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Abstract

Let s and k be positive integers with k ≥ 2 and G1, G2, . . . , Gk be simple graphs. The set mul-
tipartite Ramsey number, denoted by Ms(G1, G2, . . . , Gk), is the smallest positive integer c such
that any k-coloring of the edges of Kc×s contains a monochromatic copy of Gi in color i for some
i ∈ {1, 2, . . . , k}. The size multipartite Ramsey number, denoted by mc(G1, G2, . . . , Gk), is the
smallest positive integer s such that any k-coloring of the edges ofKc×s contains a monochromatic
copy of Gi in color i for some i ∈ {1, 2, . . . , k}. In this paper, we establish some lower and upper
bounds, and some exact values of multipartite Ramsey numbers for the union of stars.

Keywords: set multipartite Ramsey number, size multipartite Ramsey number, union of stars
Mathematics Subject Classification : 05C55, 05D10
DOI: 10.5614/ejgta.2022.10.2.21

1. Introduction

For simple graphs G1, . . . , Gk, the Ramsey number r(G1, . . . , Gk) is defined as the smallest
positive integer n such that any k-coloring of the edges of a complete graph Kn on n vertices
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contains a monochromatic copy of Gi in color i for some i, 1 ≤ i ≤ k. We refer to [4] for an
overview of Ramsey theory. In 2004, Burger and Van Vuuren [1, 2] introduced the notion of set
multipartite Ramsey number and size multipartite Ramsey number as variations of the classical
Ramsey number. The extension to many colors is established in [3], and the extension in a more
general setting is presented in [9, 12]. For c ≥ 2, s ≥ 1, denote by Kc×s the complete multipartite
graph with c partite sets, each of which contains s vertices.

Definition 1. [9, 12] Let s, k be positive integers with k ≥ 2 andG1, G2, . . . , Gk be simple graphs.
The set multipartite Ramsey number, denoted by Ms(G1, G2, . . . , Gk), is the smallest positive
integer c such that any k-coloring of the edges of Kc×s contains a monochromatic copy of Gi in
color i for some i ∈ {1, 2, . . . , k}.

The size multipartite Ramsey number, denoted by mc(G1, G2, . . . , Gk), is the smallest positive
integer s such that any k-coloring of the edges of Kc×s contains a monochromatic copy of Gi in
color i for some i ∈ {1, 2, . . . , k}.

In the case of G1 = G2 = . . . = Gk = G, the two aforementioned Ramsey numbers are
abbreviated to Ms(G; k) and mc(G; k), respectively.

In 2018, Perondi and Carmelo [9] completely determined the set and size multipartite Ramsey
number of stars. Their results are presented in Theorems 1.1 and 1.2.

Theorem 1.1. [9] Let s ≥ 1 and k, n1, . . . , nk ≥ 2, and let N =
∑k

i=1 ni. Then

Ms(K1,n1 , . . . , K1,nk
) =


N−k
s

+ 1 if (N − k)/s is even, s is odd, and
ni is even for some i;⌊

N−k
s

⌋
+ 2 otherwise.

Theorem 1.2. [9] Let c, k, n1, . . . , nk ≥ 2, and let N =
∑k

i=1 ni. Then

mc(K1,n1 , . . . , K1,nk
) =


N−k
c−1 if (N − k)/(c− 1) is odd, c is odd, and

ni is even for some i;⌊
N−k+1
c−1

⌋
+ 2 otherwise.

The size multipartite Ramsey numbers of small stars versus the union of stars have been stud-
ied. In [8], Lusiani et al. determined the size multipartite Ramsey numbers mj(G,K1,2), for
j = 2, 3, where G is a union of two, three, or four distinct stars. In [6, 7], Lusiani et al. determined
the size multipartite Ramsey numbers mj(mK1,n, H) where H = K1,2 or H = K1,3. In this paper,
we shall consider multipartite Ramsey numbers for the union of stars in a more general setting.

2. Main Results

We start with providing some upper bounds of the multipartite Ramsey number for the union
of stars in the following two theorems.

638



www.ejgta.org

Multipartite Ramsey numbers for the union of stars | I W.P. Anuwiksa et al.

Theorem 2.1. Let k, s, li, ni,j be natural numbers for i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , li}, and
k ≥ 2. Let L =

∑k
i=1 li and T =

∑k
i=1

∑li
j=1 ni,j . If s > L− k, then

Ms(

l1⋃
j=1

K1,n1,j
,

l2⋃
j=1

K1,n2,j
, . . . ,

lk⋃
j=1

K1,nk,j
) ≤

⌈
T − k + 1

s

⌉
+ 1.

Proof. Let c =
⌈
T−k+1

s

⌉
+ 1. Let ψ : E(Kc×s) → {1, 2, . . . , k} be any k-coloring of the edges

of Kc×s. For any i ∈ {1, 2, . . . , k} and any v ∈ V (Kc×s), let di(v) = |{x|ψ(vx) = i}|. Since
d(v) = (c−1)s =

⌈
T−k+1

s

⌉
s ≥ T −k+1, then by the pigeon hole principle, for any v ∈ V (Kc×s)

there exists i ∈ {1, 2, . . . , k} such that di(v) ≥
∑li

j=1 ni,j . Since s > L − k, then by the pigeon
hole principle, there exists i ∈ {1, 2, . . . , k} such that there are li non adjacent pairwise vertices
x1, x2, . . . , xli ∈ V (Kc×s) such that di(xa) ≥

∑li
j=1 ni,j for every a ∈ {1, 2, . . . , li}. Hence, there

is a monochromatic copy of
⋃li

j=1K1,ni,j
in color i.

Theorem 2.2. Let k, c, li, ni,j be natural numbers for i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , li}, and
c ≥ 2. Let L =

∑k
i=1 li and T =

∑k
i=1

∑li
j=1 ni,j . If

⌈
T−k+1
c−1

⌉
> L− k, then

mc(

l1⋃
j=1

K1,n1,j
,

l2⋃
j=1

K1,n2,j
, . . . ,

lk⋃
j=1

K1,nk,j
) ≤

⌈
T − k + 1

c− 1

⌉
.

Proof. Let s =
⌈
T−k+1
c−1

⌉
. Let ψ : E(Kc×s) → {1, 2, . . . , k} be any k-coloring of the edges of

Kc×s. For any i ∈ {1, 2, . . . , k} and any v ∈ V (Kc×s), let di(v) = |{x|ψ(vx) = i}|. Since
d(v) = (c − 1)s = (c − 1)

⌈
T−k+1
c−1

⌉
≥ T − k + 1, then by the pigeon hole principle, for any

v ∈ V (Kc×s) there exists i ∈ {1, 2, . . . , k} such that di(v) ≥
∑li

j=1 ni,j . The rest of the proof is
similar to that in Theorem 2.1.

In 1979, Grossman [5] studied the (classical) Ramsey number for the union of stars and proved
the following exact value of this Ramsey number.

Theorem 2.3. [5] Let n,m be two integers with n ≥ m ≥ 1, and let K1,n, K1,m be two stars. Then

r(K1,n ∪K1,m, K1,n ∪K1,m) = max{n+ 2m, 2n+ 1, n+m+ 3}.

Recently in 2019, Perondi and Carmelo [10, 11] showed that the classical Ramsey number
could be used to obtain some lower bound of the multipartite Ramsey numbers as stated in the
following theorems.

Theorem 2.4. [10] Let k and s be positive integers, where k ≥ 2. For simple graphs G1, . . . , Gk,⌊
r(G1, . . . , Gk)− 1

s

⌋
+ 1 ≤Ms(G1, . . . , Gk).

Theorem 2.5. [11] Suppose that mc(G1, . . . , Gk) exists. The following connection holds⌊
r(G1, . . . , Gk)− 1

c

⌋
+ 1 ≤ mc(G1, . . . , Gk).
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Substituting the Grossman’s result for the union of stars (Theorem 2.3) into the general bounds
in Theorems 2.4 and 2.5, we obtain Corollaries 2.1 and 2.2.

Corollary 2.1. Let n,m, k, c, and s be positive integers where n ≥ m ≥ 1 and k ≥ 2, then

Ms(K1,n ∪K1,m; 2) ≥
⌊
max{n+ 2m− 1, 2n, n+m+ 2}

s

⌋
+ 1

and

mc(K1,n ∪K1,m; 2) ≥
⌊
max{n+ 2m− 1, 2n, n+m+ 2}

c

⌋
+ 1.

Corollary 2.2. Let n,m, t, and (n− 1)m/2 be positive integers.

• If t ≤ (m− 1)/2, m ≥ 7, and n ≥ 3, then Mm(K1,(n−1)m/2+1 ∪K1,t; 2) ≥ n.

• If t ≤ (n− 2)/2, n ≥ 8, and m ≥ 3, then mn(K1,(n−1)m/2+1 ∪K1,t; 2) ≥ m+ 1+
⌊−m+2

n

⌋
.

We provide some lower bounds of the set and size multipartite Ramsey numbers for the union
of stars in the next theorem.

Theorem 2.6. Let m,n, k, li, ti,j be natural numbers for i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , li}, and
m,n, k ≥ 2. Let Gi =

⋃li
j=1K1,ti,j where ti,1 = (n− 1)m/k + 1 for i = 1, 2, . . . , k. If (k divides

m) or (n is even and k divides n− 1), then

Mm(G1, G2, . . . , Gk) ≥ n+ 1

and
mn(G1, G2, . . . , Gk) ≥ m+ 1.

Proof. Consider the graph Kn×m where its vertices are partitioned into n classes L1, L2, . . . , Ln,
where La = {(a, 1), (a, 2), . . . , (a,m)} for a ∈ {1, 2, . . . , n}. For (i, j) ∈ V (Kn×m), define the
function g : V (Kn×m)→ {1, 2, . . . ,m} as g((i, j)) = j.

Case 1. k divides m. Define an edge coloring ψ : E(Kn×m) → Zk = {0, 1, . . . , k − 1} on
graph Kn×m as follows:

ψ((a, i)(b, j)) = i+ j.

Since ψ((a, i)(b, j)) = ψ((b, j)(a, i)), then ψ is well defined. For x ∈ V (Kn×m), W ⊆ V (Kn×m),
and i ∈ {0, 1, . . . , k − 1}, let Ni(x,W ) = {y ∈ W |ψ(xy) = i}. Let a′ ∈ {1, 2, . . . , n} such that
x 6∈ La′ , then

|Ni(x, La′)| = |{y ∈ La′ |ψ(xy) = i}|
= |{j ∈ {1, 2, . . . ,m}| g(x) + j = i}|
= |{j ∈ {1, 2, . . . ,m}| g(x) = i− j}|
= m/k.

Therefore, we have |Ni(x, V (Kn×m))| = (n− 1)m/k.
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Case 2. n is even and k divides n − 1. Consider the complete graph Kn where V (Kn) =
{w1, . . . , wn}. Since n is even, then the chromatic index of Kn is χ′(Kn) = n− 1. Consequently,
there is an edge coloring τ : E(Kn) → Zn−1 = {0, 1, . . . , n− 2} satisfying that every two
adjacent edges have different color. Define an edge coloring ψ : E(Kn×m) → Zn−1 on graph
Kn×m as follows:

ψ((a, i)(b, j)) = τ(wawb).

Since ψ((a, i)(b, j)) = ψ((b, j)(a, i)), then ψ is well defined. Since k divides n − 1, then we can
define a function ζ : Zn−1 → Zk such that ζ(i) = j if and only if i ≡ j (mod k). Hence, we have
an edge coloring ζ ◦ ψ : E(Kn×m)→ Zk such that

|Ni(x, V (Kn×m))| = |{y ∈ V (Kn×m)|ζ ◦ ψ(xy) = i}| = m(n− 1)/k

for all x ∈ V (Kn×m).
From all cases above, we conclude that we can find a k-coloring of the edges of Kn×m such

that there is no monochromatic copy of Gi in color i for every i ∈ {1, 2, . . . , k}. Therefore,

Mm(G1, G2, . . . , Gk) ≥ n+ 1

and
mn(G1, G2, . . . , Gk) ≥ m+ 1.

In particular, the lower bounds in Theorem 2.6, for the case k = 2, are better than those in
Corollary 2.2. Combining Theorems 2.1, 2.2, and 2.6, we obtain the following main result.

Theorem 2.7. Let m,n, k, li, ti,j be natural numbers for i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , li},
m,n ≥ 3, and k ≥ 2. Let Gi =

⋃li
j=1K1,ti,j where ti,1 = (n− 1)m/k + 1 for i = 1, 2, . . . , k. Let

L =
∑k

i=1 li and T ′ =
∑k

i=2

∑li
j=1 ti,j . If (k divides m) or (n is even and k divides n− 1), then we

have the following:

• If m > max{T ′, L− k}, then Mm(G1, G2, . . . , Gk) = n+ 1.

• If m ≥ L− k and n ≥ T ′ + 2, then mn(G1, G2, . . . , Gk) = m+ 1.

Proof. Theorem 2.6 provides the lower bounds. For the upper bounds, we use the fact that:

• If m > max{T ′, L− k}, then by Theorem 2.1,

Mm(G1, G2, . . . , Gk) ≤
⌈
((n− 1)m+ k + T ′)− k + 1

m

⌉
+ 1 = n+ 1.

• If m ≥ L− k and n ≥ T ′ + 2, then by Theorem 2.2,

mn(G1, G2, . . . , Gk) ≤
⌈
((n− 1)m+ k + T ′)− k + 1

n− 1

⌉
= m+ 1.
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3. Conclusion and Open Problem

In this paper, we provide some upper bounds of the set and size multipartite Ramsey numbers
(for k colors) for the union of stars, as stated in Theorem 2.1 and Theorem 2.2. We also provide a
class of the union of stars achieving the upper bounds in Theorem 2.7. However, many parameters
are still excluded in Theorem 2.7, which could lead to interesting further study.

Problem 1. Let Hi =
⋃li

j=1K1,ni,j
for i = 1, 2, . . . , k with k ≥ 2. Find the exact values of

Ms(H1, H2, . . . , Hk) and mc(H1, H2, . . . , Hk) for the remaining parameters excluded in Theorem
2.7.
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