_{i} \in S^{\prime}, i \geq 1\right\}$. Since X is independent in G^{S} it is so in G and therefore some $u_{i} \in S^{\prime}$ will not be adjacent with any of the vertices in S, which is not possible as S is an MDMC-set in G. So X must be of the from $X=\left\{u_{1}, u_{2}, \ldots, u_{t}, w_{1}, w_{2}, \ldots, w_{r}\right\}$, where $u_{i} \in S, w_{j} \in S^{\prime}$ and $t+r>k$. If $q_{i j}$, $\left(j=1,2, \ldots, d_{i}\right)$ are the neighbours of $v_{i} \in S$ for all $i=1,2, \ldots, k$, then in the graph G^{S} the vertices $q_{i_{j}},\left(j=1,2, \ldots, d_{i}\right)$ will induce a complete graph together with v_{i}. For $i=1,2, \ldots, k$, let H_{i} be the complete graphs induced by the neighbours of v_{i} with v_{i}. Since independence number of a complete graph is one and independence number of a graph obtained by either fusing a vertex or an edge of two complete graphs is two, it follows that the independence number of the graph obtained by either fusing a vertex or an edge of H_{i} and $H_{j}(i, j=1,2, \ldots, k, i<j)$, in a chain is exactly k. Now G is connected implies that G^{S} is connected, and we have $G^{S}=$ $\left\langle V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup \cdots \cup V\left(H_{n}\right)\right\rangle$, in fact if $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, then G^{S} is obtained by either fusing an edge or a vertex (depending whether the neighbours of v_{i} lie on a cycle or not) of the complete graphs H_{i} corresponding to the vertices $v_{i}, i=1,2, \ldots, k$. So it follows that the independence number of the graph G^{S} is k, a contradiction, to the fact that X is an independent set of G^{S} with cardinality $|X|>|S|=k$. This verifies our claim. Thus it follows that the set S^{\prime} is a minimum covering set of G. Since $\left|S^{\prime}\right|=n-\alpha_{0}$, it follows from equation (3), $\alpha_{0}^{S}=\beta_{0}$.

On the other hand suppose that G is acyclic and for $\left(k=\alpha_{0}\right), S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, is an

MDMC-set of G, such that $\langle S\rangle=P_{k}$. Let $S^{\prime}=V(G)-S=\left\{v_{k+1}, v_{k+2}, \ldots, v_{n}\right\}$, be the complement of S in G. Since G is acyclic and $\langle S\rangle=P_{k}$, it follows that each of the vertices $v_{j} \in S^{\prime}$ is a pendant vertex in G. Let $f_{i_{j}}, j=1,2, \ldots, d_{i}$, be the neighbours of the vertices v_{i} in G and let H_{i}, $i=1,2, \cdots, k$, be the complete graphs induced by the neighbours of v_{i} together with v_{i}, such that if v_{t} and v_{s} are consecutive in P_{k}, then the induced subgraph $H=\left\langle V\left(H_{t}\right) \cup V\left(H_{s}\right)\right\rangle$ has independence number two. Proceeding inductively, and using $G^{S}=\left\langle V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup \cdots \cup V\left(H_{k}\right)\right\rangle$, we conclude that the independence number of the graph G^{S} is k. Now using equation (3) the result follows.

Since for a bipartite graph α_{0} (vertex covering number)= β_{1} (edge independence number) and α_{1} (edge covering number) $=\beta_{0}$ (vertex independence number)[7], we have the following observation.

Corollary 5.2. If G is a bipartite graph having vertex (edge) covering number α_{0} (respectively α_{1}) and vertex (edge) independence number β_{0} (respectively β_{1}), then $\beta_{1}^{S}=\beta_{0}$, where β_{1}^{S} is the edge independence number (that is, matching number) of the graph G^{S} and S is an independent MDMC-set.

From Theorem 5.1, it follows that, if G is a graph having vertex covering number same as the vertex independence number, then the supergraph G^{S} also has vertex covering number same as the vertex independence number. The importance of this fact can be seen as follows.

In a graph G that represents a road network between cities (with straight roads and no isolated vertices), we can interpret the problem of finding a minimum vertex cover as the problem of placing the minimum number of policemen to guard the entire road network. Suppose that the cardinality of an independent minimum vertex cover S (or a minimum vertex covering set S with $\langle S\rangle=P_{k}$ and G is a acyclic) for G is known. If we want to construct roads between the non-adjacent cities, with out effecting the cardinality of the minimum vertex cover, then in order to obtain such a road network we need to construct the graph G^{S}.

If S is an MDMC-set of the graph G, define $\Omega=\left\{\left(v_{i}, v_{j}\right): v_{i}, v_{j} \in S, v_{i} \sim v_{j}, i<j\right.$ and v_{i}, v_{j} lie on a 3 -cycle $\}$. If $k_{0}=|\Omega|$, then we have the following observation.

Lemma 5.3. Let α_{0} and β_{0} be respectively the vertex covering number and the vertex independence number of a connected graph G and let S be an MDMC-set of G. If α_{0}^{S} is the vertex covering number of the graph G^{S} and $\langle S\rangle=P_{k}$, then $\alpha_{0}^{S} \leq n-\alpha_{0}+k_{0}$.

Proof. For $k=\alpha_{0}$, let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, be an MDMC-set of the graph G, such that $\langle S\rangle=P_{k}$. Let $\Omega=\left\{\left(v_{i}, v_{j}\right): v_{i}, v_{j} \in S, v_{i} \sim v_{j}, i<j\right.$ and v_{i}, v_{j} lie on a 3-cycle $\}$ and $k_{0}=|\Omega|$. Let c_{q}, $q=1,2, \ldots, k_{0}$ be 3 -cycles in G containing the vertices $v_{i}, v_{j} \in S, v_{i} \sim v_{j}$. Since each of these 3 -cycles c_{q} consumes exactly two vertices from S, it follows that the number of vertices of S covered by these 3 -cycles are at most $2 k_{0}$, and so the number of vertices of S not lying on a 3 -cycle are at least $k-2 k_{0}$. For $i<j,(1 \leq i, j<k)$ and $q=1,2, \ldots, k_{0}$, let $u_{i_{s}}^{q},\left(s=1,2, \ldots, d_{i}\right)$ and $w_{j_{s}}^{q},\left(s=1,2, \ldots, d_{j}\right)$ be respectively the neighbours of the vertices v_{i} and v_{j}, which lie on
c_{q} and let $f_{l_{s}},\left(s=1,2, \ldots, d_{l}, l \geq 1\right)$ be the neighbours of the vertices $v_{l} \in S$, which does not lie on a 3-cycle, since the graph G^{S} is obtained by joining pairs of non-adjacent vertices in G which have a common neighbour in S. Let $H_{i, j}(i<j, 1 \leq i, j<k)$ be the subgraph induced by the neighbours of v_{i} and v_{j} together with v_{i} and v_{j} and let $X_{l}(l \geq 1)$, be the subgraph induced by the neighbours of v_{l} together with v_{l} in G^{S}. It is easy to see that the independence number of the subgraph $X_{l}(l \geq 1)$, is one, while as the independence number of the subgraph $H_{i, j}(i<j, 1 \leq i, j<k)$ is at least one. So if β_{0}^{S} is the independence number of the graph G^{S}, then $\beta_{0}^{S} \geq 1 . k_{0}+1$. $\left(n-2 k_{0}\right)=k-k_{0}$. Now using $\alpha_{0}^{S}+\beta_{0}^{S}=n$, it follows that $\alpha_{0}^{S} \leq n-k+k_{0}$.

Since adding edges between the vertices in S can decrease the vertex independence number, but it can simultaneously increase the number k_{0}, therefore, we have the following observation.

Corollary 5.4. Let S be an MDMC-set of a connected graph G having vertex covering number α_{0} and vertex independence number β_{0}. If α_{0}^{S} is the vertex covering number of the graph G^{S} and $\langle S\rangle$ is connected, then $\alpha_{0}^{S} \leq n-\alpha_{0}+k_{0}$.

Let G_{1} and G_{2} be any two graphs having vertex covering numbers α_{0}^{1} and α_{0}^{2}, respectively, then the vertex covering number $\alpha_{0}(G)=\alpha_{0}$ of the graph $G=G_{1} \cup G_{2}$, the disjoint union of G_{1} and G_{2} is $\alpha_{0}=\alpha_{0}^{1}+\alpha_{0}^{2}$. In fact, if α_{0}^{i} is the vertex covering number of $G_{i}, i=1,2, \ldots, k$, then the vertex covering number of $G=\bigcup_{i=1}^{k} G_{i}$ is

$$
\begin{equation*}
\alpha_{0}=\sum_{i=1}^{k} \alpha_{0}^{i} . \tag{4}
\end{equation*}
$$

Theorem 5.5. Let S be an MDMC-set of a connected graph G having vertex covering number α_{0} and vertex independence number β_{0}. If α_{0}^{S} is the vertex covering number of the graph G^{S}, then $\alpha_{0}^{S} \leq n-\alpha_{0}+k_{0}$.

Proof. For $k=\alpha_{0}$, let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an MDMC-set of the graph G and let $\langle S\rangle=$ $\bigcup_{i=1}^{t} S_{i} \cup Y$, where S_{i} are the connected components and Y is the set of isolated vertices of the induced subgraph $\langle S\rangle$. Suppose that $|Y|=g$ and $\left|S_{i}\right|=k_{i}, i=1,2, \ldots, t$. Then $g+\sum_{i=1}^{t} k_{i}=k$. Let $G_{i}, i=1,2, \ldots, t$ be the connected components of the graph G corresponding to the covering subsets S_{i} and H be the part of the graph G corresponding to the covering subset Y. By Theorem 5.1, Lemma 5.3 and equation (4) it follows that

$$
\begin{aligned}
\alpha_{0}^{S} & =\alpha_{0}\left(\bigcup_{i=1}^{t} G_{i}\right)+\alpha_{0}(H)=\sum_{i=1}^{k} \alpha_{0}\left(G_{i}\right)+\alpha_{0}(H) \\
& \leq \sum_{i=1}^{k}\left(\left|G_{i}\right|-k_{i}+k_{i_{0}}\right)+(|H|-g)=n-k+k_{0},
\end{aligned}
$$

where $k_{0}=\sum_{i=1}^{k} k_{i_{0}}$ and $k_{i_{0}}=\left|\Omega_{i}\right|$.
For bipartite graphs, we have the following.
Corollary 5.6. If G is a connected bipartite graph having vertex (edge) covering number α_{0} (respectively α_{1}) and vertex (edge) independence number β_{0} (respectively β_{1}), then $\beta_{1}^{S} \leq \beta_{0}+k_{0}$, where β_{1}^{S} is the edge independence number (or matching number) of the graph G^{S} and S is a MDMC-set.

Acknowledgements. The authors are grateful to the anonymous referees for their valuable comments, which improved the presentation of the paper.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, 1976.
[2] D. M. Cvetcović, M. Doob, I. Gutman and A. Torgašev, Recent Results in the Theory of Graph Spectra, North-Holland, Amsterdam, 1998.
[3] F. Harary, Graph Theory, Narosa Publishing House India, 2001.
[4] L. Hogben, Editor, Handbook of Linear Algebra, Chapman and Hall/CRC Press, Boca Raton, 2007.
[5] D. Konig, Graphen and Matrizen, Math. Fiz. Lapok 38 (1931) 116-119.
[6] S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient Blackswan, Hyderabad, India 2012.
[7] D. B. West, Introduction to Graph Theory, Second Edition, Pearson Prentice Hall, 2002.

