## Electronic Journal of Graph Theory and Applications

# Reciprocal complementary distance spectra and reciprocal complementary distance energy of line graphs of regular graphs 

Harishchandra S. Ramane, Ashwini S. Yalnaik<br>Department of Mathematics, Karnatak University, Dharwad - 580003, India<br>hsramane@yahoo.com, ashwiniynaik@gmail.com


#### Abstract

The reciprocal complementary distance (RCD) matrix of a graph $G$ is defined as $R C D(G)=\left[r c_{i j}\right]$ where $r c_{i j}=\frac{1}{1+D-d_{i j}}$ if $i \neq j$ and $r c_{i j}=0$, otherwise, where $D$ is the diameter of $G$ and $d_{i j}$ is the distance between the vertices $v_{i}$ and $v_{j}$ in $G$. The $R C D$-energy of $G$ is defined as the sum of the absolute values of the eigenvalues of $R C D(G)$. Two graphs are said to be $R C D$ equienergetic if they have same $R C D$-energy. In this paper we show that the line graph of certain regular graphs has exactly one positive $R C D$-eigenvalue. Further we show that $R C D$-energy of line graph of these regular graphs is solely depends on the order and regularity of $G$. This results enables to construct pairs of $R C D$-equienergetic graphs of same order and having different $R C D$ eigenvalues.


Keywords: Reciprocal complementary distance eigenvalues, adjacency eigenvalues, line graphs, reciprocal complementary distance energy
Mathematics Subject Classification : 05C50, 05C12
DOI: 10.5614/ejgta.2015.3.2.10

## 1. Introduction

Molecular matrices, encoding in various ways the topological infromation, are an important source of structural descriptors for quantitative structure property relationships (QSPR) and quantitative structure activity relationships (QSAR) models [6]. A large number of molecular matrices

[^0]were defined in the chemical literature. One of these is reciprocal complementary distance (RCD) matrix.

Let $G$ be a simple, undirected, connected graph with $n$ vertices and $m$ edges. Let the vertices of $G$ be labeled as $v_{1}, v_{2}, \ldots, v_{n}$. The adjacency matrix of a graph $G$ is the square matrix $A=A(G)=\left[a_{i j}\right]$, in which $a_{i j}=1$ if $v_{i}$ is adjacent to $v_{j}$ and $a_{i j}=0$, otherwise. The eigenvalues of the adjacency matrix $A(G)$ are the adjacency eigenvalues of $G$, and these will be labeled as $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ and their collection is called as a adjacency spectra of $G$ [3].

The distance between the vertices $v_{i}$ and $v_{j}$, denoted by $d_{i j}$, is the length of the shortest path between them. The diameter of a graph $G$, denoted by $\operatorname{diam}(G)$, is the maximum distance between any pair of vertices of $G$. A graph $G$ is said to be $r$-regular graph if all of its vertices have same degree equal to $r$.

The reciprocal complementary distance between the vertices $v_{i}$ and $v_{j}$, denoted by $r c_{i j}$ is defined as $r c_{i j}=\frac{1}{1+D-d_{i j}}$, where $D$ is the diameter of $G$ and $d_{i j}$ is the distance between $v_{i}$ and $v_{j}$ in $G$.

The reciprocal complementary distance matrix $[6,7]$ of a graph $G$ is an $n \times n$ real symmetric matrix $R C D(G)=\left[r c_{i j}\right]$, where

$$
r c_{i j}=\left\{\begin{array}{cl}
\frac{1}{1+D-d_{i j}}, & \text { if } \quad i \neq j \\
0, & \text { otherwise }
\end{array}\right.
$$

The eigenvalues of $R C D(G)$ labeled as $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$ are said to be the $R C D$ eigenvalues of $G$ and their collection is called $R C D$-spectra of $G$. Two non-isomorphic graphs are said to be $R C D$-cospectral if they have same $R C D$-spectra.

The reciprocal complementary distance energy ( $R C D$-energy) of a graph $G$ is defined as

$$
\begin{equation*}
R C D E(G)=\sum_{i=1}^{n}\left|\mu_{i}\right| \tag{1}
\end{equation*}
$$

The Eq. (1) is defined in full analogy with the ordinary graph energy $E(G)$, defined as [4]

$$
\begin{equation*}
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| . \tag{2}
\end{equation*}
$$

Two graphs $G_{1}$ and $G_{2}$ are said to be equienergetic if $E\left(G_{1}\right)=E\left(G_{2}\right)[1,2,8,11,12,16]$. For more details on $E(G)$ one can refer [8].

Two connected graphs $G_{1}$ and $G_{2}$ are said to be reciprocal complementary distance equienergetic or RCD-equienergetic if $R C D E\left(G_{1}\right)=R C D E\left(G_{2}\right)$. Of course, $R C D$-cospectral graphs are $R C D$-equienergetic. In this paper we obtain the $R C D$-eigenvalues and $R C D$-energy of line
graphs of certain regular graphs. Further we show that the $R C D$-energy of line graphs of certain regular graphs is solely depends on the order and regularity of a graph. Thus infinitely many pairs of $R C D$-equienergetic graphs can be constructed such that they have equal number of vertices, equal number of edges and are non $R C D$-cospectral.

We need following results.
Theorem 1.1. [3] If $G$ is an r-regular graph, then its maximum adjacency eigenvalue is equal to $r$.

Theorem 1.2. [13] Let $G$ be an r-regular graph of order $n$. If $r, \lambda_{2}, \ldots, \lambda_{n}$ are the adjacency eigenvalues of $G$, then the adjacency eigenvalues of $\bar{G}$, the complement of $G$, are $n-r-1$ and $-\lambda_{i}-1, i=2,3, \ldots, n$.

The line graph of $G$, denoted by $L(G)$ is the graph whose vertices corresponds to the edges of $G$ and two vertices of $L(G)$ are adjacent if and only if the corresponding edges are adjacent in $G$ [5]. If $G$ is a regular graph of order $n$ and of degree $r$ then the line graph $L(G)$ is a regular graph of order $n r / 2$ and of degree $2 r-2$.

Theorem 1.3. [14] If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the adjacency eigenvalues of a regular graph $G$ of order $n$ and of degree $r$, then the adjacency eigenvalues of $L(G)$ are

$$
\begin{aligned}
\lambda_{i}+r-2, & i=1,2, \ldots, n, \quad \text { and } \\
-2, & n(r-2) / 2 \text { times } .
\end{aligned}
$$



Figure 1: The forbidden induced subgraphs
Theorem 1.4. $[9,10]$ For a connected graph $G$, diam $(L(G)) \leq 2$ if and only if none of the three graphs $F_{1}, F_{2}$ and $F_{3}$ of Fig. 1 is an induced subgraph of $G$.

Lemma 1.1. [15] If for any two adjacent vertices $u$ and $v$ of a graph $G$, there exists a third vertex $w$ which is not adjacent to any of $u$ and $v$, then
(i) $\bar{G}$ is connected and
(ii) $\operatorname{diam}(\bar{G}) \leq 2$.

## 2. $R C D$-eigenvalues

Theorem 2.1. Let $G$ be an $r$-regular graph on $n$ vertices and $\operatorname{diam}(G)=2$. If $r, \lambda_{2}, \ldots, \lambda_{n}$ are the adjacency eigenvalues of $G$, then its $R C D$-eigenvalues are $n-1-\frac{r}{2}$ and $-1-\frac{\lambda_{i}}{2}, i=2,3, \ldots, n$.

Proof. Since $G$ is an $r$-regular graph, $\mathbf{1}=[1,1, \ldots, 1]^{\prime}$ is an eigenvector of $A=A(G)$ corresponding to the eigenvalue $r$. Set $\mathbf{z}=\frac{1}{\sqrt{n}} \mathbf{1}$ and let $P$ be an orthogonal matrix with its first column equal to $\mathbf{z}$ such that $P^{\prime} A P=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. Since $\operatorname{diam}(G)=2, R C D(G)$ can be written as $R C D(G)=J-I-(1 / 2) A$, where $J$ is the matrix whose all entries are equal to 1 and $I$ is an identity matrix. It follows that

$$
\begin{aligned}
P^{\prime}(R C D) P & =P^{\prime}\left(J-I-\frac{1}{2} A\right) P \\
& =P^{\prime} J P-I-\frac{1}{2} P^{\prime} A P \\
& =\operatorname{diag}\left(n-1-\frac{r}{2},-1-\frac{\lambda_{2}}{2}, \ldots,-1-\frac{\lambda_{n}}{2}\right)
\end{aligned}
$$

where we have used the fact that any column of $P$ other than the first column is orthogonal to the first column. Hence the eigenvalues of $R C D(G)$ are $n-1-(r / 2)$ and $-1-\left(\lambda_{i} / 2\right)$, $i=2,3, \ldots, n$.

Theorem 2.2. If $G$ is an r-regular, connected graph of order $n \geq 4$ and if none of the three graphs $F_{1}, F_{2}$ and $F_{3}$ of Fig. 1 is an induced subgraph of $G$, then $L(G)$ has exactly one positive $R C D$-eigenvalue, equal to $r(n-2) / 2$.

Proof. Let $r, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$ be the adjacency eigenvalues of a regular graph $G$. Then from Theorem 1.3, the adjacency eigenvalues of $L(G)$ are

$$
\left.\begin{array}{rll}
\lambda_{i}+r-2, & i=1,2, \ldots, n, & \text { and }  \tag{3}\\
-2, & n(r-2) / 2 \text { times. } &
\end{array}\right\}
$$

The graph $G$ is regular of degree $r$ and has order $n$. Therefore $L(G)$ is a regular graph on $n r / 2$ vertices and of degree $2 r-2$. As none of the three graphs $F_{1}, F_{2}$ and $F_{3}$ of Fig. 1 is an induced subgraph of $G$, from Theorem 1.4, $\operatorname{diam}(L(G))=2$. Therefore from Theorem 2.1 and Eq. (3), the $R C D$-eigenvalues of $L(G)$ are

$$
\left.\begin{array}{rll}
r(n-2) / 2, & \text { and }  \tag{4}\\
-\left(\lambda_{i}+r\right) / 2, & i=2,3, \ldots, n & \text { and } \\
0, & n(r-2) / 2 \text { times. } &
\end{array}\right\}
$$

All adjacency eigenvalues of a regular graph of degree $r$ satisfy the condition $-r \leq \lambda_{i} \leq r$ [3]. Therefore $\lambda_{i}+r \geq 0, i=1,2, \ldots, n$. The theorem follows from Eq. (4).

## 3. $R C D$-energy

Theorem 3.1. If $G$ is an r-regular, connected graph of order $n \geq 4$ and if none of the three graphs $F_{1}, F_{2}$ and $F_{3}$ of Fig. 1 is an induced subgraph of $G$, then

$$
R C D E(L(G))=r(n-2)
$$

Proof. Bearing in mind Theorem 2.2 and Eq. (4), the $R C D$-energy of $L(G)$ is computed as:

$$
\begin{aligned}
R C D E(L(G)) & =\frac{r(n-2)}{2}+\sum_{i=2}^{n} \frac{\left(\lambda_{i}+r\right)}{2}+|0| \times \frac{n(r-2)}{2} \\
& =r(n-2) \quad \text { since } \quad \sum_{i=2}^{n} \lambda_{i}=-r
\end{aligned}
$$

From Theorem 3.1, we see that the $R C D$-energy of the line graph of a regular graph $G$, that does not contain $F_{i}, i=1,2,3$, as an induced subgraph is fully determined by the order $n$ and degree $r$ of $G$.

Let $K_{n}$ be the complete graph on $n$ vertices, $K_{k, k}$ be the complete bipartite graph on $2 k$ vertices and $C P(k)$ be the cocktail party graph (a regular graph on $n=2 k$ vertices and of degree $2 k-2$ ) [3]. None of the three graphs $F_{1}, F_{2}$ and $F_{3}$ of Fig. 1 is an induced subgraph of these graphs. Therefore from Theorem 3.1 we have following:

Corollary 3.1. (i) $R C D E\left(L\left(K_{n}\right)\right)=n^{2}-3 n+2$, for $n \geq 4$.
(ii) $R C D E\left(L\left(K_{k, k}\right)\right)=2 k(k-1)$, for $k \geq 2$.
(iii) $R C D E(L(C P(k)))=4(k-1)^{2}$, for $k \geq 2$.

Theorem 3.2. Let $G$ be an r-regular graph of order $n$. Let $L(G)$ be the line graph of $G$ such that for any two adjacent vertices $u$ and $v$ of $L(G)$, there exists a third vertex $w$ in $L(G)$ which is not adjacent to any of $u$ and $v$.
(i) If the smallest adjacency eigenvalue of $G$ is greater than or equal to $3-r$, then

$$
R C D E(\overline{L(G)})=3 n(r-2) / 2
$$

(ii) If the second largest adjacency eigenvalue of $G$ is at most $3-r$, then

$$
R C D E(\overline{L(G)})=(n r / 2)+2 r-3
$$

Proof. Let the adjacency eigenvalues of $G$ be $r, \lambda_{2}, \ldots, \lambda_{n}$. From Theorem 1.3, the adjacency eigenvalues of $L(G)$ are

$$
\left.\begin{array}{rll}
2 r-2, & \text { and }  \tag{5}\\
\lambda_{i}+r-2, & i=2,3, \ldots, n, & \text { and } \\
-2, & n(r-2) / 2 \text { times. } &
\end{array}\right\}
$$

From Theorem 1.2 and the Eq. (5), the adjacency eigenvalues of $\overline{L(G)}$ are

$$
\left.\begin{array}{rl}
(n r / 2)-2 r+1, & \text { and }  \tag{6}\\
-\lambda_{i}-r+1, & i=2,3, \ldots, n, \\
1, & n(r-2) / 2 \text { times. }
\end{array} \quad \text { and }\right\}
$$

Since for any two adjacent vertices $u$ and $v$ of $L(G)$ there exists a third vertex $w$ which is not adjacent to any of $u$ and $v$ in $L(G)$, by Lemma 1.1, $\operatorname{diam}(\overline{L(G)})=2$. Therefore by Theorem 2.1 and Eq. (6), the $R C D$-eigenvalues of $\overline{L(G)}$ are

$$
\left.\begin{array}{rll}
(n r / 4)+r-(3 / 2), & \text { and }  \tag{7}\\
\frac{\lambda_{i}+r-3}{2}, & i=2,3, \ldots, n, & \text { and } \\
(-3 / 2), & n(r-2) / 2 \text { times. } &
\end{array}\right\}
$$

Therefore

$$
\begin{equation*}
R C D E(\overline{L(G)})=\left|\frac{n r}{4}+r-\frac{3}{2}\right|+\sum_{i=2}^{n}\left|\frac{\lambda_{i}+r-3}{2}\right|+\left|-\frac{3}{2}\right| \frac{n(r-2)}{2} . \tag{8}
\end{equation*}
$$

(i) By assumption, $\lambda_{i}+r-3 \geq 0, i=2,3, \ldots n$, then from Eq. (8)

$$
\begin{aligned}
R C D E(\overline{L(G)}) & =\frac{n r}{4}+r-\frac{3}{2}+\sum_{i=2}^{n}\left(\frac{\lambda_{i}+r-3}{2}\right)+\frac{3 n(r-2)}{4} \\
& =\frac{n r}{4}+r-\frac{3}{2}+\frac{1}{2} \sum_{i=2}^{n} \lambda_{i}+(n-1)\left(\frac{r-3}{2}\right)+\frac{3 n(r-2)}{4} \\
& =\frac{3 n(r-2)}{2} \quad \text { since } \quad \sum_{i=2}^{n} \lambda_{i}=-r .
\end{aligned}
$$

(ii) By assumption, $\lambda_{i}+r-3<0, i=2,3, \ldots n$, then from Eq. (8)

$$
\begin{aligned}
R C D E(\overline{L(G)}) & =\frac{n r}{4}+r-\frac{3}{2}-\sum_{i=2}^{n}\left(\frac{\lambda_{i}+r-3}{2}\right)+\frac{3 n(r-2)}{4} \\
& =\frac{n r}{4}+r-\frac{3}{2}-\frac{1}{2} \sum_{i=2}^{n} \lambda_{i}-(n-1)\left(\frac{r-3}{2}\right)+\frac{3 n(r-2)}{4} \\
& =\frac{n r}{2}+2 r-3 \quad \text { since } \quad \sum_{i=2}^{n} \lambda_{i}=-r .
\end{aligned}
$$

Some of the examples of $r$-regular graphs whose second largest adjacency eigenvalue is at most $3-r$ and the diameter of the complement of their line graph is equal to two are a 5 -vertex cycle $C_{5}$, a 5-vertex complete graph $K_{5}$, a 6-vertex cycle $C_{6}$ and a complete bipartite graph $K_{3,3}$.

Corollary 3.2. Let $G$ be a cubic graph of order n. Let $L(G)$ be the line graph of $G$ such that for any two adjacent vertices $u$ and $v$ of $L(G)$, there exists a third vertex $w$ in $L(G)$ which is not adjacent to any of $u$ and $v$. Then

$$
R C D E(\overline{L(G)})=\frac{3 n+E(G)}{2}
$$

Proof. Substituting $r=3$ in Eq. (8) we get

$$
\begin{aligned}
R C D E(\overline{L(G)}) & =\left|\frac{3 n}{4}+\frac{3}{2}\right|+\sum_{i=2}^{n}\left|\frac{\lambda_{i}}{2}\right|+\left|-\frac{3}{2}\right| \frac{n}{2} \\
& =\frac{3 n}{4}+\frac{3}{2}+\frac{1}{2}(E(G)-3)+\frac{3 n}{4} \\
& =\frac{3 n+E(G)}{2}
\end{aligned}
$$

## 4. RCD-equienergetic graphs

Lemma 4.1. Let $G_{1}$ and $G_{2}$ be regular graphs of the same order and of the same degree. Then following holds:
(i) $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ are of the same order, same degree and have the same number of edges.
(ii) $\overline{L\left(G_{1}\right)}$ and $\overline{L\left(G_{2}\right)}$ are of the same order, same degree and have the same number of edges.

Proof. Statement (i) follows from the fact that the line graph of a regular graph is a regular and that the number of edges of $G$ is equal to the number of vertices of $L(G)$. Statement (ii) follows from the fact that the complement of a regular graph is a regular and that the number of vertices of a graph and its complement is equal.

Lemma 4.2. Let $G_{1}$ and $G_{2}$ be regular, connected graphs of the same order $n \geq 4$ and of the same degree. Let none of the three graphs $F_{1}, F_{2}$ and $F_{3}$ of Fig. 1 be an induced subgraph of $G_{i}$, $i=1,2$. Then $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ are $R C D$-cospectral if and only if $G_{1}$ and $G_{2}$ are cospectral.

Proof. Follows from Eqs. (3) and (4).
Lemma 4.3. Let $G_{1}$ and $G_{2}$ be regular graphs of the same order and of the same degree. Let for $i=1,2, L\left(G_{i}\right)$ be the line graph of $G_{i}$ such that for any two adjacent vertices $u_{i}$ and $v_{i}$ of $L\left(G_{i}\right)$, there exists a third vertex $w_{i}$ in $L\left(G_{i}\right)$ which is not adjacent to any of $u_{i}$ and $v_{i}$. Then $\overline{L\left(G_{1}\right)}$ and $\overline{L\left(G_{2}\right)}$ are $R C D$-cospectral if and only if $G_{1}$ and $G_{2}$ are cospectral.

Proof. Follows from Eqs. (5), (6) and (7).
Theorem 4.1. Let $G_{1}$ and $G_{2}$ be regular, connected, non cospectral graphs of the same order $n \geq 4$ and of the same degree $r$. Let none of the three graphs $F_{1}, F_{2}$ and $F_{3}$ of Fig. 1 be an induced subgraph of $G_{i}, i=1,2$. Then line graphs $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ form a pair of non $R C D$-cospectral, $R C D$-equienergetic graphs of equal order and of equal number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.2 and Theorem 3.1.
Theorem 4.2. Let $G_{1}$ and $G_{2}$ be regular, non cospectral graphs of the same order and of the same degree $r$. Let for $i=1,2, L\left(G_{i}\right)$ be the line graph of $G_{i}$ such that for any two adjacent vertices $u_{i}$ and $v_{i}$ of $L\left(G_{i}\right)$, there exists a third vertex $w_{i}$ in $L\left(G_{i}\right)$ which is not adjacent to any of $u_{i}$ and $v_{i}$.
(i) If the smallest adjacency eigenvalue of $G_{i}, i=1,2$ is greater than or equal to $3-r$, then $\overline{L\left(G_{1}\right)}$ and $\overline{L\left(G_{2}\right)}$ form a pair of non $R C D$-cospectral, $R C D$-equienergetic graphs of equal order and of equal number of edges.
(ii) If the second largest adjacency eigenvalue of $G_{i}, i=1,2$ is at most $3-r$, then $\overline{L\left(G_{1}\right)}$ and $\overline{L\left(G_{2}\right)}$ form a pair of non $R C D$-cospectral, $R C D$-equienergetic graphs of equal order and of equal number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.3 and Theorem 3.2.
Theorem 4.3. Let $G_{1}$ and $G_{2}$ be non cospectral, cubic equienergetic graphs of the same order. Let for $i=1,2, L\left(G_{i}\right)$ be the line graph of $G_{i}$ such that for any two adjacent vertices $u_{i}$ and $v_{i}$ of $L\left(G_{i}\right)$, there exists a third vertex $w_{i}$ in $L\left(G_{i}\right)$ which is not adjacent to any of $u_{i}$ and $v_{i}$. Then $\overline{L\left(G_{1}\right)}$ and $\overline{L\left(G_{2}\right)}$ form a pair of non $R C D$-cospectral, $R C D$-equienergetic graphs of equal order and of equal number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.3 and Corollary 3.2.

## Acknowledgement

Authors are thankful to anonymous referee for his/her valuable suggestions. The first author H. S. Ramane is thankful to the University Grants Commission (UGC), Govt. of India for support through research grant under UPE FAR-II grant No. F 14-3/2012 (NS/PE). Another author A. S. Yalnaik is thankful to the University Grants Commission (UGC), Govt. of India for support through Rajiv Gandhi National Fellowship No. F1-17.1/2014-15/RGNF-2014-15-SC-KAR74909.

## References

[1] R. Balakrishnan, The energy of a graph, Linear Algebra Appl., 387 (2004), 287-295.
[2] V. Brankov, D. Stevanović, I. Gutman, Equienergetic chemical trees, J. Serb. Chem. Soc., 69 (2004), 549-553.
[3] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Application, Academic Press, New York, 1980.
[4] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103 (1978), 1-22.
[5] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
[6] O. Ivanciuc, T. Ivanciuc, A. T. Balaban, The complementary distance matrix, a new molecular graph metric, ACH-Models Chem. 137(1) (2000), 57-82.
[7] D. Jenežić, A. Miličević, S. Nikolić, N. Trinajstić, Graph Theoretical Matrices in Chemistry, Uni. Kragujevac, Kragujevac, 2007.
[8] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[9] H. S. Ramane, I. Gutman, A. B. Ganagi, H. B. Walikar, On diameter of line graphs, Iranian J. Math. Sci. Inf., 8(1) (2013), 105-109.
[10] H. S. Ramane, D. S. Revankar, I. Gutman, H. B. Walikar, Distance spectra and distance energies of iterated line graphs of regular graphs, Publ. Inst. Math. (Beograd), 85 (2009), 39-46.
[11] H. S. Ramane, H. B. Walikar, Construction of equienergetic graphs, MATCH Commun. Math. Comput. Chem., 57 (2007), 203-210.
[12] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog, I. Gutman, Equienergetic graphs, Kragujevac J. Math., 26 (2004), 5-13.
[13] H. Sachs, Über selbstkomplementare Graphen, Publ. Math. Debrecen. 9 (1962), 270-288.
[14] H. Sachs, Über Teiler, Faktoren und charakteristische Polynome von Graphen, Teil II, Wiss. Z. TH Ilmenau, 13 (1967), 405-412.
[15] J. Senbagamalar, J. Baskar Babujee, I. Gutman, On Wiener index of graph complements, Trans. Comb., 3(2) (2014), 11-15.
[16] L. Xu, Y. Hou, Equienergetic bipartite graphs, MATCH Commun. Math. Comput. Chem., 57 (2007), 363-370.


[^0]:    Received: 01 June 2015, Revised: 08 September 2015, Accepted: 13 October 2015.

