Electronic Journal of Graph Theory and Applications

Zonal graphs of small cycle rank

Andrew Bowling and Ping Zhang
Department of Mathematics, Western Michigan University,
Kalamazoo, Michigan 49008-5248, USA
andrew.d.bowling@wmich.edu, ping.zhang@wmich.edu

Abstract

A zonal labeling of a plane graph G is an assignment of the two nonzero elements of the ring \mathbb{Z}_{3} of integers modulo 3 to the vertices of G such that the sum of the labels of the vertices on the boundary of each region of G is the zero element of \mathbb{Z}_{3}. A plane graph possessing such a labeling is a zonal graph. There is a connection between zonal labelings of connected bridgeless cubic plane graphs and the Four Color Theorem. Zonal labelings of cycles play a role in this connection. The cycle rank of a connected graph of order n and size m is $m-n+1$. Thus, cycles have cycle rank 1. All zonal connected graphs of cycle rank at most 2 are determined.


```
Keywords: planar graph, graph embedding, zonal labeling, zonal graph, cycle rank
Mathematics Subject Classification: 05C10, 05C15, 05C78
DOI: 10.5614/ejgta.2023.11.1.1
```


1. Introduction

Let G be a connected plane graph each of whose vertices is labeled with one of the two nonzero elements 1 and 2 of the ring \mathbb{Z}_{3} of integers modulo 3. The value of a region (zone) R of G is the sum in \mathbb{Z}_{3} of the labels of the vertices on the boundary of R. Such a labeling of G is said to be a zonal labeling if the value of each zone in G is the zero element of \mathbb{Z}_{3}. If G admits a zonal labeling, then G is zonal. This concept was introduced by Cooroo Egan in 2014 (see [3]).

There is a close connection between the Four Color Theorem and zonal labelings of planar graphs. A connected bridgeless cubic plane graph (or multigraph) is referred to as a cubic map.

[^0]Thus, every cubic map is a 3-regular 2-edge-connected plane graph. The following two results were established in [3].

Theorem 1.1. [3] A connected cubic plane graph G is zonal if and only if G is bridgeless.
Theorem 1.2. [3] There exists a 4-coloring of the regions of a cubic map M if and only if M has a zonal labeling.

Since it is known that there exists a 4-coloring of the regions of every plane map (the Four Color Theorem) if and only if there exists a 4-coloring of the regions of every cubic map (see [5], for example), it follows by Theorem 1.2 that showing every cubic map is zonal is equivalent to establishing the Four Color Theorem.

As described in [3], the argument given that establishes the truth of Theorems 1.1 and 1.2, however, makes use of the Four Color Theorem. It would be considerably more satisfying if it could be shown that every cubic map is zonal without using the Four Color Theorem (and without using computers). Thus, the following fundamental question was stated in [3].

Problem 1.3. Can it be shown that every cubic map is zonal without using the Four Color Theorem or computers?

Problem 1.3 brings up the natural question of determining the zonality of plane graphs and planar graphs in general. A planar graph G is zonal if there exists a zonal planar embedding of G. This concept has been studied in $[1,2,3,4]$. Since the boundary of every region of a cubic map is a cycle, it is of value to know which cycles and related graphs are zonal. That every nontrivial tree and every cycle is zonal was established in [3].

Theorem 1.4. [3] Every nontrivial tree and every cycle is zonal.
The cycle rank of a connected graph of order n size m is the number $m-n+1$. Thus, cycles have cycle rank 1 . In general, the graphs of cycle rank 1 are connected graphs possessing exactly one cycle. The goal of this paper is to determine all zonal graphs of cycle rank 1 and 2. All such graphs are necessarily planar.

2. Zonal Unicyclic Graphs

A connected graph containing exactly one cycle is referred to as a unicyclic graph. Thus, the unicyclic graphs are precisely the graphs of cycle rank 1. In order to determine which unicyclic graphs are zonal, we first state some information on zonal labelings. Let ℓ be a labeling of the vertices of a graph G with the labels 1 and 2 of \mathbb{Z}_{3}. The vertex labeling $\bar{\ell}$ of G defined by $\bar{\ell}(v)=$ $3-\ell(v)$ for each vertex v of G is called the complementary labeling of G.

Observation 2.1. [3] If ℓ is a zonal labeling of a connected plane graph, then so too is its complementary labeling $\bar{\ell}$.

The following notation will be useful to us. For a labeling $\ell: V(G) \rightarrow\{1,2\} \subseteq \mathbb{Z}_{3}$ of a graph G and a subgraph H or a nonempty set X of vertices of G, let

$$
\sum(\ell, H)=\sum_{x \in V(H)} \ell(x) \text { in } \mathbb{Z}_{3} \text { and } \sum(\ell, X)=\sum_{x \in X} \ell(x) \text { in } \mathbb{Z}_{3} .
$$

In particular, if B is the boundary of a region R of a plane graph G and ℓ is a labeling of G, then $\sum(\ell, B)$ is the value of B (as well as the value of R).
Lemma 2.2. Let X be a nonempty set of vertices of a graph.
(1) For each $i=1,2$, there is a labeling $\ell_{i}: X \rightarrow\{1,2\} \subseteq \mathbb{Z}_{3}$ of X such that $\sum\left(\ell_{i}, X\right)=i$ in \mathbb{Z}_{3}.
(2) If $|X| \geq 2$, then there is a labeling $\ell_{0}: X \rightarrow\{1,2\} \subseteq \mathbb{Z}_{3}$ of X such that $\sum\left(\ell_{0}, X\right)=0$ in \mathbb{Z}_{3}.

Proof. First, we verify (1). For each $i=1,2$, define a labeling $\ell_{i}: X \rightarrow\{1,2\}$ of X as follows.
\star If $|X| \geq 1$ is odd, then $|X|=2 k+1$ for some nonnegative integer k. Let ℓ_{1} assign the label 1 to $k+1$ vertices of X and assign the label 2 to k vertices of X, giving the sum $\sum\left(\ell_{1}, X\right)=1 \cdot(k+1)+2 k=1$ in \mathbb{Z}_{3}. Let ℓ_{2} be the complementary labeling of ℓ_{1}, that is, let ℓ_{2} assign the label 1 to k vertices of X and assign the label 2 to $k+1$ vertices of X, giving the sum $\sum\left(\ell_{2}, X\right)=1 \cdot k+2(k+1)=2$ in \mathbb{Z}_{3}.
\star If $|X| \geq 2$ is even, then $|X|=2 k=(k-1)+(k+1)$ for some positive integer k. Let ℓ_{1} assign the label 2 to $k+1$ vertices of X and assign the label 1 to $k-1$ vertices of X, giving the $\operatorname{sum} \sum\left(\ell_{1}, X\right)=1 \cdot(k-1)+2(k+1)=1$ in \mathbb{Z}_{3}. Let ℓ_{2} be the complementary labeling of ℓ_{1}, that is, let ℓ_{2} assign the label 1 to $k+1$ vertices of X and assign the label 2 to $k-1$ vertices of X, giving the sum $\sum\left(\ell_{2}, X\right)=1 \cdot(k+1)+2(k-1)=2$ in \mathbb{Z}_{3}.

Next, we verify (2). For $|X| \geq 2$, let $x_{0} \in X$ and $X^{\prime}=X-\left\{x_{0}\right\}$. By (1), for each $i=1,2$, there is a labeling $\ell_{i}: X^{\prime} \rightarrow\{1,2\}$ of X such that $\sum\left(\ell_{i}, X^{\prime}\right)=i$ in \mathbb{Z}_{3}. Define the labeling ℓ_{0} : $X \rightarrow\{1,2\}$ of X by $\ell_{0}(x)=\ell_{i}(x)$ if $x \in X^{\prime}$ and $\ell_{0}\left(x_{0}\right)=3-i$. Thus, $\sum\left(\ell_{0}, X\right)=\sum\left(\ell_{i}, X^{\prime}\right)+$ $\ell_{0}\left(x_{0}\right)=i+(3-i)=0$ in \mathbb{Z}_{3}.

Let $C \star K_{2}$ be the unicyclic graph obtained by adding exactly one pendant edge at some vertex of a cycle C. We are now prepared to present the following result.

Theorem 2.3. A unicyclic graph G is zonal if and only if $G \neq C \star K_{2}$ for any cycle C.
Proof. Let G be a unicyclic graph containing the cycle C such that $G \neq C \star K_{2}$. We show that G is zonal. By Theorem 1.4, we may assume that $G \neq C$. Let G be embedded in the plane (resulting in two regions R_{1} and R_{2}) such that the boundary of R_{1} is C and that the boundary of R_{2} is G. By Theorem 1.4, there is a zonal labeling ℓ_{C} of C. Let $U=V(G)-V(C)$ be the set of vertices of G that do not belong to C. Then $p=|U| \geq 2$. We now extend the labeling ℓ_{C} of C to a labeling ℓ of G. First, we define $\ell(v)=\ell_{C}(v)$ for all $v \in V(C)$. Thus, the sum of the labels of the vertices on C is $\sum(\ell, C)=\sum\left(\ell_{C}, C\right)=0$. Next, we define the labels of vertices in U as follows. If $p \geq 2$ is even, then we assign the label 1 to half of the vertices of U and the label 2 to the other half, giving us a sum of 0 in \mathbb{Z}_{3}. If $p \geq 3$ is odd, then $p=2 k+1$ for some positive integer k. Then $n=2 k+1=(k-1)+(k+2)$. If we assign the label 1 to $k+2$
vertices of U, assign the label 2 to the other $k-1$ vertices of U, and add these labels, we have $1 \cdot(k+2)+2(k-1)=(k+2)+2 k-2=3 k=0$ in \mathbb{Z}_{3}. Consequently, the values of R_{1} and R_{2} are both 0 and so ℓ is a zonal labeling of G. Therefore, G is zonal.

For the converse, suppose that $G=C \star K_{2}$ for a cycle C, where u is the vertex of G that does not belong to C. Let there be given a planar embedding of G; that is, G is a plane graph. Assume, to the contrary, that G has a zonal labeling ℓ. Then $\ell(u) \in\{1,2\}$. Since C is the boundary of some region R_{1} of G, the value of C is 0 . However then, the value of the boundary of the other region R_{2} of G is the sum of the value of C and $\ell(u)$, that is, $0+\ell(u)=\ell(u) \neq 0$ in \mathbb{Z}_{3}, which is a contradiction.

Recall that a planar graph G is zonal if there exists a zonal planar embedding of G. It is possible that a planar graph has both a zonal planar embedding and a non-zonal planar embedding. For example, Figure 1 shows two distinct planar embeddings of a planar graph G. The planar embedding of G in Figure 1(a) is zonal and a zonal labeling is also shown in that figure, while the planar embedding of G in Figure 1(b) is not zonal. Next, we show that if G is a zonal graph of cycle rank 1 (namely, a unicyclic graph), then every planar embedding of G is zonal.

Figure 1. A graph with a zonal planar embedding and a non-zonal planar embedding

Proposition 2.4. Every planar embedding of a zonal graph of cycle rank 1 is zonal.
Proof. Since there is only one planar embedding of a cycle, the statement is true trivially. Next, let G be a zonal unicyclic graph containing the cycle C. We may assume that $G \neq C$ and $G \neq C \star K_{2}$ by Theorem 2.3. Let $U=V(G)-V(C)$ be the set of vertices of G that do not belong to C. Then $p=|U| \geq 2$. Let G be embedded in the plane resulting two regions R_{1} and R_{2}. We show that the resulting plane graph G has a zonal labeling. For $i=1,2$, let B_{i} be the boundary of R_{i} and so B_{i} contains C. If $\left\{B_{1}, B_{2}\right\}=\{C, G\}$, then G is zonal by the proof of Theorem 2.3. We may therefore assume that $\left\{B_{1}, B_{2}\right\} \neq\{C, G\}$ and so $\left\{B_{1}, B_{2}\right\} \cap\{C, G\}=\emptyset$. For $i=1$, 2, let $U_{i} \subseteq U$ be the set of vertices belonging to B_{i} and so $\left|U_{i}\right| \geq 1$. Furthermore, $V\left(B_{i}\right)=V(C) \cup U_{i}$ for $i=1,2$. With the aid of Lemma 2.2, we can define a labeling $\ell: V(G) \rightarrow\{1,2\}$ of G such that $\sum(\ell, C)=1$ in \mathbb{Z}_{3} and $\sum\left(\ell, U_{i}\right)=2$ in \mathbb{Z}_{3} for $i=1,2$. Hence, the value of $B_{i}, i=1,2$, is $\sum(\ell, C)+\sum\left(\ell, U_{i}\right)=1+2=0$ in \mathbb{Z}_{3} and so ℓ is a zonal labeling of G. Therefore, every planar embedding of G is zonal.

3. Zonal Graphs of Cycle Rank 2

We next determine those graphs of cycle rank 2 that are zonal. A graph G has cycle rank 2 if G contains a subgraph F where
(1) F is obtained from two cycles C and C^{\prime} by identifying a vertex in C and a vertex in C^{\prime}, which is denoted by $F=C \star C^{\prime}$, as shown in Figure 2(a),
(2) F is obtained from two disjoint cycles C and C^{\prime} by adding a path P of length 1 or more and then by identifying an end-vertex of P with a vertex of C and identifying the other endvertex of P with a vertex of C^{\prime}, which is denoted by $F=C \star P \star C^{\prime}$, as shown in Figure 2(b), or
(3) F is a subdivision of $K_{4}-e$, that is, G consists of three internally disjoint paths $P_{i}(1 \leq i \leq$ 3), where at least two paths $P_{i}(1 \leq i \leq 3)$ have length 2 or more, as shown in Figure 2(c).

Necessarily, every embedding of a graph of cycle rank 2 results in a plane graph with exactly three regions - namely one exterior region and two interior regions.

Figure 2. Three possible types of subgraphs
For $i=1,2,3$, a graph G is referred to as a graph of cycle rank 2 and type (i) if G contains a subgraph F satisfing the properties described in (i) above. Furthermore, a graph G of cycle rank 2 is minimal if G is one of the graphs F described in (1), (2), or (3). Consequently, every minimal graph G of cycle rank 2 has minimum degree 2 . The graph $K_{4}-e$ is a minimal graph of cycle rank 2 and type 3 but it is not zonal. This gives rise to the more general question: Which graphs of cycle rank 2 are zonal?

First, we determine all zonal graphs of cycle rank 2 and type (1).
Theorem 3.1. Let G be a graph of cycle rank 2 and type (1). Then G is zonal if and only if G is not minimal.

Proof. Since G is a graph of cycle rank 2 and type (1), it follows that G contains a subgraph $C \star C^{\prime}$ obtained from two cycles C and C^{\prime} by identifying a vertex in C and a vertex in C^{\prime}, denoting this identified vertex by u.

First, suppose that G is minimal and so $G=C \star C^{\prime}$. We show that G is not zonal. Assume, to the contrary, that G is zonal. Then there exists a planar embedding of G such that the resulting plane graph G has a zonal labeling ℓ. Since each of C and C^{\prime} is the boundary of a region of G, it follows that $\sum(\ell, C)=\sum_{v \in V(C)} \ell(v)=0$ and $\sum\left(\ell, C^{\prime}\right)=\sum_{v \in V\left(C^{\prime}\right)} \ell(v)=0$. However then, the value of the boundary of the region R_{3} is $\left[\sum(\ell, C)+\sum\left(\ell, C^{\prime}\right)\right]-\ell(u)=0+0-\ell(u) \neq 0$ in \mathbb{Z}_{3}, which is a contradiction.

For the converse, suppose that G is a graph of cycle rank 2 and type (1) such that $G \neq C \star C^{\prime}$ where u is the vertex belonging to both C and C^{\prime}. We show that G is zonal. We embed G in the plane resulting in three regions R_{1}, R_{2}, and R_{3} such that the boundary of R_{1} is C, the boundary of R_{2} is C^{\prime}, and the boundary of R_{3} is G. Since C and C^{\prime} are zonal by Theorem 1.4, there are zonal labelings ℓ_{C} and $\ell_{C^{\prime}}$ of C and C^{\prime}, respectively. We may assume that $\ell_{C}(u)=\ell_{C^{\prime}}(u)=1$ where u belongs to C and C^{\prime}. Let $U=V(G)-V\left(C \star C^{\prime}\right)$ be the set of vertices of G that do not belong to $C \star C^{\prime}$. Then $|U| \geq 1$. We now define a labeling ℓ of G. First, we define $\ell(v)=\ell_{C}(v)$ for all $v \in V(C)$ and $\ell(v)=\ell_{C^{\prime}}(v)$ for all $v \in V\left(C^{\prime}\right)$. Thus, the value of the boundary C of R_{1} is $\sum(\ell, C)=\sum\left(\ell_{C}, C\right)=0$ and the value of the boundary C^{\prime} of R_{2} is $\sum\left(\ell, C^{\prime}\right)=\sum\left(\ell_{C^{\prime}}, C^{\prime}\right)=0$. Next, we can define the labels of vertices of U such that $\sum(\ell, U)=1$ in \mathbb{Z}_{3} by Lemma 2.2. Thus, the value of the boundary G of R_{3} is $\left[\sum(\ell, C)+\sum\left(\ell, C^{\prime}\right)-\ell(u)\right]+\sum(\ell, U)=-1+1=0$ in \mathbb{Z}_{3}. Consequently, the values of R_{1}, R_{2}, and R_{3} are all 0 and so ℓ is a zonal labeling of G.

We now determine all zonal graphs of cycle rank 2 and type (2).
Theorem 3.2. Let G be a graph of cycle rank 2 and type (2). Then G is zonal if and only if either every vertex of G belongs to a cycle of G or at least two vertices of G belong to no cycle of G.

Proof. First, let G be a zonal graph of cycle rank 2 and type (2) such that exactly one vertex w of G belongs to no cycle of G. Therefore, either G is a minimal graph $C \star P \star C^{\prime}$ where C and C^{\prime} are two cycles and P is a path of length 2 with interior vertex w or G is obtained from a minimal graph $C \star P \star C^{\prime}$ by adding a pendant edge $e=w v$ where $v \in V\left(C \star P \star C^{\prime}\right), C$ and C^{\prime} are two cycles, and P is a path of length 1 . Since G is zonal, there is a planar embedding of G, resulting in the three regions R_{1}, R_{2}, and R_{3}, and a zonal labeling ℓ of the resulting plane graph G.
\star If $G=C \star P \star C^{\prime}$, where P has length 2, then the boundaries of the three regions of G are C, C^{\prime}, and G. Thus, $\sum(\ell, C)=\sum\left(\ell, C^{\prime}\right)=0$ and $\sum(\ell, G)=\sum(\ell, C)+\sum\left(\ell, C^{\prime}\right)+\ell(w)=$ $\ell(w)=0$ in \mathbb{Z}_{3}, which is impossible since $\ell(w) \in\{1,2\}$.
\star If G consists of a minimal graph $C \star P \star C^{\prime}$ and a pendant edge $e=w v$, where P is a path of length 1 , then we may assume that the boundary of one region R_{1} of G is C and so $\sum(\ell, C)=0$ in \mathbb{Z}_{3}. The boundaries of the other two regions are either (a) C^{\prime} and G or (b) $C \star P \star C^{\prime}$ and C^{\prime} with $u v$. If (a) occurs, then $\sum\left(\ell, C^{\prime}\right)=0$ and $\sum(\ell, G)=\sum(\ell, C)+$ $\sum\left(\ell, C^{\prime}\right)+\ell(w)=\ell(w)=0$ in \mathbb{Z}_{3}, which is impossible. If (b) occurs, then $\sum(\ell, C \star P \star$ $\left.C^{\prime}\right)=\sum(\ell, C)+\sum\left(\ell, C^{\prime}\right)=0$ and $\sum\left(\ell, C^{\prime}\right)+\ell(w)=0$. Since $\sum(\ell, C)=0$, it follows that $\sum\left(\ell, C^{\prime}\right)=0$. However then, $\sum\left(\ell, C^{\prime}\right)+\ell(w)=0+\ell(w)=0$, which is impossible.

For the converse, suppose that either every vertex of G belongs to a cycle of G or at least two vertices of G belong to no cycle of G. Thus, $p=0$ or $p \geq 2$. We show that G is zonal. Embed G in the plane resulting in three regions R_{1}, R_{2}, and R_{3} such that the boundary of R_{1} is C, the boundary of R_{2} is C^{\prime}, and the boundary of R_{3} is G. Since C and C^{\prime} are zonal, there are zonal labelings ℓ_{C} and $\ell_{C^{\prime}}$ of C and C^{\prime}, respectively. We define a labeling ℓ of G as follows. First, we define $\ell(v)=\ell_{C}(v)$ for all $v \in V(C)$ and $\ell(v)=\ell_{C^{\prime}}(v)$ for all $v \in V\left(C^{\prime}\right)$. Thus, the value of the boundary C of R_{1} is $\sum(\ell, C)=\sum\left(\ell_{C}, C\right)=0$ and the value of the boundary C^{\prime} of R_{2} is $\sum\left(\ell, C^{\prime}\right)=\sum\left(\ell_{C^{\prime}}, C^{\prime}\right)=0$. Next, we define the labels of vertices of U as follows.

If $p=0$, then $\sum(\ell, U)=0$ vacuously. If $p \geq 2$, then let ℓ assign the labels 1 and 2 to the vertices of U such that $\sum(\ell, U)=0$ by Lemma 2.2. Hence, the value of the boundary G of R_{3} is $\sum(\ell, C)+\sum\left(\ell, C^{\prime}\right)+\sum(\ell, U)=0$ in \mathbb{Z}_{3}. Consequently, the values of R_{1}, R_{2}, and R_{3} are all 0 and so ℓ is a zonal labeling of G.

By Theorem 3.1, no minimal graph of cycle rank 2 and type (1) is zonal; while by Theorem 3.2, every minimal graph of cycle rank 2 and type (2) is zonal. For minimal graphs of cycle rank 2 and type (3), the situation is different, as we show next.
Theorem 3.3. Let G be a minimal graph of cycle rank 2 and type (3) consisting of three internally disjoint $u-v$ paths P_{i} of order n_{i} for $i=1,2,3$ where $2 \leq n_{1} \leq n_{2} \leq n_{3}$ and $n_{2} \geq 3$. Then G is zonal if and only if $\left(n_{1}, n_{2}\right) \neq(2,3)$.

Proof. First, suppose that $\left(n_{1}, n_{2}\right)=(2,3)$. We show that G is not zonal. Assume, to the contrary, that G is zonal. Then there exists a planar embedding of G, resulting in three regions R_{1}, R_{2}, and R_{3}, such that the resulting plane graph G has a zonal labeling ℓ. We may assume that the boundary of R_{1} consists of P_{1} and P_{2}, the boundary of R_{2} consists of P_{2} and P_{3}, and the boundary of R_{3} consists of P_{1} and P_{3}. Let w be the interior vertex of P_{2}. Since the value of the boundary of R_{2} is $\sum\left(\ell, P_{3}\right)+\ell(w)=0$ in \mathbb{Z}_{3} and the value of the boundary of R_{3} is $\sum\left(\ell, P_{3}\right)=0$ in \mathbb{Z}_{3}, it follows that $\ell(w)=0$ in \mathbb{Z}_{3}, which is impossible. Thus, G is not zonal.

For the converse, suppose that $\left(n_{1}, n_{2}\right) \neq(2,3)$. Here, we show that G is zonal. We embed the graph G in the plane, resulting in three regions R_{1}, R_{2}, and R_{3} where R_{3} is the exterior region of G, where u and v are the two vertices of degree 3 in G. We show that the resulting plane graph G has a zonal labeling. For $i=1,2,3$, let $Q_{i}=P_{i}-\{u, v\}$ and so Q_{i} is a path of order $n_{i}-2$ (where there is no path Q_{1} if $n_{1}=2$). We consider three cases, depending on whether $n_{1} \geq 4, n_{1}=3$, or $n_{1}=2$.

Case 1. $n_{1} \geq 4$. Since $n_{3} \geq n_{2} \geq n_{1} \geq 4$, it follows by Theorem 1.4 that each path Q_{i} ($i=1,2,3$) is zonal. For $i=1,2,3$, let ℓ_{i} be a zonal labeling of Q_{i} and so $\sum\left(\ell_{i}, Q_{i}\right)=0$ in \mathbb{Z}_{3}. We define a labeling ℓ of G by $\ell(u)=2, \ell(v)=1$, and $\ell(x)=\ell_{i}(x)$ if $x \in V\left(Q_{i}\right)$ for $i=1,2,3$. Since the boundary of a region of G is $\sum\left(\ell_{i}, Q_{i}\right)+\sum\left(\ell_{j}, Q_{j}\right)+1+2=0$ in \mathbb{Z}_{3} for distinct integers $i, j \in\{1,2,3\}$, it follows that ℓ is a zonal labeling of G.

Case 2. $n_{1}=3$. We define a labeling ℓ of G such that $\ell(u)=\ell(v)=2$ and $\sum\left(\ell, Q_{i}\right)=1$ for $i=1,2,3$ by Lemma 2.2. Since the boundary of the region R_{i} of G is $\sum\left(\ell, Q_{i}\right)+\sum\left(\ell, Q_{j}\right)+$ $\ell(u)+\ell(v)=1+1+2+2=0$ in \mathbb{Z}_{3} for some $j \in\{1,2,3\}-\{i\}$, it follows that ℓ is a zonal labeling of G.

Case 3. $n_{1}=2$. Thus, there is no path Q_{1}. Since $\left(n_{1}, n_{2}\right) \neq(2,3)$, it follows that $n_{3} \geq n_{2} \geq 4$. By Theorem 1.4, each path $Q_{i}(i=2,3)$ is zonal and so has a zonal labeling ℓ_{i}. Thus, $\sum\left(\ell_{i}, Q_{i}\right)=$ 0 in \mathbb{Z}_{3} for $i=2,3$. As we saw in Case 1 , we can define the labeling ℓ of G by $\ell(u)=2, \ell(v)=1$, and $\ell(x)=\ell_{i}(x)$ if $x \in V\left(Q_{i}\right)$ for $i=2,3$. Then ℓ is a zonal labeling of G.

We now determine which graphs of cycle rank 2 are zonal if they contain a minimal non-zonal graph of cycle rank 2 and type (3) as a proper subgraph.

Theorem 3.4. Let F be a minimal non-zonal graph of cycle rank 2 and type (3) and let G be a graph of cycle rank 2. If G contains F as a proper subgraph, then G is zonal.

Proof. Let $U=V(G)-V(F)$ be the set of vertices of G that do not belong to F. Then $|U| \geq$ 1. Since the subgraph F of G is non-zonal, it follows by Theorem 3.3 that F consists of three internally disjoint $u-v$ paths P_{i} of order n_{i} for $i=1,2,3$ where $n_{1}=2$ and $3=n_{2} \leq n_{3}$. Let w be the interior vertex of P_{2} and let $Q_{3}=P_{3}-\{u, v\}$ be a path of order $q_{3}=n_{3}-2 \geq 1$. We embed the graph G in the plane in such a way that the boundary of R_{1} is the triangle (u, w, v, u), the boundary of R_{2} is $G-u v$, and the boundary of R_{3} is $\left(u, Q_{3}, v, u\right)$, as shown in Figure 3, for example.

Figure 3. An embedding of the graph G
We define a labeling ℓ of G such that $\ell(u)=\ell(v)=\ell(w)=1, \sum\left(\ell, Q_{3}\right)=1$ in \mathbb{Z}_{3}, and $\sum(\ell, U)=2$ in \mathbb{Z}_{3}. Then the value of the boundary of R_{1} is $\ell(u)+\ell(w)+\ell(v)=1+1+1=0$ in \mathbb{Z}_{3}, the value of the boundary of R_{2} is $\ell(u)+\ell(w)+\ell(v)+\sum\left(\ell, Q_{3}\right)+\sum(\ell, U)=1+1+1+1+2=0$ in \mathbb{Z}_{3}, and the value of the boundary of R_{3} is $\ell(u)+\ell(v)+\sum\left(\ell, Q_{3}\right)=1+1+1=0$ in \mathbb{Z}_{3}. Consequently, ℓ is a zonal labeling of G and so G is zonal.

Next, we consider graphs of cycle rank 2 containing a proper minimal zonal subgraph of cycle rank 2 and type (3). For a minimal graph F of cycle rank 2 and type (3), let $F \star K_{2}$ be the graph obtained from F by adding a pendant edge at a vertex of F.

Theorem 3.5. If F is a minimal zonal graph of cycle rank 2 and type (3), then $F \star K_{2}$ is zonal.
Proof. Let F consist of three internally disjoint $u-v$ paths P_{i} of order n_{i} for $i=1,2,3$ where $2 \leq n_{1} \leq n_{2} \leq n_{3}$ and $n_{2} \geq 3$ and let $G=F \star K_{2}$. We consider two cases, according to whether $n_{1} \geq 3$ or $n_{1}=2$.

Case 1. $n_{1} \geq 3$. Then $n_{3} \geq n_{2} \geq n_{1} \geq 3$. For $i=1,2,3$, let $Q_{i}=P_{i}-\{u, v\}$ be the path of order $q_{i} \geq 1$. We may assume, without loss of generality, that G is obtained by adding a vertex w and joining w to a vertex z of P_{3} (where it is possible that $z=u$ or $z=v$). Let G be embedded in the plane resulting in three regions R_{1}, R_{2}, and R_{3} such that w belongs to the boundary of R_{3}. For $i=1,2,3$, let B_{i} be the boundary of R_{i}. Define the labeling ℓ of G such that (i) $\ell(u)=\ell(w)=1$ and $\ell(v)=2$ and (ii) $\sum\left(\ell, Q_{1}\right)=\sum\left(\ell, Q_{3}\right)=1$ and $\sum\left(\ell, Q_{2}\right)=2$. Then the value of B_{1} is $\ell(u)+\ell(v)+\sum\left(\ell, Q_{1}\right)+\sum\left(\ell, Q_{2}\right)=1+2+1+2=0$ in \mathbb{Z}_{3}, the value of B_{2} is $\ell(u)+\ell(v)+\sum\left(\ell, Q_{2}\right)+\sum\left(\ell, Q_{3}\right)=1+2+2+1=0$ in \mathbb{Z}_{3}, the value of B_{3} is $\ell(u)+\ell(v)+\ell(w)+\sum\left(\ell, Q_{1}\right)+\sum\left(\ell, Q_{3}\right)=1+2+1+1+1=0$ in \mathbb{Z}_{3}. Thus, ℓ is a zonal labeling of G.

Case 2. $n_{1}=2$. Since F is zonal, it follows by Theorem 3.3 that $n_{3} \geq n_{2} \geq 4$. For $i=2,3$, let $Q_{i}=P_{i}-\{u, v\}$ be the path of order $q_{i} \geq 2$. We may assume, without loss of generality,
that G is obtained by adding a vertex w and joining w to a vertex z of P_{3} (where it is possible that $z=u$ or $z=v$). Let G be embedded in the plane resulting in three regions R_{1}, R_{2}, and R_{3} such that w belongs to the boundary of R_{3}. For $i=1,2,3$, let B_{i} be the boundary of R_{i}. Define a labeling ℓ of G such that (i) $\ell(u)=\ell(v)=\ell(w)=1$ and (ii) $\sum\left(\ell, Q_{2}\right)=1$ and $\sum\left(\ell, Q_{3}\right)=0$. Hence, the value of B_{1} is $\ell(u)+\ell(v)+\sum\left(\ell, Q_{2}\right)=1+1+1=0$ in \mathbb{Z}_{3}, the value of B_{2} is $\ell(u)+\ell(v)+\sum\left(\ell, Q_{2}\right)+\sum\left(\ell, Q_{3}\right)=1+1+1+0=0$ in \mathbb{Z}_{3}, and the value of B_{3} is $\ell(u)+\ell(v)+\ell(w)+\sum\left(\ell, Q_{3}\right)=1+1+1+0=0$ in \mathbb{Z}_{3}. Consequently, ℓ is a zonal labeling of G.

Theorem 3.6. Let F be a minimal zonal graph of cycle rank 2 and type (3) and let G be a graph of cycle rank 2. If G contains F as a proper subgraph and $G \neq F \star K_{2}$, then G is zonal.

Proof. Since F is a minimal zonal graph of cycle rank 2 and type (3), it follows that F consists of three internally disjoint $u-v$ paths P_{i} of order n_{i} for $i=1,2,3$ where $2 \leq n_{1} \leq n_{2} \leq n_{3}, n_{2} \geq 3$ and $\left(n_{1}, n_{2}\right) \neq(2,3)$ by Theorem 3.4. For $i=1,2,3$, let $Q_{i}=P_{i}-\{u, v\}$ and so Q_{i} is a path of order $q_{i}=n_{i}-2$ (where there is no path Q_{1} if $n_{1}=2$). Let $U=V(G)-V(F)$ be the set of vertices of G that do not belong to F and let $p=|U|$. Since $G \neq F \star K_{2}$, it follows that $p \geq 2$. We consider two cases.

Case 1. There is some path $P \in\left\{P_{1}, P_{2}, P_{3}\right\}$ such that every interior vertex of P has degree 2 in G. There are two subcases, according to whether $n_{1}=2$ or $n_{1} \geq 3$.

Subcase 1.1. $n_{1}=2$. Since $\left(n_{1}, n_{2}\right) \neq(2,3)$, it follows that $n_{3} \geq n_{2} \geq 4$ and so $q_{3} \geq q_{2} \geq 2$. Let G be embedded in the plane in such a way that the boundary of R_{1} is $P_{2}+u v$, the boundary of R_{2} is $G-u v$, and the boundary of R_{3} is $P_{3}+u v$ (see Figure 4, for example).

Figure 4. An embedding of the graph G in Subcase 1.1
We define a labeling ℓ of G such that $\ell(u)=\ell(v)=1, \sum\left(\ell, Q_{i}\right)=1$ in \mathbb{Z}_{3} for $i=2,3$, and $\sum(\ell, U)=2$ in \mathbb{Z}_{3}. Then the value of the boundary of R_{1} is $\ell(u)+\ell(v)+\sum\left(\ell, Q_{2}\right)=1+1+1=0$ in \mathbb{Z}_{3}, the value of the boundary of R_{2} is $\ell(u)+\ell(v)+\sum\left(\ell, Q_{2}\right)+\sum\left(\ell, Q_{3}\right)+\sum(\ell, U)=1+1+$ $1+1+2=0$ in \mathbb{Z}_{3}, and the value of the boundary of R_{3} is $\ell(u)+\ell(v)+\sum\left(\ell, Q_{3}\right)=1+1+1=0$ in \mathbb{Z}_{3}. Consequently, ℓ is a zonal labeling of G.

Subcase 1.2. $n_{1} \geq 3$. Thus, $n_{3} \geq n_{2} \geq n_{1} \geq 3$. We may assume that every interior vertex of P_{1} has degree 2 . We embed the graph G in the plane in such a way that the boundary B_{1} of R_{1} consists of P_{1} and P_{2}, the boundary B_{2} of R_{2} is $G-V\left(Q_{1}\right)$, and the boundary B_{3} of R_{3} consists of P_{1} and P_{3} (see Figure 5, for example). Thus, all vertices of U belong to the boundary B_{2} of R_{2}. The planar embedding of G Figure 5 gives rise to a planar embedding of F such that $B_{1}^{*}=B_{1}$,
$B_{2}^{*}=B_{2}-U$, and $B_{3}^{*}=B_{3}$ are the boundaries of the three regions $R_{1}^{*}=R_{1}, R_{2}^{*}$, and $R_{3}^{*}=R_{3}$ of F. Since $F=G-U$ is zonal, there is a zonal labeling ℓ_{F} of F.

Figure 5. An embedding of the graph G in Subcase 1.2
We define a labeling ℓ of G such that $\ell(x)=\ell_{F}(x)$ if $x \in V(F)$ and $\sum(\ell, U)=0$ in \mathbb{Z}_{3} (by Lemma 2.2). Since B_{2}^{*} is the boundary of the region R_{2}^{*} of F, it follows that

$$
\begin{aligned}
\sum\left(\ell_{F}, B_{2}^{*}\right) & =\ell_{F}(u)+\ell_{F}(v)+\sum\left(\ell_{F}, Q_{2}\right)+\sum\left(\ell_{F}, Q_{3}\right) \\
& =\ell(u)+\ell(v)+\sum\left(\ell, Q_{2}\right)+\sum\left(\ell, Q_{3}\right)=0 \text { in } \mathbb{Z}_{3} .
\end{aligned}
$$

In the graph G, the value of the boundary B_{1} of R_{1} is $\sum\left(\ell, B_{1}\right)=\sum\left(\ell_{F}, B_{1}^{*}\right)=0$ in \mathbb{Z}_{3}, the value of the boundary of R_{2} is

$$
\begin{aligned}
\sum\left(\ell, B_{2}\right) & =\ell(u)+\ell(v)+\sum\left(\ell, Q_{2}\right)+\sum\left(\ell, Q_{3}\right)+\sum(\ell, U) \\
& =\sum\left(\ell_{F}, B_{2}^{*}\right)+\sum(\ell, U)=0+0=0 \text { in } \mathbb{Z}_{3},
\end{aligned}
$$

and the value of the boundary of R_{3} is $\sum\left(\ell, B_{3}\right)=\sum\left(\ell_{F}, B_{3}^{*}\right)=0$ in \mathbb{Z}_{3}. Consequently, ℓ is a zonal labeling of G.

Case 2. There is no path $P_{i}, i=1,2,3$, every interior vertex of which has degree 2 in G. Hence, $n_{i} \geq 3$ for $i=1,2,3$. In this case, we don't need the condition that $n_{1} \leq n_{2} \leq n_{3}$. Let $U=V(G)-V(F)$. For each integer i with $1 \leq i \leq 3$, let $U_{i} \subseteq U$ consist of those vertices belonging to any branch at an interior vertex of P_{i}. In addition, let $U_{0} \subseteq U$ consist of those vertices belonging to any branch at u or v. Thus, $\left|U_{i}\right| \geq 1$ for $i=1,2,3$ and $\left|U_{0}\right| \geq 0$. We consider two subcases.

Subcase 2.1. There is an integer $i \in\{1,2,3\}$ such that $\left|U_{0} \cup U_{i}\right| \geq 2$. Since we don't use the condition that $n_{1} \leq n_{2} \leq n_{3}$, we may assume that $\left|U_{0} \cup U_{1}\right| \geq 2$. We embed G in the plane in such a way that the boundary of R_{1} consists of P_{1} and P_{2}, the boundary of R_{2} consists of P_{2}, P_{3}, and every branch at any interior vertex of P_{2} and P_{3}, and the boundary of R_{3} consists of P_{1}, P_{3}, and every branch at any vertex of P_{1} (including u and v) (see Figure 6, for example, where $\left|U_{0}\right|=1$, $\left|U_{1}\right|=3,\left|U_{2}\right|=1$, and $\left|U_{3}\right|=4$). Since $n_{i} \geq 3$ for $i=1,2,3$, it follows that $G_{1}=G-\left(U_{0} \cup U_{1}\right)$ is a graph of cycle rank 2 and type (3) that satisfies the conditions of Subcase 1.2. Thus, G_{1} is zonal. Let ℓ_{1} be a zonal labeling of G_{1}. We then extend the labeling ℓ_{1} of G_{1} to a zonal labeling ℓ of G by defining $\ell(x)=\ell_{1}(x)$ if $x \in V\left(G_{1}\right)$ such that $\sum\left(\ell, U_{0} \cup U_{1}\right)=0$ by Lemma 2.2.

Figure 6. An embedding of the graph G in Subcase 2.1

Subcase 2.2. For each $i \in\{1,2,3\},\left|U_{0} \cup U_{i}\right|=1$. Since $\left|U_{i}\right| \geq 1$ for $i=1,2,3$, it follows that $U_{0}=\emptyset$ and $\left|U_{1}\right|=\left|U_{2}\right|=\left|U_{3}\right|=1$. For $i=1,2,3$, let $U_{i}=\left\{w_{i}\right\}$ and so w_{i} is adjacent to an interior vertex of P_{i}. We embed the graph G in the plane in such a way that w_{i} belongs to R_{i} for $i=1,2,3$. We now define a labeling ℓ of G by letting $\ell(u)=\ell(v)=1$ and $\ell\left(w_{i}\right)=2$ for $i=1,2,3$ such that $\sum\left(\ell, Q_{i}\right)=1$ in \mathbb{Z}_{3} for $i=1,2,3$ by Lemma 2.2. The value of the boundary of $R_{i}(i=1,2,3)$ is $\ell(u)+\ell(v)+\ell\left(w_{i}\right)+\sum\left(\ell, Q_{i}\right)+\sum\left(\ell, Q_{j}\right)=1+1+2+1+1=0$ in \mathbb{Z}_{3}, where $j \in\{1,2,3\}-\{i\}$. Consequently, ℓ is a zonal labeling of G.

Combining the results on graphs of a cycle rank 2 and type (3), we have the following characterization of zonal graphs of of a cycle rank 2 and type (3).

Corollary 3.7. Let G be a graph of a cycle rank 2 and type (3) containing three internally disjoint paths of order n_{i} for $i=1,2,3$ where $2 \leq n_{1} \leq n_{2} \leq n_{3}$ and $n_{2} \geq 3$. Then G is zonal if and only if G is not minimal or G is minimal and $\left(n_{1}, n_{2}\right) \neq(2,3)$.

As a consequence of Theorem 3.1 and 3.2, and Corollary 3.7, we present the following characterization of those graphs of a cycle rank 2 that are zonal.

Theorem 3.8. Let G be a graph of a cycle rank 2.
(1) If G is of type (1), then G is zonal if and only if G is not minimal.
(2) If G is of type (2), then G is zonal if and only if either every vertex of G belongs to a cycle of G or at least two vertices of G belong to no cycle of G.
(3) If G is of type (3) with three internally disjoint paths of order n_{i} for $i=1,2,3$ where $2 \leq n_{1} \leq n_{2} \leq n_{3}$ and $n_{2} \geq 3$, then G is zonal if and only if G is not minimal or G is minimal and $\left(n_{1}, n_{2}\right) \neq(2,3)$.

While every planar embedding of a zonal graph of cycle rank 0 or 1 is zonal, this is not case for zonal graphs of cycle rank 2. For example, consider the two zonal graphs H_{1} and H_{2} of cycle rank 2 in Figure 7. Each of H_{1} and H_{2} has exactly two distinct planar embeddings, as shown in Figure 7. Thus, every planar embedding of the zonal graph H_{1} is zonal (where a zonal labeling of each planar embedding of H_{1} is also shown in that figure); while this is not true for the zonal graph H_{2} (since one of the two planar embeddings of H_{2} is not zonal). Observe that each of H_{1} and H_{2} has the form $F \star K_{2}$ for some minimal graph F of cycle rank 2 . We close with the following result dealing with minimal graphs of cycle rank 2 , which we state without proof.

Zonal graphs of small cycle rank | A. Bowling and P. Zhang

Figure 7. Two planar embeddings of two zonal graphs

Theorem 3.9. Let F be a minimal graph of cycle rank 2.
(1) If F is of type (1), then every planar embedding of $F \star K_{2}$ is zonal.
(2) If F is of type (2) such that at least one vertex of F belongs to no cycle in F, then every planar embedding of $F \star K_{2}$ is zonal.
(3) If F is of type (3), then the following hold:
(3.1) If F is zonal, then every planar embedding of $F \star K_{2}$ is zonal.
(3.2) If F is not zonal and w is the only vertex of $F \star K_{2}$ that does not belong to F, then every planar embedding of $F \star K_{2}$ is zonal if and only if w is adjacent to a vertex not on any triangle of F.

4. Closing Remarks on Graphs of Cycle Rank 3

Recall for a connected graph G of order n and size m that the number $m-n+1$ is called the cycle rank of G. Since $K_{3,3}$ is a graph of cycle rank 4 and K_{5} is a graph of cycle rank 6 , it follows by Kuratowski's theorem [6] that every graph of cycle rank 3 is planar. Results that have been obtained on graphs of cycle rank $0,1,2$ give rise to the following question: Which graphs of cycle rank $k, k \geq 3$, are zonal? The following result was proved in [1].

Proposition 4.1. Every 2-connected bipartite plane graph is zonal.
We now present some observations on 2-connected graphs of cycle rank 3 .
Proposition 4.2. There are infinitely many 2-connected zonal graphs of cycle rank 3.
Proof. Let H be a 2-connected bipartite graph of cycle rank 3 and let E_{0} be a set of edges of H. If G is a graph obtained by subdividing each edge of E_{0} an even number of times, then G is a 2 -connected bipartite graph of cycle rank 3. Thus, G is zonal by Proposition 4.1. In fact, if H is any 2 -connected zonal graph of cycle rank 3 and a set E_{0} be a set of edges of H, then the graph
obtained by subdividing each edge of E_{0} at least twice is a 2-connected zonal graph of cycle rank 3 by Lemma 2.2. Hence, there are infinitely many 2-connected zonal bipartite or non-bipartite graphs of cycle rank 3 .

If all edges of a 2-connected bipartite graph of cycle rank 3 are subdivided a number of times of the same parity, then the resulting graph is a 2-connected bipartite graph of cycle rank 3 and so is zonal Proposition 4.1. Thus, we have the following result.

Proposition 4.3. Let H be a 2-connected bipartite graph of cycle rank 3. If all edges of H are subdivided a number of times of the same parity, then the resulting graph is zonal.

Proposition 4.4. There are infinitely many 2-connected non-zonal graphs of cycle rank 3.
Proof. The 2-connected graph G of Figure 8 has cycle rank 3 and is non-zonal.

Figure 8. A 2-connected non-zonal graph of cycle rank 3
Any graph obtaining by subdividing the edge $x y$ of the graph G of Figure 8 any number of times is a 2 -connected graph of cycle rank 3 . We show that each such graph is non-zonal as well. To see this, let H be a graph obtained by subdividing the edge $x y$ of G one or more times. Consequently, H is obtained from G by replacing the edge $x y$ of G by an $x-y$ path P of length 2 or more. Assume, to the contrary, that H has a zonal labeling ℓ. Since three vertices in a triangle of H must be labeled the same, we may assume $\ell(x)=\ell(u)=\ell(v)=\ell(w)=\ell(y)=1$ by Observation 2.1. Let $X=V(H)-V(G)$. Since the 3-path (x, v, y) and P form the boundary of an interior region of H, it follows that $\ell(x)+\ell(v)+\ell(y)+\sum(\ell, X)=3+\sum(\ell, X)=0$ in \mathbb{Z}_{3} and so $\sum(\ell, X)=0$. On the other hand, the 5-path (x, u, v, w, y) and P form the boundary of the exterior region of H and so $\ell(x)+\ell(u)+\ell(v)+\ell(w)+\ell(y)+\sum(\ell, X)=5+\sum(\ell, X)=2 \neq 0$ in \mathbb{Z}_{3}, which is impossible. Therefore, H is not zonal.

We conclude with the following problem.
Problem 4.5. Characterize the zonal planar graphs of cycle rank 3.

Acknowledgement

We thank the anonymous referee whose valuable suggestions resulted in an improved paper.

References

[1] A. Bowling and P. Zhang, Absolutely and conditionally zonal graphs. Electron. J. Math. 4 (2022), 1-11.
[2] A. Bowling and P. Zhang, Inner zonality in graphs Int. J. Comput. Math: Computer Systems Theory. 7 (2022), 192-206.
[3] G. Chartrand, C. Egan, and P. Zhang, How to Label a Graph. Springer, New York (2019).
[4] G. Chartrand, C. Egan, and P. Zhang, Zonal graphs revisited. Bull. Inst. Combin Appl. 99 (2023). To appear.
[5] G. Chartrand and P. Zhang, Chromatic Graph Theory. Second Edition. Taylor \& Francis/CRC Press, Boca Raton (2020).
[6] K. Kuratowski, Sur le problème des courbes gauches en topologie. Fund. Math. 15 (1930), 271-283.

[^0]: Received: 26 May 2022, Revised: 6 January 2023, Accepted: 29 January 2023.

