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Abstract

A zonal labeling of a plane graph G is an assignment of the two nonzero elements of the ring Z3

of integers modulo 3 to the vertices of G such that the sum of the labels of the vertices on the
boundary of each region of G is the zero element of Z3. A plane graph possessing such a labeling
is a zonal graph. There is a connection between zonal labelings of connected bridgeless cubic
plane graphs and the Four Color Theorem. Zonal labelings of cycles play a role in this connection.
The cycle rank of a connected graph of order n and size m is m− n + 1. Thus, cycles have cycle
rank 1. All zonal connected graphs of cycle rank at most 2 are determined.

Keywords: planar graph, graph embedding, zonal labeling, zonal graph, cycle rank
Mathematics Subject Classification: 05C10, 05C15, 05C78
DOI: 10.5614/ejgta.2023.11.1.1

1. Introduction

Let G be a connected plane graph each of whose vertices is labeled with one of the two nonzero
elements 1 and 2 of the ring Z3 of integers modulo 3. The value of a region (zone) R of G is the
sum in Z3 of the labels of the vertices on the boundary of R. Such a labeling of G is said to be a
zonal labeling if the value of each zone in G is the zero element of Z3. If G admits a zonal labeling,
then G is zonal. This concept was introduced by Cooroo Egan in 2014 (see [3]).

There is a close connection between the Four Color Theorem and zonal labelings of planar
graphs. A connected bridgeless cubic plane graph (or multigraph) is referred to as a cubic map.
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Thus, every cubic map is a 3-regular 2-edge-connected plane graph. The following two results
were established in [3].

Theorem 1.1. [3] A connected cubic plane graph G is zonal if and only if G is bridgeless.

Theorem 1.2. [3] There exists a 4-coloring of the regions of a cubic map M if and only if M has
a zonal labeling.

Since it is known that there exists a 4-coloring of the regions of every plane map (the Four
Color Theorem) if and only if there exists a 4-coloring of the regions of every cubic map (see [5],
for example), it follows by Theorem 1.2 that showing every cubic map is zonal is equivalent to
establishing the Four Color Theorem.

As described in [3], the argument given that establishes the truth of Theorems 1.1 and 1.2,
however, makes use of the Four Color Theorem. It would be considerably more satisfying if it
could be shown that every cubic map is zonal without using the Four Color Theorem (and without
using computers). Thus, the following fundamental question was stated in [3].

Problem 1.3. Can it be shown that every cubic map is zonal without using the Four Color Theorem
or computers?

Problem 1.3 brings up the natural question of determining the zonality of plane graphs and
planar graphs in general. A planar graph G is zonal if there exists a zonal planar embedding of G.
This concept has been studied in [1, 2, 3, 4]. Since the boundary of every region of a cubic map is
a cycle, it is of value to know which cycles and related graphs are zonal. That every nontrivial tree
and every cycle is zonal was established in [3].

Theorem 1.4. [3] Every nontrivial tree and every cycle is zonal.

The cycle rank of a connected graph of order n size m is the number m− n+ 1. Thus, cycles
have cycle rank 1. In general, the graphs of cycle rank 1 are connected graphs possessing exactly
one cycle. The goal of this paper is to determine all zonal graphs of cycle rank 1 and 2. All such
graphs are necessarily planar.

2. Zonal Unicyclic Graphs

A connected graph containing exactly one cycle is referred to as a unicyclic graph. Thus, the
unicyclic graphs are precisely the graphs of cycle rank 1. In order to determine which unicyclic
graphs are zonal, we first state some information on zonal labelings. Let ℓ be a labeling of the
vertices of a graph G with the labels 1 and 2 of Z3. The vertex labeling ℓ of G defined by ℓ(v) =
3− ℓ(v) for each vertex v of G is called the complementary labeling of G.

Observation 2.1. [3] If ℓ is a zonal labeling of a connected plane graph, then so too is its com-
plementary labeling ℓ.

The following notation will be useful to us. For a labeling ℓ : V (G) → {1, 2} ⊆ Z3 of a
graph G and a subgraph H or a nonempty set X of vertices of G, let
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∑
(ℓ,H) =

∑
x∈V (H)

ℓ(x) in Z3 and
∑

(ℓ,X) =
∑
x∈X

ℓ(x) in Z3.

In particular, if B is the boundary of a region R of a plane graph G and ℓ is a labeling of G, then∑
(ℓ, B) is the value of B (as well as the value of R).

Lemma 2.2. Let X be a nonempty set of vertices of a graph.

(1) For each i = 1, 2, there is a labeling ℓi : X → {1, 2} ⊆ Z3 of X such that
∑

(ℓi, X) = i
in Z3.

(2) If |X| ≥ 2, then there is a labeling ℓ0 : X → {1, 2} ⊆ Z3 of X such that
∑

(ℓ0, X) = 0
in Z3.

Proof. First, we verify (1). For each i = 1, 2, define a labeling ℓi : X → {1, 2} of X as follows.

⋆ If |X| ≥ 1 is odd, then |X| = 2k + 1 for some nonnegative integer k. Let ℓ1 assign the
label 1 to k + 1 vertices of X and assign the label 2 to k vertices of X , giving the sum∑

(ℓ1, X) = 1 · (k + 1) + 2k = 1 in Z3. Let ℓ2 be the complementary labeling of ℓ1, that
is, let ℓ2 assign the label 1 to k vertices of X and assign the label 2 to k + 1 vertices of X ,
giving the sum

∑
(ℓ2, X) = 1 · k + 2(k + 1) = 2 in Z3.

⋆ If |X| ≥ 2 is even, then |X| = 2k = (k − 1) + (k + 1) for some positive integer k. Let ℓ1
assign the label 2 to k+ 1 vertices of X and assign the label 1 to k− 1 vertices of X , giving
the sum

∑
(ℓ1, X) = 1 · (k− 1)+ 2(k+1) = 1 in Z3. Let ℓ2 be the complementary labeling

of ℓ1, that is, let ℓ2 assign the label 1 to k + 1 vertices of X and assign the label 2 to k − 1
vertices of X , giving the sum

∑
(ℓ2, X) = 1 · (k + 1) + 2(k − 1) = 2 in Z3.

Next, we verify (2). For |X| ≥ 2, let x0 ∈ X and X ′ = X − {x0}. By (1), for each i = 1, 2,
there is a labeling ℓi : X

′ → {1, 2} of X such that
∑

(ℓi, X
′) = i in Z3. Define the labeling ℓ0 :

X → {1, 2} of X by ℓ0(x) = ℓi(x) if x ∈ X ′ and ℓ0(x0) = 3− i. Thus,
∑

(ℓ0, X) =
∑

(ℓi, X
′) +

ℓ0(x0) = i+ (3− i) = 0 in Z3.

Let C ⋆K2 be the unicyclic graph obtained by adding exactly one pendant edge at some vertex
of a cycle C. We are now prepared to present the following result.

Theorem 2.3. A unicyclic graph G is zonal if and only if G ̸= C ⋆ K2 for any cycle C.

Proof. Let G be a unicyclic graph containing the cycle C such that G ̸= C ⋆ K2. We show
that G is zonal. By Theorem 1.4, we may assume that G ̸= C. Let G be embedded in the plane
(resulting in two regions R1 and R2) such that the boundary of R1 is C and that the boundary
of R2 is G. By Theorem 1.4, there is a zonal labeling ℓC of C. Let U = V (G) − V (C) be the
set of vertices of G that do not belong to C. Then p = |U | ≥ 2. We now extend the labeling ℓC
of C to a labeling ℓ of G. First, we define ℓ(v) = ℓC(v) for all v ∈ V (C). Thus, the sum of the
labels of the vertices on C is

∑
(ℓ, C) =

∑
(ℓC , C) = 0. Next, we define the labels of vertices

in U as follows. If p ≥ 2 is even, then we assign the label 1 to half of the vertices of U and the
label 2 to the other half, giving us a sum of 0 in Z3. If p ≥ 3 is odd, then p = 2k + 1 for some
positive integer k. Then n = 2k + 1 = (k − 1) + (k + 2). If we assign the label 1 to k + 2
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vertices of U , assign the label 2 to the other k − 1 vertices of U , and add these labels, we have
1 · (k+2)+ 2(k− 1) = (k+2)+ 2k− 2 = 3k = 0 in Z3. Consequently, the values of R1 and R2

are both 0 and so ℓ is a zonal labeling of G. Therefore, G is zonal.
For the converse, suppose that G = C ⋆ K2 for a cycle C, where u is the vertex of G that does

not belong to C. Let there be given a planar embedding of G; that is, G is a plane graph. Assume,
to the contrary, that G has a zonal labeling ℓ. Then ℓ(u) ∈ {1, 2}. Since C is the boundary of
some region R1 of G, the value of C is 0. However then, the value of the boundary of the other
region R2 of G is the sum of the value of C and ℓ(u), that is, 0 + ℓ(u) = ℓ(u) ̸= 0 in Z3, which is
a contradiction.

Recall that a planar graph G is zonal if there exists a zonal planar embedding of G. It is
possible that a planar graph has both a zonal planar embedding and a non-zonal planar embedding.
For example, Figure 1 shows two distinct planar embeddings of a planar graph G. The planar
embedding of G in Figure 1(a) is zonal and a zonal labeling is also shown in that figure, while the
planar embedding of G in Figure 1(b) is not zonal. Next, we show that if G is a zonal graph of
cycle rank 1 (namely, a unicyclic graph), then every planar embedding of G is zonal.

1

1

1

1

1

1

1

(a) (b)

Figure 1. A graph with a zonal planar embedding
and a non-zonal planar embedding

Proposition 2.4. Every planar embedding of a zonal graph of cycle rank 1 is zonal.

Proof. Since there is only one planar embedding of a cycle, the statement is true trivially. Next, let
G be a zonal unicyclic graph containing the cycle C. We may assume that G ̸= C and G ̸= C ⋆K2

by Theorem 2.3. Let U = V (G) − V (C) be the set of vertices of G that do not belong to C.
Then p = |U | ≥ 2. Let G be embedded in the plane resulting two regions R1 and R2. We show
that the resulting plane graph G has a zonal labeling. For i = 1, 2, let Bi be the boundary of Ri

and so Bi contains C. If {B1, B2} = {C,G}, then G is zonal by the proof of Theorem 2.3. We
may therefore assume that {B1, B2} ̸= {C,G} and so {B1, B2} ∩ {C,G} = ∅. For i = 1, 2, let
Ui ⊆ U be the set of vertices belonging to Bi and so |Ui| ≥ 1. Furthermore, V (Bi) = V (C) ∪ Ui

for i = 1, 2. With the aid of Lemma 2.2, we can define a labeling ℓ : V (G) → {1, 2} of G such
that

∑
(ℓ, C) = 1 in Z3 and

∑
(ℓ, Ui) = 2 in Z3 for i = 1, 2. Hence, the value of Bi, i = 1, 2, is∑

(ℓ, C) +
∑

(ℓ, Ui) = 1 + 2 = 0 in Z3 and so ℓ is a zonal labeling of G. Therefore, every planar
embedding of G is zonal.
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3. Zonal Graphs of Cycle Rank 2

We next determine those graphs of cycle rank 2 that are zonal. A graph G has cycle rank 2 if
G contains a subgraph F where

(1) F is obtained from two cycles C and C ′ by identifying a vertex in C and a vertex in C ′,
which is denoted by F = C ⋆ C ′, as shown in Figure 2(a),

(2) F is obtained from two disjoint cycles C and C ′ by adding a path P of length 1 or more
and then by identifying an end-vertex of P with a vertex of C and identifying the other end-
vertex of P with a vertex of C ′, which is denoted by F = C⋆P ⋆C ′, as shown in Figure 2(b),
or

(3) F is a subdivision of K4− e, that is, G consists of three internally disjoint paths Pi (1 ≤ i ≤
3), where at least two paths Pi (1 ≤ i ≤ 3) have length 2 or more, as shown in Figure 2(c).

Necessarily, every embedding of a graph of cycle rank 2 results in a plane graph with exactly three
regions – namely one exterior region and two interior regions.
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Figure 2. Three possible types of subgraphs

For i = 1, 2, 3, a graph G is referred to as a graph of cycle rank 2 and type (i) if G contains a
subgraph F satisfing the properties described in (i) above. Furthermore, a graph G of cycle rank 2
is minimal if G is one of the graphs F described in (1), (2), or (3). Consequently, every minimal
graph G of cycle rank 2 has minimum degree 2. The graph K4 − e is a minimal graph of cycle
rank 2 and type 3 but it is not zonal. This gives rise to the more general question: Which graphs of
cycle rank 2 are zonal?

First, we determine all zonal graphs of cycle rank 2 and type (1).

Theorem 3.1. Let G be a graph of cycle rank 2 and type (1). Then G is zonal if and only if G is
not minimal.

Proof. Since G is a graph of cycle rank 2 and type (1), it follows that G contains a subgraph C ⋆C ′

obtained from two cycles C and C ′ by identifying a vertex in C and a vertex in C ′, denoting this
identified vertex by u.

First, suppose that G is minimal and so G = C ⋆ C ′. We show that G is not zonal. Assume,
to the contrary, that G is zonal. Then there exists a planar embedding of G such that the resulting
plane graph G has a zonal labeling ℓ. Since each of C and C ′ is the boundary of a region of G, it
follows that

∑
(ℓ, C) =

∑
v∈V (C) ℓ(v) = 0 and

∑
(ℓ, C ′) =

∑
v∈V (C′) ℓ(v) = 0. However then, the

value of the boundary of the region R3 is [
∑

(ℓ, C) +
∑

(ℓ, C ′)]− ℓ(u) = 0+ 0− ℓ(u) ̸= 0 in Z3,
which is a contradiction.
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For the converse, suppose that G is a graph of cycle rank 2 and type (1) such that G ̸= C ⋆ C ′

where u is the vertex belonging to both C and C ′. We show that G is zonal. We embed G in the
plane resulting in three regions R1, R2, and R3 such that the boundary of R1 is C, the boundary
of R2 is C ′, and the boundary of R3 is G. Since C and C ′ are zonal by Theorem 1.4, there are
zonal labelings ℓC and ℓC′ of C and C ′, respectively. We may assume that ℓC(u) = ℓC′(u) = 1
where u belongs to C and C ′. Let U = V (G) − V (C ⋆ C ′) be the set of vertices of G that do not
belong to C ⋆ C ′. Then |U | ≥ 1. We now define a labeling ℓ of G. First, we define ℓ(v) = ℓC(v)
for all v ∈ V (C) and ℓ(v) = ℓC′(v) for all v ∈ V (C ′). Thus, the value of the boundary C of R1 is∑

(ℓ, C) =
∑

(ℓC , C) = 0 and the value of the boundary C ′ of R2 is
∑

(ℓ, C ′) =
∑

(ℓC′ , C ′) = 0.
Next, we can define the labels of vertices of U such that

∑
(ℓ, U) = 1 in Z3 by Lemma 2.2. Thus,

the value of the boundary G of R3 is [
∑

(ℓ, C)+
∑

(ℓ, C ′)− ℓ(u)]+
∑

(ℓ, U) = −1+1 = 0 in Z3.
Consequently, the values of R1, R2, and R3 are all 0 and so ℓ is a zonal labeling of G.

We now determine all zonal graphs of cycle rank 2 and type (2).

Theorem 3.2. Let G be a graph of cycle rank 2 and type (2). Then G is zonal if and only if either
every vertex of G belongs to a cycle of G or at least two vertices of G belong to no cycle of G.

Proof. First, let G be a zonal graph of cycle rank 2 and type (2) such that exactly one vertex w
of G belongs to no cycle of G. Therefore, either G is a minimal graph C ⋆ P ⋆ C ′ where C and C ′

are two cycles and P is a path of length 2 with interior vertex w or G is obtained from a minimal
graph C ⋆ P ⋆ C ′ by adding a pendant edge e = wv where v ∈ V (C ⋆ P ⋆ C ′), C and C ′ are two
cycles, and P is a path of length 1. Since G is zonal, there is a planar embedding of G, resulting in
the three regions R1, R2, and R3, and a zonal labeling ℓ of the resulting plane graph G.

⋆ If G = C ⋆P ⋆C ′, where P has length 2, then the boundaries of the three regions of G are C,
C ′, and G. Thus,

∑
(ℓ, C) =

∑
(ℓ, C ′) = 0 and

∑
(ℓ,G) =

∑
(ℓ, C) +

∑
(ℓ, C ′) + ℓ(w) =

ℓ(w) = 0 in Z3, which is impossible since ℓ(w) ∈ {1, 2}.
⋆ If G consists of a minimal graph C ⋆ P ⋆ C ′ and a pendant edge e = wv, where P is a

path of length 1, then we may assume that the boundary of one region R1 of G is C and so∑
(ℓ, C) = 0 in Z3. The boundaries of the other two regions are either (a) C ′ and G or (b)

C ⋆ P ⋆ C ′ and C ′ with uv. If (a) occurs, then
∑

(ℓ, C ′) = 0 and
∑

(ℓ,G) =
∑

(ℓ, C) +∑
(ℓ, C ′) + ℓ(w) = ℓ(w) = 0 in Z3, which is impossible. If (b) occurs, then

∑
(ℓ, C ⋆ P ⋆

C ′) =
∑

(ℓ, C) +
∑

(ℓ, C ′) = 0 and
∑

(ℓ, C ′) + ℓ(w) = 0. Since
∑

(ℓ, C) = 0, it follows
that

∑
(ℓ, C ′) = 0. However then,

∑
(ℓ, C ′) + ℓ(w) = 0 + ℓ(w) = 0, which is impossible.

For the converse, suppose that either every vertex of G belongs to a cycle of G or at least
two vertices of G belong to no cycle of G. Thus, p = 0 or p ≥ 2. We show that G is zonal.
Embed G in the plane resulting in three regions R1, R2, and R3 such that the boundary of R1

is C, the boundary of R2 is C ′, and the boundary of R3 is G. Since C and C ′ are zonal, there
are zonal labelings ℓC and ℓC′ of C and C ′, respectively. We define a labeling ℓ of G as follows.
First, we define ℓ(v) = ℓC(v) for all v ∈ V (C) and ℓ(v) = ℓC′(v) for all v ∈ V (C ′). Thus, the
value of the boundary C of R1 is

∑
(ℓ, C) =

∑
(ℓC , C) = 0 and the value of the boundary C ′

of R2 is
∑

(ℓ, C ′) =
∑

(ℓC′ , C ′) = 0. Next, we define the labels of vertices of U as follows.
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If p = 0, then
∑

(ℓ, U) = 0 vacuously. If p ≥ 2, then let ℓ assign the labels 1 and 2 to the
vertices of U such that

∑
(ℓ, U) = 0 by Lemma 2.2. Hence, the value of the boundary G of R3

is
∑

(ℓ, C) +
∑

(ℓ, C ′) +
∑

(ℓ, U) = 0 in Z3. Consequently, the values of R1, R2, and R3 are all 0
and so ℓ is a zonal labeling of G.

By Theorem 3.1, no minimal graph of cycle rank 2 and type (1) is zonal; while by Theorem 3.2,
every minimal graph of cycle rank 2 and type (2) is zonal. For minimal graphs of cycle rank 2 and
type (3), the situation is different, as we show next.

Theorem 3.3. Let G be a minimal graph of cycle rank 2 and type (3) consisting of three internally
disjoint u− v paths Pi of order ni for i = 1, 2, 3 where 2 ≤ n1 ≤ n2 ≤ n3 and n2 ≥ 3. Then G is
zonal if and only if (n1, n2) ̸= (2, 3).

Proof. First, suppose that (n1, n2) = (2, 3). We show that G is not zonal. Assume, to the contrary,
that G is zonal. Then there exists a planar embedding of G, resulting in three regions R1, R2,
and R3, such that the resulting plane graph G has a zonal labeling ℓ. We may assume that the
boundary of R1 consists of P1 and P2, the boundary of R2 consists of P2 and P3, and the boundary
of R3 consists of P1 and P3. Let w be the interior vertex of P2. Since the value of the boundary
of R2 is

∑
(ℓ, P3) + ℓ(w) = 0 in Z3 and the value of the boundary of R3 is

∑
(ℓ, P3) = 0 in Z3, it

follows that ℓ(w) = 0 in Z3, which is impossible. Thus, G is not zonal.
For the converse, suppose that (n1, n2) ̸= (2, 3). Here, we show that G is zonal. We embed

the graph G in the plane, resulting in three regions R1, R2, and R3 where R3 is the exterior region
of G, where u and v are the two vertices of degree 3 in G. We show that the resulting plane graph G
has a zonal labeling. For i = 1, 2, 3, let Qi = Pi−{u, v} and so Qi is a path of order ni−2 (where
there is no path Q1 if n1 = 2). We consider three cases, depending on whether n1 ≥ 4, n1 = 3, or
n1 = 2.

Case 1. n1 ≥ 4. Since n3 ≥ n2 ≥ n1 ≥ 4, it follows by Theorem 1.4 that each path Qi

(i = 1, 2, 3) is zonal. For i = 1, 2, 3, let ℓi be a zonal labeling of Qi and so
∑

(ℓi, Qi) = 0 in Z3.
We define a labeling ℓ of G by ℓ(u) = 2, ℓ(v) = 1, and ℓ(x) = ℓi(x) if x ∈ V (Qi) for i = 1, 2, 3.
Since the boundary of a region of G is

∑
(ℓi, Qi)+

∑
(ℓj, Qj)+1+2 = 0 in Z3 for distinct integers

i, j ∈ {1, 2, 3}, it follows that ℓ is a zonal labeling of G.
Case 2. n1 = 3. We define a labeling ℓ of G such that ℓ(u) = ℓ(v) = 2 and

∑
(ℓ,Qi) = 1 for

i = 1, 2, 3 by Lemma 2.2. Since the boundary of the region Ri of G is
∑

(ℓ,Qi) +
∑

(ℓ,Qj) +
ℓ(u) + ℓ(v) = 1 + 1 + 2 + 2 = 0 in Z3 for some j ∈ {1, 2, 3} − {i}, it follows that ℓ is a zonal
labeling of G.

Case 3. n1 = 2. Thus, there is no path Q1. Since (n1, n2) ̸= (2, 3), it follows that n3 ≥ n2 ≥ 4.
By Theorem 1.4, each path Qi (i = 2, 3) is zonal and so has a zonal labeling ℓi. Thus,

∑
(ℓi, Qi) =

0 in Z3 for i = 2, 3. As we saw in Case 1, we can define the labeling ℓ of G by ℓ(u) = 2, ℓ(v) = 1,
and ℓ(x) = ℓi(x) if x ∈ V (Qi) for i = 2, 3. Then ℓ is a zonal labeling of G.

We now determine which graphs of cycle rank 2 are zonal if they contain a minimal non-zonal
graph of cycle rank 2 and type (3) as a proper subgraph.

Theorem 3.4. Let F be a minimal non-zonal graph of cycle rank 2 and type (3) and let G be a
graph of cycle rank 2. If G contains F as a proper subgraph, then G is zonal.
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Proof. Let U = V (G) − V (F ) be the set of vertices of G that do not belong to F . Then |U | ≥
1. Since the subgraph F of G is non-zonal, it follows by Theorem 3.3 that F consists of three
internally disjoint u− v paths Pi of order ni for i = 1, 2, 3 where n1 = 2 and 3 = n2 ≤ n3. Let w
be the interior vertex of P2 and let Q3 = P3 − {u, v} be a path of order q3 = n3 − 2 ≥ 1. We
embed the graph G in the plane in such a way that the boundary of R1 is the triangle (u,w, v, u),
the boundary of R2 is G − uv, and the boundary of R3 is (u,Q3, v, u), as shown in Figure 3, for
example.
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Figure 3. An embedding of the graph G

We define a labeling ℓ of G such that ℓ(u) = ℓ(v) = ℓ(w) = 1,
∑

(ℓ,Q3) = 1 in Z3, and∑
(ℓ, U) = 2 in Z3. Then the value of the boundary of R1 is ℓ(u)+ ℓ(w)+ ℓ(v) = 1+1+1 = 0 in

Z3, the value of the boundary of R2 is ℓ(u)+ℓ(w)+ℓ(v)+
∑

(ℓ,Q3)+
∑

(ℓ, U) = 1+1+1+1+2 = 0
in Z3, and the value of the boundary of R3 is ℓ(u) + ℓ(v) +

∑
(ℓ,Q3) = 1 + 1 + 1 = 0 in Z3.

Consequently, ℓ is a zonal labeling of G and so G is zonal.

Next, we consider graphs of cycle rank 2 containing a proper minimal zonal subgraph of cycle
rank 2 and type (3). For a minimal graph F of cycle rank 2 and type (3), let F ⋆ K2 be the graph
obtained from F by adding a pendant edge at a vertex of F .

Theorem 3.5. If F is a minimal zonal graph of cycle rank 2 and type (3), then F ⋆ K2 is zonal.

Proof. Let F consist of three internally disjoint u − v paths Pi of order ni for i = 1, 2, 3 where
2 ≤ n1 ≤ n2 ≤ n3 and n2 ≥ 3 and let G = F ⋆ K2. We consider two cases, according to whether
n1 ≥ 3 or n1 = 2.

Case 1. n1 ≥ 3. Then n3 ≥ n2 ≥ n1 ≥ 3. For i = 1, 2, 3, let Qi = Pi − {u, v} be the
path of order qi ≥ 1. We may assume, without loss of generality, that G is obtained by adding
a vertex w and joining w to a vertex z of P3 (where it is possible that z = u or z = v). Let G
be embedded in the plane resulting in three regions R1, R2, and R3 such that w belongs to the
boundary of R3. For i = 1, 2, 3, let Bi be the boundary of Ri. Define the labeling ℓ of G such
that (i) ℓ(u) = ℓ(w) = 1 and ℓ(v) = 2 and (ii)

∑
(ℓ,Q1) =

∑
(ℓ,Q3) = 1 and

∑
(ℓ,Q2) = 2.

Then the value of B1 is ℓ(u) + ℓ(v) +
∑

(ℓ,Q1) +
∑

(ℓ,Q2) = 1 + 2 + 1 + 2 = 0 in Z3, the
value of B2 is ℓ(u) + ℓ(v) +

∑
(ℓ,Q2) +

∑
(ℓ,Q3) = 1 + 2 + 2 + 1 = 0 in Z3, the value of B3 is

ℓ(u) + ℓ(v) + ℓ(w) +
∑

(ℓ,Q1) +
∑

(ℓ,Q3) = 1 + 2 + 1 + 1 + 1 = 0 in Z3. Thus, ℓ is a zonal
labeling of G.

Case 2. n1 = 2. Since F is zonal, it follows by Theorem 3.3 that n3 ≥ n2 ≥ 4. For i = 2, 3,
let Qi = Pi − {u, v} be the path of order qi ≥ 2. We may assume, without loss of generality,

8
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that G is obtained by adding a vertex w and joining w to a vertex z of P3 (where it is possible
that z = u or z = v). Let G be embedded in the plane resulting in three regions R1, R2, and R3

such that w belongs to the boundary of R3. For i = 1, 2, 3, let Bi be the boundary of Ri. Define a
labeling ℓ of G such that (i) ℓ(u) = ℓ(v) = ℓ(w) = 1 and (ii)

∑
(ℓ,Q2) = 1 and

∑
(ℓ,Q3) = 0.

Hence, the value of B1 is ℓ(u) + ℓ(v) +
∑

(ℓ,Q2) = 1 + 1 + 1 = 0 in Z3, the value of B2

is ℓ(u) + ℓ(v) +
∑

(ℓ,Q2) +
∑

(ℓ,Q3) = 1 + 1 + 1 + 0 = 0 in Z3, and the value of B3 is
ℓ(u) + ℓ(v) + ℓ(w) +

∑
(ℓ,Q3) = 1 + 1 + 1 + 0 = 0 in Z3. Consequently, ℓ is a zonal labeling

of G.

Theorem 3.6. Let F be a minimal zonal graph of cycle rank 2 and type (3) and let G be a graph
of cycle rank 2. If G contains F as a proper subgraph and G ̸= F ⋆ K2, then G is zonal.

Proof. Since F is a minimal zonal graph of cycle rank 2 and type (3), it follows that F consists of
three internally disjoint u− v paths Pi of order ni for i = 1, 2, 3 where 2 ≤ n1 ≤ n2 ≤ n3, n2 ≥ 3
and (n1, n2) ̸= (2, 3) by Theorem 3.4. For i = 1, 2, 3, let Qi = Pi − {u, v} and so Qi is a path
of order qi = ni − 2 (where there is no path Q1 if n1 = 2). Let U = V (G) − V (F ) be the set of
vertices of G that do not belong to F and let p = |U |. Since G ̸= F ⋆ K2, it follows that p ≥ 2.
We consider two cases.

Case 1. There is some path P ∈ {P1, P2, P3} such that every interior vertex of P has degree 2
in G. There are two subcases, according to whether n1 = 2 or n1 ≥ 3.

Subcase 1.1. n1 = 2. Since (n1, n2) ̸= (2, 3), it follows that n3 ≥ n2 ≥ 4 and so q3 ≥ q2 ≥ 2.
Let G be embedded in the plane in such a way that the boundary of R1 is P2 + uv, the boundary
of R2 is G− uv, and the boundary of R3 is P3 + uv (see Figure 4, for example).
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Figure 4. An embedding of the graph G in Subcase 1.1

We define a labeling ℓ of G such that ℓ(u) = ℓ(v) = 1,
∑

(ℓ,Qi) = 1 in Z3 for i = 2, 3, and∑
(ℓ, U) = 2 in Z3. Then the value of the boundary of R1 is ℓ(u)+ℓ(v)+

∑
(ℓ,Q2) = 1+1+1 = 0

in Z3, the value of the boundary of R2 is ℓ(u)+ ℓ(v)+
∑

(ℓ,Q2)+
∑

(ℓ,Q3)+
∑

(ℓ, U) = 1+1+
1+1+2 = 0 in Z3, and the value of the boundary of R3 is ℓ(u)+ℓ(v)+

∑
(ℓ,Q3) = 1+1+1 = 0

in Z3. Consequently, ℓ is a zonal labeling of G.
Subcase 1.2. n1 ≥ 3. Thus, n3 ≥ n2 ≥ n1 ≥ 3. We may assume that every interior vertex

of P1 has degree 2. We embed the graph G in the plane in such a way that the boundary B1 of R1

consists of P1 and P2, the boundary B2 of R2 is G − V (Q1), and the boundary B3 of R3 consists
of P1 and P3 (see Figure 5, for example). Thus, all vertices of U belong to the boundary B2 of R2.
The planar embedding of G Figure 5 gives rise to a planar embedding of F such that B∗

1 = B1,
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B∗
2 = B2 − U , and B∗

3 = B3 are the boundaries of the three regions R∗
1 = R1, R∗

2, and R∗
3 = R3

of F . Since F = G− U is zonal, there is a zonal labeling ℓF of F .
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Figure 5. An embedding of the graph G in Subcase 1.2

We define a labeling ℓ of G such that ℓ(x) = ℓF (x) if x ∈ V (F ) and
∑

(ℓ, U) = 0 in Z3 (by
Lemma 2.2). Since B∗

2 is the boundary of the region R∗
2 of F , it follows that∑

(ℓF , B
∗
2) = ℓF (u) + ℓF (v) +

∑
(ℓF , Q2) +

∑
(ℓF , Q3)

= ℓ(u) + ℓ(v) +
∑

(ℓ,Q2) +
∑

(ℓ,Q3) = 0 in Z3.

In the graph G, the value of the boundary B1 of R1 is
∑

(ℓ, B1) =
∑

(ℓF , B
∗
1) = 0 in Z3, the value

of the boundary of R2 is∑
(ℓ, B2) = ℓ(u) + ℓ(v) +

∑
(ℓ,Q2) +

∑
(ℓ,Q3) +

∑
(ℓ, U)

=
∑

(ℓF , B
∗
2) +

∑
(ℓ, U) = 0 + 0 = 0 in Z3,

and the value of the boundary of R3 is
∑

(ℓ, B3) =
∑

(ℓF , B
∗
3) = 0 in Z3. Consequently, ℓ is a

zonal labeling of G.
Case 2. There is no path Pi, i = 1, 2, 3, every interior vertex of which has degree 2 in G.

Hence, ni ≥ 3 for i = 1, 2, 3. In this case, we don’t need the condition that n1 ≤ n2 ≤ n3.
Let U = V (G) − V (F ). For each integer i with 1 ≤ i ≤ 3, let Ui ⊆ U consist of those vertices
belonging to any branch at an interior vertex of Pi. In addition, let U0 ⊆ U consist of those vertices
belonging to any branch at u or v. Thus, |Ui| ≥ 1 for i = 1, 2, 3 and |U0| ≥ 0. We consider two
subcases.

Subcase 2.1. There is an integer i ∈ {1, 2, 3} such that |U0 ∪ Ui| ≥ 2. Since we don’t use the
condition that n1 ≤ n2 ≤ n3, we may assume that |U0∪U1| ≥ 2. We embed G in the plane in such
a way that the boundary of R1 consists of P1 and P2, the boundary of R2 consists of P2, P3, and
every branch at any interior vertex of P2 and P3, and the boundary of R3 consists of P1, P3, and
every branch at any vertex of P1 (including u and v) (see Figure 6, for example, where |U0| = 1,
|U1| = 3, |U2| = 1, and |U3| = 4). Since ni ≥ 3 for i = 1, 2, 3, it follows that G1 = G− (U0 ∪U1)
is a graph of cycle rank 2 and type (3) that satisfies the conditions of Subcase 1.2. Thus, G1 is
zonal. Let ℓ1 be a zonal labeling of G1. We then extend the labeling ℓ1 of G1 to a zonal labeling ℓ
of G by defining ℓ(x) = ℓ1(x) if x ∈ V (G1) such that

∑
(ℓ, U0 ∪ U1) = 0 by Lemma 2.2.
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Figure 6. An embedding of the graph G in Subcase 2.1

Subcase 2.2. For each i ∈ {1, 2, 3}, |U0 ∪ Ui| = 1. Since |Ui| ≥ 1 for i = 1, 2, 3, it follows
that U0 = ∅ and |U1| = |U2| = |U3| = 1. For i = 1, 2, 3, let Ui = {wi} and so wi is adjacent to
an interior vertex of Pi. We embed the graph G in the plane in such a way that wi belongs to Ri

for i = 1, 2, 3. We now define a labeling ℓ of G by letting ℓ(u) = ℓ(v) = 1 and ℓ(wi) = 2 for
i = 1, 2, 3 such that

∑
(ℓ,Qi) = 1 in Z3 for i = 1, 2, 3 by Lemma 2.2. The value of the boundary

of Ri (i = 1, 2, 3) is ℓ(u) + ℓ(v) + ℓ(wi) +
∑

(ℓ,Qi) +
∑

(ℓ,Qj) = 1 + 1 + 2 + 1 + 1 = 0 in Z3,
where j ∈ {1, 2, 3} − {i}. Consequently, ℓ is a zonal labeling of G.

Combining the results on graphs of a cycle rank 2 and type (3), we have the following charac-
terization of zonal graphs of of a cycle rank 2 and type (3).

Corollary 3.7. Let G be a graph of a cycle rank 2 and type (3) containing three internally disjoint
paths of order ni for i = 1, 2, 3 where 2 ≤ n1 ≤ n2 ≤ n3 and n2 ≥ 3. Then G is zonal if and only
if G is not minimal or G is minimal and (n1, n2) ̸= (2, 3).

As a consequence of Theorem 3.1 and 3.2, and Corollary 3.7, we present the following charac-
terization of those graphs of a cycle rank 2 that are zonal.

Theorem 3.8. Let G be a graph of a cycle rank 2.

(1) If G is of type (1), then G is zonal if and only if G is not minimal.
(2) If G is of type (2), then G is zonal if and only if either every vertex of G belongs to a cycle

of G or at least two vertices of G belong to no cycle of G.
(3) If G is of type (3) with three internally disjoint paths of order ni for i = 1, 2, 3 where

2 ≤ n1 ≤ n2 ≤ n3 and n2 ≥ 3, then G is zonal if and only if G is not minimal or G is
minimal and (n1, n2) ̸= (2, 3).

While every planar embedding of a zonal graph of cycle rank 0 or 1 is zonal, this is not case
for zonal graphs of cycle rank 2. For example, consider the two zonal graphs H1 and H2 of cycle
rank 2 in Figure 7. Each of H1 and H2 has exactly two distinct planar embeddings, as shown in
Figure 7. Thus, every planar embedding of the zonal graph H1 is zonal (where a zonal labeling
of each planar embedding of H1 is also shown in that figure); while this is not true for the zonal
graph H2 (since one of the two planar embeddings of H2 is not zonal). Observe that each of H1

and H2 has the form F ⋆K2 for some minimal graph F of cycle rank 2. We close with the following
result dealing with minimal graphs of cycle rank 2, which we state without proof.
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Figure 7. Two planar embeddings of two zonal graphs

Theorem 3.9. Let F be a minimal graph of cycle rank 2.

(1) If F is of type (1), then every planar embedding of F ⋆ K2 is zonal.
(2) If F is of type (2) such that at least one vertex of F belongs to no cycle in F , then every

planar embedding of F ⋆ K2 is zonal.
(3) If F is of type (3), then the following hold:

(3.1) If F is zonal, then every planar embedding of F ⋆ K2 is zonal.
(3.2) If F is not zonal and w is the only vertex of F ⋆ K2 that does not belong to F , then
every planar embedding of F ⋆K2 is zonal if and only if w is adjacent to a vertex not on any
triangle of F .

4. Closing Remarks on Graphs of Cycle Rank 3

Recall for a connected graph G of order n and size m that the number m − n + 1 is called
the cycle rank of G. Since K3,3 is a graph of cycle rank 4 and K5 is a graph of cycle rank 6, it
follows by Kuratowski’s theorem [6] that every graph of cycle rank 3 is planar. Results that have
been obtained on graphs of cycle rank 0, 1, 2 give rise to the following question: Which graphs of
cycle rank k, k ≥ 3, are zonal? The following result was proved in [1].

Proposition 4.1. Every 2-connected bipartite plane graph is zonal.

We now present some observations on 2-connected graphs of cycle rank 3.

Proposition 4.2. There are infinitely many 2-connected zonal graphs of cycle rank 3.

Proof. Let H be a 2-connected bipartite graph of cycle rank 3 and let E0 be a set of edges of H .
If G is a graph obtained by subdividing each edge of E0 an even number of times, then G is a
2-connected bipartite graph of cycle rank 3. Thus, G is zonal by Proposition 4.1. In fact, if H is
any 2-connected zonal graph of cycle rank 3 and a set E0 be a set of edges of H , then the graph

12
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obtained by subdividing each edge of E0 at least twice is a 2-connected zonal graph of cycle rank 3
by Lemma 2.2. Hence, there are infinitely many 2-connected zonal bipartite or non-bipartite graphs
of cycle rank 3.

If all edges of a 2-connected bipartite graph of cycle rank 3 are subdivided a number of times
of the same parity, then the resulting graph is a 2-connected bipartite graph of cycle rank 3 and so
is zonal Proposition 4.1. Thus, we have the following result.

Proposition 4.3. Let H be a 2-connected bipartite graph of cycle rank 3. If all edges of H are
subdivided a number of times of the same parity, then the resulting graph is zonal.

Proposition 4.4. There are infinitely many 2-connected non-zonal graphs of cycle rank 3.

Proof. The 2-connected graph G of Figure 8 has cycle rank 3 and is non-zonal.
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Figure 8. A 2-connected non-zonal graph of cycle rank 3

Any graph obtaining by subdividing the edge xy of the graph G of Figure 8 any number of times
is a 2-connected graph of cycle rank 3. We show that each such graph is non-zonal as well. To see
this, let H be a graph obtained by subdividing the edge xy of G one or more times. Consequently,
H is obtained from G by replacing the edge xy of G by an x − y path P of length 2 or more.
Assume, to the contrary, that H has a zonal labeling ℓ. Since three vertices in a triangle of H must
be labeled the same, we may assume ℓ(x) = ℓ(u) = ℓ(v) = ℓ(w) = ℓ(y) = 1 by Observation 2.1.
Let X = V (H)− V (G). Since the 3-path (x, v, y) and P form the boundary of an interior region
of H , it follows that ℓ(x)+ ℓ(v)+ ℓ(y)+

∑
(ℓ,X) = 3+

∑
(ℓ,X) = 0 in Z3 and so

∑
(ℓ,X) = 0.

On the other hand, the 5-path (x, u, v, w, y) and P form the boundary of the exterior region of H
and so ℓ(x) + ℓ(u) + ℓ(v) + ℓ(w) + ℓ(y) +

∑
(ℓ,X) = 5 +

∑
(ℓ,X) = 2 ̸= 0 in Z3, which is

impossible. Therefore, H is not zonal.

We conclude with the following problem.

Problem 4.5. Characterize the zonal planar graphs of cycle rank 3.
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