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Abstract

Association schemes on triples (ASTs) are ternary analogues of classical association schemes,
whose relations and adjacency algebras are ternary instead of binary. We provide a survey of the
current progress in the study of ASTs, highlighting open questions, suggesting research directions,
and producing some related results. We review properties of the ternary adjacency algebras of
ASTs, ASTs whose relations are invariant under some group action, and ASTs obtained from 2-
designs and two-graphs. We also provide a notion of fusion and fission ASTs, using the AST
obtained from the affine special linear group ASL(2, q) as an example.
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1. Introduction

Classical association schemes originated from Bose and Shimamoto as partitions of a Cartesian
product Ω × Ω with certain symmetry properties [5]. These may be regarded as colorings of the
edges of complete graphs satisfying desirable regularity conditions. A special case is the family
of two-class association schemes which consists of colorings with two colors that yield the family
of strongly regular graphs. The symmetry conditions that classical association schemes satisfy are
sufficiently flexible as to accommodate various mathematical structures, yet adequately rigid as to
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endow classical association schemes with many desirable algebraic and combinatorial properties
[3]. For instance, the algebras generated by the adjacency matrices of classical association schemes
are semisimple and, when commutative, satisfy duality properties that allow for the computation
of possible parameter values of various families of graphs.

In [11], Mesner and Bhattacharya defined a ternary analogue for classical association schemes
called association schemes on triples (ASTs). Instead of partitions of the Cartesian product Ω×Ω,
an AST is a partition of the Cartesian triple product Ω × Ω × Ω satisfying analogous regularity
conditions. In particular, the adjacency hypermatrices of ASTs form a ternary algebra under an
extension of the usual binary matrix product to a ternary cubic hypermatrix product.

In this survey, we share current progress in the study of ASTs, highlighting open questions,
suggesting research directions, and producing some related results. In particular, we consider prop-
erties of the ternary adjacency algebras of ASTs, ASTs whose relations are invariant under some
group action, such as symmetric ASTs, ASTs from two-transitive groups, and circulant ASTs, and
the ASTs obtained from 2-designs and two-graphs. Lastly, we provide a notion of fusion and fis-
sion ASTs, using the AST obtained from the affine special linear group ASL(2, q) as a primary
example. The parameters of this AST are also obtained, thereby extending the work done in [2].
The paper is structured as follows. We define ASTs in Section 2 and consider its algebraic struc-
ture as a ternary algebra in Section 3. Through Section 4, we examine the relationships between
group actions and ASTs. Proceeding, we explore the relationships between ASTs and 2-designs
and two-graphs in Section 5. Finally, we define fusion and fission ASTs in Section 6, providing
some examples and focusing particularly upon the AST obtained from ASL(2, q).

2. Association schemes on triples

This section is based mostly on [11] and [13]. We define an association scheme on triples
(AST) as a partition of a triple cartesian product satisfying certain symmetry conditions and then
view ASTs as ternary algebras through their adjacency hypermatrices.

Definition 2.1. Let Ω be a finite set with at least 3 elements. An association scheme on triples
(AST) on Ω is a partition X = {Ri}mi=0 of Ω× Ω× Ω with m ≥ 4 such that the following hold.

1. For each i ∈ {0, . . . ,m}, there exists an integer n
(3)
i such that for each pair of distinct

x, y ∈ Ω, the number of z ∈ Ω with (x, y, z) ∈ Ri is n(3)
i .

2. (Principal Regularity Condition.) For any i, j, k, l ∈ {0, . . . ,m}, there exists a constant plijk
such that for any (x, y, z) ∈ Rl, the number of w such that (w, y, z) ∈ Ri, (x,w, z) ∈ Rj ,
and (x, y, w) ∈ Rk is plijk.

3. For any i ∈ {0, . . . ,m} and any σ ∈ S3, there exists a j ∈ {0, . . . ,m} such that

Rj = {(xσ(1), xσ(2), xσ(3)) : (x1, x2, x3) ∈ Ri}.

4. The first four relations are R0 = {(x, x, x) : x ∈ Ω}, R1 = {(x, y, y) : x, y ∈ Ω, x ̸= y},
R2 = {(y, x, y) : x, y ∈ Ω, x ̸= y}, and R3 = {(y, y, x) : x, y ∈ Ω, x ̸= y}.

The following example is the AST on Ω = {1, 2, 3} with five relations.
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Example 2.1. Let Ω = {1, 2, 3} and X = {Ri}4i=0 be the partition of Ω × Ω × Ω given by the
following ternary relations.

R0 = {(1, 1, 1), (2, 2, 2), (3, 3, 3)},
R1 = {(1, 2, 2), (1, 3, 3), (2, 1, 1), (2, 3, 3), (3, 1, 1), (3, 2, 2)},
R2 = {(2, 1, 2), (3, 1, 3), (1, 2, 1), (3, 2, 3), (1, 3, 1), (2, 3, 2)},
R3 = {(2, 2, 1), (3, 3, 1), (1, 1, 2), (3, 3, 2), (1, 1, 3), (2, 2, 3)},
R4 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.

Then X is an AST on Ω. Since 3 is the only w ∈ Ω such that (1, 2, w) ∈ R4, we have n
(3)
4 = 1.

Further, (1, 2, 3) ∈ R4 and there is no w such that (w, 2, 3), (1, w, 3), and (1, 2, w) are all in R4.
Thus, we have p4444 = 0.

The integer n(3)
i is the third valency of Ri, analogous to the valency of a classical association

scheme. Conditions 1 and 3 imply for each i the existence of constants n(1)
i = |{z ∈ Ω : (z, x, y) ∈

Ri}| and n
(2)
i = |{z ∈ Ω : (x, z, y) ∈ Ri}| independent of any pair of distinct x, y ∈ Ω. Accord-

ingly, n(1)
i is called the first valency of Ri and n

(2)
i is called the second valency of Ri. The relations

R0, R1, R2 and R3 are called the trivial relations and the other relations are the nontrivial relations.
Further, the numbers plijk are called the intersection numbers.

An AST can be viewed in terms of hypermatrices that generate a ternary algebra whose struc-
ture constants are the plijk, mirroring the situation between classical association schemes and their
adjacency algebras.

Let X = {Ri}mi=0 be an AST on a set Ω of size ν. We associate with each Ri ∈ X the ν×ν×ν
hypermatrix Ai whose entries are indexed by Ω. This Ai is given by

(Ai)xyz =

{
1, if (x, y, z) ∈ Ri,

0, otherwise.

The C-vector space generated by the adjacency hypermatrices forms a ternary algebra under the
ternary operation ABC 7→ D, where D is the ν × ν × ν hypermatrix given by

Dxyz =
∑
w∈Ω

AwyzBxwzCxyw.

The structure constants of this ternary algebra are given by the intersection numbers plijk of X
[11]; that is, AiAjAk =

∑m
l=0 p

l
ijkAl. For instance, if we consider the AST in Example 2.1, then

we obtain A4A4A4 =
∑

l∈Ω pl444Al = 0.

3. Algebraic Structure of ASTs

Currently, little is known about the structure of the ternary algebra obtained from the adjacency
matrices of an AST. However, the situation is partially simplified by considering the subalgebra
generated by the adjacency hypermatrices of the nontrivial relations. Indeed, Corollary 2.8 of [11]
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says that the adjacency matrices {Ai}mi=4 of the nontrivial relations generate a subalgebra of the
ternary algebra generated by all the adjacency matrices {Ai}mi=0. As other theorems and remarks
in [11] provide values and restrictions for plijk when {i, j, k, l} ∩ {0, 1, 2, 3} ≠ ∅, [11] suggests
that the most interesting intersection numbers are those that arise from the above subalgebra.

One open problem is to determine whether or not the desirable algebraic properties of classical
association schemes hold for ASTs, such as the semisimplicity and duality properties of their
adjacency algebras. In [10], Lister develops a structure theory of associative ternary algebras, with
analogues of ideals, modules, identities, inverses, and decompositions. In particular, he provides
ternary analogues for fields and semisimplicity. The simplest case where we may apply [10] occurs
when the given AST has only one nontrivial relation.

Example 3.1. Let X = {Ri}4i=0 be an AST with only one nontrivial relation R4. In this case, the
ternary subalgebra generated by A4 is both associative and commutative. In fact, with A4A4A4 =
p4444A4, we see that 1

p444
A4 and A4 is a ternary identity of the subalgebra provided that p4444 ̸= 0.

Moreover, with c ̸= 0, cA4 has an inverse 1
cp4444

A4. Therefore, when there is only one nontrivial
relation R4, the subalgebra generated by A4 is a ternary field.

Beyond this, we currently have no examples of ASTs whose subalgebras generated by the ad-
jacency hypermatrices of the nontrivial relations are associative. As such, we have yet to acquire
nontrivial examples on which to apply the structure theory of [10]. A possible means to circumvent
this may be taken from [12], where a different notion of identities and inverses, called identity pairs
and inverse pairs, are defined. A means of computation of such pairs are also given, with applica-
tions to ASTs obtained from 2-designs and some two-transitive groups. Although the authors did
not provide a direct application of such pairs to ASTs, they found that computing for inverse pairs
is equivalent to solving certain equations with the structure constants of the ASTs, and that there
are plenty of inverse pairs from the subalgebras of ASTs. More recently, Gnang derived explicit
necessary and sufficient conditions for the existence of inverse pairs and used these to formulate
and prove a ternary analogue for the usual rank-nullity theorem [9].

If we instead focus on commutativity, there are nontrivial examples of commutative association
schemes that will be given in the later sections. In particular, the ASTs from 2-designs, and the
ASTs from the projective linear groups and the sporadic two-transitive groups are commutative.
However, the structural properties of the subalgebras afforded by their commutativity remain un-
known. In the classical association scheme case, the semisimplicity and duality properties may be
obtained from applications of the spectral decomposition theorem on the mutually commuting ad-
jacency matrices [3]. Although they have yet to be applied to study the structure of the subalgebras
of ASTs, there exist analogues of the fundamental theorem of linear algebra, the spectral theorem,
and the Gram-Schmidt orthogonalization process for cubic hypermatrices [8, 7].

4. ASTs from Group Actions

In this section we consider ASTs whose relations are invariant under the action of some group.
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4.1. ASTs from two-transitive groups
Analogous to Schurian association schemes, which are classical association schemes obtained

from transitive group actions [3], an AST may arise from the action of a two-transitive group.
Indeed, given a two-transitive group G acting on a set Ω, the orbits of the induced action on
Ω × Ω × Ω is an AST [11]. Further, the orbits of a two-point stabilizer are in bijection with the
nontrivial relations of the AST and the sizes of these orbits give the third valencies [11, 2].

In [11], the sizes of the ASTs from the affine group AGL(1, n), the projective group PSL(2, n),
the Suzuki group Sz(22k+1), and the Higman-Sims group HS were acquired. Some intersection
numbers from the ASTs obtained from AGL(1, n) and PSL(2, n) were also obtained. These
were extended in [2], where the sizes and third valencies of the ASTs obtained from Sn and An,
PGU(3, q), PSU(3, q), and Sp(2k, 2), Sz(22k+1) and Ree(32k+1), some subgroups of AΓL(k, n),
some subgroups of PΓL(k, n), and the sporadic two-transitive groups, were obtained. The inter-
section numbers of the ASTs from these subgroups of PΓL(k, n) and AΓL(k, n), and the sporadic
two-transitive groups were also determined. In particular, the ASTs obtained from the projective
linear groups and the sporadic two-transitive groups were found to be commutative.

As of yet, the intersection numbers of the ASTs from the projective unitary groups, the sym-
plectic groups, the Suzuki groups, and the Ree groups remain undetermined. The sizes, third
valencies, and intersection numbers of the two-transitive subgroups of AΓL(k, n) not of the form
AGL(k, n)⋊H (where H ≤ Gal(GF (n))) also remain undetermined.

4.2. Symmetric and circulant ASTs
A ternary relation R ⊆ Ω × Ω × Ω is called symmetric if it is invariant under coordinate

permutation; that is, for any σ ∈ S3, we have

R = {(xσ(1), xσ(2), x(σ(3))) : (x, y, z) ∈ R}.

An AST is called symmetric if all its nontrivial relations are symmetric [11]. In [11], some pa-
rameters of such ASTs are computed. Through these computations, the authors found that a weak
associative law holds for symmetric ASTs:

(AiAiAj)AiAi = Ai(AiAjAi)Ai = AiAi(AjAiAi).

Some examples of symmetric ASTs are the ASTs with only one nontrivial relation, and ASTs
obtained from 2-designs and two-graphs [11], as will be discussed in the next section.

Motivated by symmetric ASTs, another family of ASTs called circulant ASTs was defined in
[13]. The nontrivial relations of these ASTs are called circulant, being invariant under the action
of a common transitive cyclic subgroup of Sn. It turns out that such ASTs correspond to partitions
of a certain subset of Ω[2] = {(x, y) : x ̸= y} ⊆ Ω×Ω called AST-regular partitions. In particular,
enumerating the AST-regular partitions yields all circulant ASTs over Ω. This suggests looking
for AST-regular partitions from known families of circulant ASTs, particularly the ASTs obtained
from PSL(2, q) for q even and AGL(1, q) for q prime.

The authors of [13] also defined the notion of thinness for ternary relations, wherein a circulant
ternary relation R is said to be ab-thin provided that the mapping σab from R to Ω × Ω given
by σab(x1, x2, x3) = (xa, xb) is injective with image Ω[2]. By reasoning with thin relations, they
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showed that any nontrivial relation of a circulant AST is a disjoint union of thin circulant ternary
relations. In light of this, [13] suggests finding circulant ASTs where every nontrivial circulant
relation is thin.

The authors of [13] also suggested finding further examples of circulant ASTs. We give a
new example below, obtained through GAP 4.11.1, which is the AST obtained from the action
of the permutation representation of PSL(2, 11) of degree 11. It is a commutative AST whose
parameters are given in [2].

Example 4.1. Let G be the subgroup of S11 produced by the following generators:

(1, 2, 4, 9, 5, 7, 3, 11, 10, 6, 8), (1, 2, 5, 8, 9)(4, 10, 7, 6, 11), and (1, 2, 5, 8, 10, 11)(3, 6, 7)(4, 9).

Then G is permutation isomorphic to the degree 11 representation of PSL(2, 11) as described in
[6]. Further, the AST obtained from G is circulant, as each of its nontrivial relations is invariant un-
der the action of the subgroup of S11 generated by the length 11 cycle (1, 2, 3, 10, 6, 11, 8, 4, 5, 9, 7).

4.3. ASTs with relations invariant under some group
Motivated by the classification of classical association schemes over small vertices and the

computational simplifications that arise by considering ASTs whose relations are invariant under
some group action, [1] provided an algorithm for generating (up to isomorphism) all ASTs over
a given number of vertices whose nontrivial relations are invariant under some predetermined
group action. In particular, appropriate choices of group actions can enumerate the symmetric
ASTs, circulant ASTs, and even all ASTs over a given number of vertices, provided sufficient
computational resources are available.

The authors found that there is a unique AST over three vertices, a unique symmetric ASTs
over four or five vertices, a unique AST over four vertices with two nontrivial relations, and a
unique nontrivial circulant AST over five vertices. Since the current version of the algorithm is
computationally expensive, it would benefit from improvements either in the algorithm itself or in
its implementation.

5. ASTs from 2-Designs and Two-graphs

Although there are no constructions at this time of ASTs that serve as analogues of the Ham-
ming scheme or the Johnson scheme from classical association schemes, there are relationships
between ASTs and other combinatorial objects such as two-graphs and 2-designs [11]. In partic-
ular, the relationships with two-graphs bridge a connection between the theory of ASTs and the
theory of graphs.

5.1. 2-designs
A 2-design (Ω, B) with parameters b, v, k, λ is a family B of k-subsets of a set Ω (called blocks)

such that any 2-subset of Ω lies in exactly λ blocks, and where |Ω| = v, and |B| = b. In [11], it was
found that any symmetric nontrivial relation Ri of an AST yields a family of 2-designs. Indeed,
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the family B of all 3-subsets {x, y, z} such that (x, y, z) ∈ Ri is a 2-design. Moreover, a 2-design
B with λ = 1 yields an AST, by letting the nontrivial relations be

R4 = {(x, y, z) : x, y, z distinct, {x, y, z} lies in some block of B}

and
R5 = {(x, y, z) : x, y, z distinct, {x, y, z} does not lie in any block of B}.

The authors then proved that this subalgebra generated by the adjacency matrices A4 and A5 is
commutative but not associative. It is also not minimal, for A4 generates a proper subalgebra not
containing A5. As a converse, an AST with two nontrivial relations that are both symmetric and
whose parameters satisfy certain conditions can be recovered from a 2-design through the above
construction [11].

The construction above is for designs with λ = 1. However, it is generally not possible to pro-
ceed in a similar manner for larger values of λ, although the construction holds for certain choices
of λ-designs [11]. It remains undetermined which λ and λ-designs permit such a construction of
an AST.

5.2. Two-graphs and graphs
A collection ∆ of 3-subsets of a set Ω such that every 4-subset of Ω contains an even number

of members of ∆ is called a two-graph (Ω,∆). A two-graph is regular if each pair of elements of
Ω is contained in the same number of triples of ∆. In [11], the authors provided a correspondence
between certain ASTs and two-graphs. Due to the equivalence between two-graphs and some
families of graphs, this also bridges the study of ASTs with the study of graphs.

Given an AST {Ri}mi=0 on a set Ω, let J ⊆ {4, . . . ,m} be a subset of the indexing set of the
nontrivial relations such that Rj is symmetric for each j ∈ J . Then

∆ = {{a, b, c} : (∃i ∈ J) ((a, b, c) ∈ Ri)}

is a regular two-graph if and only if for any quadruple i, j, k, l from Ω such that an odd number of
these are in J , we have plijk = 0 [11]. Conversely, given a regular two-graph H on a set Ω, the
regularity condition of an AST is satisfied by the ternary relation R4 consisting of the 3-subsets in
H and the ternary relation R5 consisting of the 3-subsets not in H [11].

This correspondence between regular two-graphs and certain ASTs was obtained partly due
to a certain correspondence between 2-graphs and some collections of graphs. Indeed, a graph
G = (Ω, E) with vertex set Ω and edge set E yields a two-graph H = (Ω,∆) by letting

∆ = {{x, y, z} ⊆ Ω : an odd number of edges xy, xz, yz are in E} .

A two-graph H is then equivalent to the set of graphs, called the switching class of H , from which
H can be produced in the above manner [11]. This correspondence is given more precisely as
follows. Let α be any vertex of a two-graph H = (Ω,∆), then G1 = (Ω, E ′) is a representative of
the switching class of H , where E ′ consists of the edges xy such that (α, x, y) ∈ ∆. Further, letting
Ω′ = Ω \ {α} and letting G′ = {Ω′, E ′} be the derived graph of the two-graph H with respect
to α, we see that G′ = (Ω′, E ′) is the derived graph of a two-graph H if and only if α /∈ Ω′ and
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(Ω′∪{α}, E ′) is in the switching class of H [11]. A closer relationship occurs for strongly regular
graphs, where it is known that G′ = (Ω′, E ′), is the derived graph of a regular two-graph if and
only if G′ is strongly regular whose parameters satisfy certain relations. In this case, a symmetric
AST is also produced by letting Ω = Ω′ ∪ {α}, and R4 and R5 respectively be the set of odd and
even triples in (Ω, E ′) [11].

In particular, an AST with precisely two nontrivial relations R4 and R5 that are both symmetric
and whose parameters satisfy

p4445 = p4454 = p4544 = p4555 = p5444 = p5455 = p5545 = p4554 = 0,

is equivalent to a regular two-graph [11]. This partly suggests we may view ASTs as a generaliza-
tion of two-graphs. Moreover, the correspondence between regular two-graphs and ASTs allows
for the definition of a spectrum of the AST via the spectrum of the corresponding two-graphs [11].

6. Fusion and Fission ASTs

Motivated by classical fusion and fission association schemes [4], we define fusion and fission
ASTs, providing a relationship between fusion and fission ASTs and a number of examples. In
particular, we give the AST obtained from ASL(2, q) as an instance of a fission scheme of the
AST obtained from the affine general linear group AGL(2, q). Further, we obtain the parameters
of the AST from ASL(2, q), extending the results of [2] to another infinite family of two-transitive
groups. We begin with the definition of fusion and fission ASTs, ASTs that can be obtained from
combining or splitting the relations of another AST.

Definition 6.1. Let Ω be a nonempty set and let X = {Ri}mi=0 and X̃ = {R̃α}nα=0 be ASTs on Ω.
If for each i ∈ {0, . . . ,m} there exists an α ∈ {0, . . . , n} such that Ri ⊆ R̃α, then we say that X̃
is a fusion AST of X and X is a fission AST of X̃ .

In other words, the relations of a fusion AST X̃ are unions of the relations of its fission AST
X . The following theorem provides a relationship between the intersection numbers of a fission
AST and a fusion AST.

Theorem 6.1. Let Ω be a nonempty set, X = {Ri}mi=0 be an AST on Ω, and X̃ = {R̃α}nα=0 be a
fusion AST of X . For each α ∈ {0, . . . , n}, let Λα = {i ∈ {0, . . . ,m} : Ri ⊆ R̃α}. If p̃δαβγ is the
intersection number corresponding to R̃α, R̃β , R̃γ , and R̃δ, then

p̃δαβγ =
∑
i∈Λα

∑
j∈Λβ

∑
k∈Λγ

plijk

for any l ∈ Λδ. Furthermore, the third valency of a nontrivial relation R̃ϵ of X̃ is ñ(3)
ϵ =

∑
i∈Λϵ

n
(3)
i .

Proof. Fix any (x, y, z) ∈ Rl ⊆ R̃δ. The intersection number p̃δαβγ is equal to the number of w
such that (w, y, z) ∈ R̃α, (x,w, z) ∈ R̃β , and (x, y, w) ∈ R̃γ . However, these conditions on w are
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equivalent to (w, y, z) ∈ Ri for some i ∈ Λα, (x,w, z) ∈ Rj for some j ∈ Λβ , and (x, y, w) ∈ Rk

for some k ∈ Λγ . This yields
p̃δαβγ =

∑
i∈Λα

∑
j∈Λβ

∑
k∈Λγ

plijk.

Finally, given a nontrivial relation R̃ϵ of X̃ and a member (x, y, z) of R̃ϵ, the third valency ñ
(3)
ϵ is

equal to the number of w such that (x, y, w) ∈ R̃ϵ. This condition on w is equivalent to (x, y, w)

being in Ri for some i ∈ Λϵ, yielding ñ
(3)
ϵ =

∑
i∈Λϵ

n
(3)
i .

Theorem 6.1 can be expressed in terms of the adjacency hypermatrices of X and X̃ . If for
each α ∈ {0, . . . , n} we let Ãα denote the adjacency hypermatrix corresponding to R̃α ∈ X̃ , then
Ãα =

∑
i∈Λα

Ai. Hence, we have the following equality for any α, β, γ ∈ {0, . . . , n}.

ÃαÃβÃγ =
n∑

δ=0

p̃δαβγÃδ =
n∑

δ=0

∑
l∈Λδ

p̃δαβγAl =
n∑

δ=0

∑
l∈Λδ

∑
i∈Λα

∑
j∈Λβ

∑
k∈Λγ

plijk

Al.

We now give some examples of fusion and fission ASTs. First, the AST over a set Ω with only
one nontrivial relation is a fusion scheme of any AST over Ω.

Example 6.1. Let X = {Ri}mi=0 be any AST on a set Ω. Let X̃ = {R0, R1, R2, R3,∪m
i=4Ri} be

the given partition of Ω×Ω×Ω. Then X̃ is a fusion AST of X equal to the only AST over Ω with
only one nontrivial relation.

Example 6.2. The following example from two-graphs is obtained from Remark 5.6 of [11]. If an
AST X = {Rα}nα=0 that has more than two nontrivial relations contains a subset J ⊆ {4, 5, . . . ,m}
of indices such that Ri for each i ∈ J is symmetric, define

∆ = {{a, b, c} : (a, b, c) ∈ Ri for some i ∈ J}.

If for any quadruple i, j, k, l from Ω such that an odd number of these lie in J we have plijk = 0, then
∆ is a regular two-graph. This two-graph then produces an AST X̃ with two-nontrivial relations,
each of which is a union of the nontrivial relations of X; that is, X̃ is a fusion AST of X .

The next example shows that fission ASTs occur naturally from two-transitive subgroups of
two-transitive groups.

Example 6.3. Let G be a two-transitive group acting on Ω and H be a two-transitive subgroup of
G. Let X̃ be the AST obtained from the action of G on Ω and X be the AST obtained from the
action of H on Ω. Then X is a fission scheme of X̃ . Indeed, the relations of X are the orbits of
H on Ω × Ω × Ω while the relations of X̃ are the orbits of G on Ω × Ω × Ω. Since H ≤ G, the
orbits of G on Ω×Ω×Ω are unions of orbits of H . Examples of such fission ASTs occuring from
two-transitive subgroups of two-transitive groups, along with some of their parameters, are in [2].
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For the final illustration, we compute the parameters of the AST obtained from the affine special
linear group ASL(2, q) where q is a prime power, extending the work done in [2]. Since ASL(2, q)
is a two-transitive subgroup of AGL(2, q), the following is also an example of a fission scheme
and its parameters. The proofs are omitted, the methods being similar to the ones used in [2].

For ease of discussion, we fix the following notations. Let q be a prime power and X be the
AST obtained from

ASL(2, q) = {(x, y)T 7→ A(x, y)T : A ∈ SL(2, q)},

the group of affine transformations on the affine space V = (GF (q))2 whose linear parts have
determinant 1. For a ∈ GF (q), let a⃗ = (a, 0)T ∈ V . Additionally, for (u, v, w) ∈ V × V × V , let
[(u, v, w)] ∈ X denote the orbit of (u, v, w) under ASL(2, q). The size and third valencies of X
are given in the following theorem.

Theorem 6.2. Let q be a prime power and X be the AST obtained from the action of ASL(2, q).
The two-point stabilizer ASL(2, q)0⃗,⃗1 has 2q− 3 orbits on V \ {⃗0, 1⃗}. There are q− 2 orbits of the
form {a⃗}, where a ̸= 0, 1, and q − 1 orbits of the form {(c, a)T : c ∈ GF (q)}, where a ̸= 0. Thus,
X has 2q − 3 nontrivial relations. There are q − 2 nontrivial relations of the form

Ra = {[(⃗0, 1⃗, a⃗)]}, a ̸= 0, 1,

each with third valency 1. The remaining q − 1 nontrivial relations of X are of the form

aR = {[(⃗0, 1⃗, (0, a)T )]}, a ̸= 0,

each with third valency q.

For notational convenience, let Aa denote the adjacency hypermatrix corresponding to the re-
lation Ra whenever a ̸= 0, 1. Similarly, let aA denote the adjacency hypermatrix corresponding
to the relation aR whenever a ̸= 0. The intersection numbers of the subalgebra generated by the
adjacency hypermatrices of the nontrivial relations of X are given implicitly in the next theorem.

Theorem 6.3. Let q be a prime power and X be the AST obtained from the action of ASL(2, q).
The following equations hold for any a, b, c ̸= 0, 1 and a, b, c ̸= 0.

1. AaAbAc,=

{
Abc, if bc = a(1− c) + c ̸= 1,

0, otherwise.

2. AaAb cA = Aa cAAb = cAAaAb = 0.

3. aA bAAc =

{
b
cA, if ac+ bc = b,

0, otherwise.

4. aAAc bA =

{
bcA, if bc = a+ b,

0, otherwise.

5. Ac aA bA =

{
b(1−c)A, if a = −bc,

0, otherwise.
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6. aA bA cA =

{
qA− b

c , if a+ b+ c = 0,
a+b+cA, if a+ b+ c ̸= 0.

The last theorem gives the intersection numbers plijk of the ASTs obtained from ASL(2, q)
whenever exactly one of Ri, Rj , and Rk is trivial. Here I1, I2, and I3 denote the respective adja-
cency hypermatrices of the trivial relations R1, R2, and R3 of X .

Theorem 6.4. Let q be a prime power and X be the AST obtained from the action of ASL(2, q).
The following equations hold for any a, b ̸= 0, 1 and a, b ̸= 0.

1. I1A
aAb =

{
I1, if ab = 1,

0, otherwise.

2. AaI2A
b =

{
I2, if ab = a+ b,

0, otherwise.

3. AaAbI3 =

{
I3, if a+ b = 1,

0, otherwise.
4. I1A

a aA = I1
aAAa = AaI2

aA = aAI2A
a = Aa aAI3 =

aAAaI3 = 0.

5. I1
aA bA =

{
qI1, if a = −b,

0, otherwise.

6. aAI2
bA =

{
qI2, if a = −b,

0, otherwise.

7. aA bAI3 =

{
qI3, if a = −b,

0, otherwise.
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