

Electronic Journal of **Graph Theory and Applications**

Upper Broadcast Domination Number of Caterpillars with no Trunks

Sabrina Bouchouika^a, Isma Bouchemakh^a, Éric Sopena^b

^aFaculty of Mathematics, Laboratory L'IFORCE, University of Sciences and Technology Houari Boumediene (USTHB), B.P. 32 El-Alia, Bab-Ezzouar, 16111 Algiers, Algeria. ^bUniv. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France.

bouchouikasab@hotmail.fr, isma_bouchemakh2001@yahoo.fr, eric.sopena@labri.fr

Abstract

A broadcast on a graph $G = (V, E)$ is a function $f: V \longrightarrow \{0, \ldots, \text{diam}(G)\}\)$ such that $f(v) \leq$ $e_G(v)$ for every vertex $v \in V$, where $\text{diam}(G)$ denotes the diameter of *G* and $e_G(v)$ the eccentricity of *v* in *G*. Such a broadcast *f* is minimal if there does not exist any broadcast $g \neq f$ on *G* such that $g(v) \leq f(v)$ for all $v \in V$. The upper broadcast domination number of G is the maximum value of $\sum_{v \in V} f(v)$ among all minimal broadcasts *f* on *G* for which each vertex of *G* is at distance at most $f(v)$ from some vertex *v* with $f(v) \geq 1$. In this paper, we study the minimal dominating broadcasts of caterpillars and give the exact value of the upper broadcast domination number of caterpillars with no trunks.

Keywords: broadcast, dominating broadcast, upper dominating broadcast, caterpillars. Mathematics Subject Classification : 05C12, 05C69 DOI: 10.5614/ejgta.2024.12.2.6

1. Introduction

Let $G = (V, E)$ be a graph of *order* $n = |V|$ and *size* $m = |E|$. The *open neighborhood* of a vertex $v \in V$ is the set $N_G(v) = \{u : uv \in E\}$ of vertices adjacent to *v*. Each vertex $u \in N_G(v)$ is a *neighbor* of *v*. The *closed neighborhood* of *v* is the set $N_G[v] = N_G(v) \cup \{v\}$. The *open*

Received: 23 March 2022, Revised: 1 July 2024, Accepted: 13 July 2024.

neighborhood of a set $S \subseteq V$ of vertices is $N_G(S) = \bigcup_{v \in S} N_G(v)$, while the *closed neighborhood* of *S* is the set $N_G[S] = N_G(S) \cup S$. The *degree* of a vertex *v* in *G*, denoted deg_{*G*}(*v*), is the size of the open neighborhood of *v*.

A (u, v) -geodesic in a graph G is a shortest path joining *u* and *v*. We denote by $d_G(u, v)$ the *distance* between the vertices *u* and *v* in *G*, that is, the length of a (u, v) -geodesic in *G*. A vertex or an edge of *G lies between* two vertices *u* and *v* if that vertex or edge is on some (u, v) -geodesic. The *eccentricity* $e_G(v)$ of a vertex *v* in *G* is the maximum distance from *v* to any other vertex of *G*. The *radius* $rad(G)$ and the *diameter* diam(*G*) of a graph *G* are the minimum and the maximum eccentricity among the vertices of *G*, respectively. A *diametrical path* is a (*u, v*)-geodesic of length $\text{diam}(G)$, and a *peripheral vertex*, is a vertex *v* such that $e_G(v) = \text{diam}(G)$.

A function $f: V \longrightarrow \{0, \ldots, \text{diam}(G)\}\$ is a *broadcast* of G if $f(v) \leq e_G(v)$ for every vertex $v \in V$. The value $f(v)$ is called the *f*-value of *v*. An *f*-*broadcast vertex* (or an *f*-*dominating vertex*) is a vertex *v* for which $f(v) > 0$. The set of all *f*-broadcast vertices is denoted $V_f^+(G)$. If $v \in V_f^+(G)$ is an *f*-broadcast vertex, $u \in V$ and $d_G(u, v) \leq f(v)$, then the vertex *u hears* a broadcast from *v* and *v broadcasts* to (or *f-dominates*) *u*. Note that, in particular, each vertex $v \in V_f^+$ hears a broadcast from itself and *f*-dominates itself.

The *f*^{\check{f} -*broadcast neighborhood* of a vertex $v \in V_f^+$ is the set of vertices that hear *v*, that is}

$$
N_f(v) = \{u \in V : d_G(u, v) \le f(v)\}
$$

and the *f-broadcast neighborhood* of *f* is the set

$$
N_f(V_f^+) = \bigcup_{v \in V^+} N_f(v).
$$

The *f*-broadcast boundary of a vertex $v \in V_f^+$ is the set

$$
B_f(v) = \{ u \in V : d_G(u, v) = f(v) \}.
$$

The set of *f*-broadcast vertices that a vertex $u \in V$ can hear is the set

$$
H_f(u) = \{ v \in V_f^+ : d_G(u, v) \le f(v) \}.
$$

For a vertex $v \in V_f^+$, the *private* f-neighborhood of *v* is the set of vertices that hear only *v*, that is

$$
PN_f(v) = \{u \in V : H_f(u) = \{v\}\},\
$$

and every vertex $u \in PN_f(v)$ is a *private f*-neighbor of *v*. Moreover, the *private f*-border of *v* is either the set of private *f*-neighbors of *v* that are at distance $f(v)$ from *v*, or the singleton $\{v\}$ if $f(v) = 1$ and $PN_f(v) = \{v\}$, that is

$$
PBf(v) = \begin{cases} \{v\}, & \text{if } f(v) = 1 \text{ and } PNf(v) = \{v\}, \\ \{u \in PNf(v) : dG(u, v) = f(v)\}, & \text{otherwise.} \end{cases}
$$

Every vertex in $PB_f(v)$ is a *bordering private* f-neighbor of v. In particular, if $f(v) = 1$ and $PN_f(v) = \{v\}$, then *v* is its own bordering private *f*-neighbor.

The *cost* of a broadcast *f* on a graph *G* is

$$
\sigma(f) = \sum_{v \in V_f^+} f(v).
$$

A broadcast *f* on *G* is a *dominating broadcast* if every vertex in *G* is *f*-dominated by some vertex in *V* + *f* , and *f* is a *minimal dominating broadcast* if there does not exist a dominating broadcast $g \neq f$ on *G* such that $g(u) \leq f(u)$ for all $u \in V$.

The *broadcast domination number* of *G* is

 $\gamma_b(G) = \min{\{\sigma(f): f \text{ is a dominating broadcast on } G\}}$

and the *upper broadcast domination number* of *G* is

 $\Gamma_b(G) = \max\{\sigma(f): f \text{ is a minimal dominating broadcast on } G\}.$

A minimal dominating broadcast *f* on a graph *G* such that $\sigma(f) = \Gamma_b(G)$ (resp. $\sigma(f) = \gamma_b(G)$) is a Γ_b *-broadcast* (resp. γ_b *-broadcast*). If *f* is a minimal dominating broadcast on *G* such that $f(v) = 1$ for each $v \in V^+$, then V^+ is a *minimal dominating set* in *G*, and the minimum (resp. maximum) cost of such a broadcast is the *domination number γ*(*G*) (resp. *upper domination number* $\Gamma(G)$ of *G*.

The function $f_u: V \longrightarrow \{0, \ldots, \text{diam}(G)\}\)$, defined by $f_u(u) = e(u)$ and $f_u(v) = 0$ for every $v \neq u$, is a minimal dominating broadcast with cost $e(u)$. Such a broadcast f_u is a *radius broadcast* if $e(u) = rad(G)$ and f_u is a *diameter broadcast* if $e(u) = diam(G)$. We then immediately have the chain of inequalities

Observation 1 (Dunbar, Erwin, Haynes, Hedetniemi and Hedetniemi [6]). *For any graph G,*

$$
\gamma_b(G) \le \min\{\gamma(G), \text{rad}(G)\} \le \max\{\Gamma(G), \text{diam}(G)\} \le \Gamma_b(G). \tag{1}
$$

A graph *G* is *radial* if $\gamma_b(G) = \text{rad}(G)$ and is *diametrical* if $\Gamma_b(G) = \text{diam}(G)$.

Broadcast domination has been discussed first in [7, 8]. Many of these results appeared later in [6] and since then several works followed (see the references of [5] for details). Regarding the upper broadcast domination, the exact value of the parameter Γ_b is given for grids graphs [4], paths and cycles [5] and some very specific classes of trees [12]. In [9], the determination of sufficient conditions for a tree to be non-diametrical as well as the characterization of diametrical caterpillars are given. Other studies of upper broadcast domination such as the relationships between Γ*^b* and other parameters of broadcast domination can be found in [1, 6, 13]. For a survey of broadcast in graphs, see the chapter by Henning, MacGillivray and Yang [10].

In this paper, we are interested in the upper broadcast domination number of caterpillars. Determining this invariant appears to be a difficult problem in general, and that is why we restrict to caterpillars with no trunks.

Recall that a *caterpillar* CT *of length* $n \geq 0$ is a tree such that removing all leaves gives a path of length *n*, called the *spine*. A non-leaf vertex is called a *spine vertex* and, more precisely, a *stem* if it is adjacent to a leaf and a *trunk* otherwise. A leaf adjacent to a stem *v* is a *pendent neighbor* of *v*.

2. Preliminaries

We now review some results on the upper broadcast domination. The characterization of minimal dominating broadcasts was first given by Erwin in [8], and then restated in terms of private borders¹ by Mynhardt and Roux in $[12]$.

Proposition 2.1 (Erwin [8], restated in [12]). *A dominating broadcast f is a minimal dominating broadcast if and only if* $PB_f(v) \neq \emptyset$ *for each* $v \in V_f⁺$.

Dunbar *et al.* proved in [6] the following bound on the upper broadcast domination number of graphs.

Theorem 2.1 (Dunbar *et al.* [6]). *For every graph G with size* $m, \Gamma_b(G) \leq m$ *. Moreover,* $\Gamma_b(G) =$ *m if and only if G is a nontrivial star or path.*

This upper bound was later improved in [4].

Theorem 2.2 (Bouchemakh and Fergani [4]). *If G is a graph of order n with minimum degree* $\delta(G)$ *, then* $\Gamma_b(G) \leq n - \delta(G)$ *, and this bound is sharp.*

In all what follows, we will denote by $P_n = v_0v_1 \ldots v_n$, $n \ge 1$, the path of length *n*. Moreover, we assume that subscripts of vertices of $v_0v_1 \ldots v_n$ of P_n are "ordered" from left to right. Let *T* be a tree with diameter *d* and a diametrical path $P_d = v_0v_1 \dots v_d$. For each $i \in \{0, \dots, d\}$,

let T_i be the subtree of T induced by all vertices that are connected to v_i by paths that are internally disjoint from *P*.

In the following lemmas, Gemmrich and Mynhardt proved that there exist some sufficient conditions for a tree to be non-diametrical.

Lemma 2.1 (Gemmrich and Mynhardt [9]). Let *T* be a tree with diameter $d \geq 3$ and diametrical path $P_d = v_0v_1 \ldots v_d$. If there exists an $i \in \{1, \ldots, d-2\}$ such that each of v_i and v_{i+1} is adjacent *to a leaf other than* v_0 *(if* $i = 1$ *) or* v_d *(if* $i + 1 = d - 1$ *), then* $\Gamma_b(T) > \text{diam}(T)$ *.*

Lemma 2.2 (Gemmrich and Mynhardt [9]). *If there exists an* $i \in \{2, \ldots, d-2\}$ *such that* T_i *has an independent set of cardinality 3 that dominates but does not contain vⁱ ,* or *if* max $\{deg_T(v_1), deg_T(v_{d-1})\} = 4$ *, then* $\Gamma_b(T) > \text{diam}(T)$ *.*

Lemma 2.3 (Gemmrich and Mynhardt [9]). *If there exists an* $i \in \{2, \ldots, d-2\}$ *such that* T_i *has an independent set of cardinality 2 that does not dominate* v_i *, then* $\Gamma_b(T) > \text{diam}(T)$ *<i>.*

Lemma 2.4 (Gemmrich and Mynhardt [9]). *If* diam(T_i) = 4 *for some i*, *or* diam(T_i) = 3 *and* v_i *is a peripheral vertex of* T_i *, then* $\Gamma_b(T) > \text{diam}(T)$ *.*

¹In their paper, Mynhardt and Roux used a slightly different definition of the set $PB_f(v)$ when $f(v) = 1$ and $N_f(v) \neq \{v\}$, by including the vertex *v* in $PB_f(v)$. Moreover, they called the set $PB_f(v)$ the *private f*-*boundary* of *v*. We here use the term *private f-border* to avoid confusion between these two definitions. However, it is easy to check that the private *f*-boundary of *v* is empty if and only if the private *f*-border of *v* is empty, so that Proposition 2.1 is still valid in our setting.

For the particular case of caterpillars, Gemmrich and Mynhardt gave another sufficient condition for a caterpillar to be non-diametrical. Before stating the result, we recall that a *strong stem* is a stem that is adjacent to at least two leaves.

Lemma 2.5 (Gemmrich and Mynhardt [9]). Let *T* be a caterpillar with diametrical path $P_d =$ $v_0v_1 \ldots, v_d$ *. If two vertices* v_i *and* v_{i+2k} *are strong stems, for some* $i \geq 1$ *and some integer* k *such that* $i + 2k \leq d - 1$ *, and* v_{i+2r} *is a stem for each* $r \in \{1, \ldots, k-1\}$ *, then* $\Gamma_b(T) > d$ *.*

If *T* is a diametrical caterpillar, then *T* does not satisfy the hypothesis of any of Lemmas 2.1 - 2.5. The converse remains true and the negation of these hypotheses, applied to caterpillars, gives the characterization of diametrical caterpillars stated in the following theorem

Theorem 2.3 (Gemmrich and Mynhardt [9]). A caterpillar *T* with diametrical path $P_d = v_0v_1 \ldots, v_d$ *is diametrical if and only if*

- *1. each* v_i , $i \in \{1, \ldots, d-1\}$, *is adjacent to at most two leaves,*
- *2. for any i* ∈ {1*,...,d* − 2*},* min{*deg_{<i>T*}(*v_i*)*, deg_T*(*v*_{*i*+1})} = 2*,*
- 3. whenever v_i and v_j , $i < j$, are strong stems, there exists a k, $i < k < j$, such that $deg_T(v_k) =$ $deg_T(v_{k+1}) = 2.$

Let *f* be any minimal dominating broadcast on a graph *G*. In view of Proposition 2.1, each $v \in V^+$ has a bordering private f-neighbor (denoted v^p) such that either v^p is at distance $f(v)$ from *v*, or $v^p = v$ if $f(v) = 1$ and $PN_f(v) = \{v\}$. Dunbar *et al.* defined in [6] a function ϵ on V^+ as follows: $\epsilon(v) = \{e_v\}$, where e_v is any edge incident with *v*, if $PB_f(v) = \{v\}$, while $\epsilon(v)$ is the set of all edges that lie between *v* and v^p if v^p is at distance $f(v)$ from *v*.

In the proof of Theorem 2.1, Dunbar *et al.* showed that the sets $\epsilon(v)$ are pairwise disjoint.

Lemma 2.6 (Dunbar, Erwin, Haynes, Hedetniemi and Hedetniemi [6], proof of Theorem 5). *For any two f-broadcast vertices u and v*, *we have* $\epsilon(u) \cap \epsilon(v) = \emptyset$.

Let *f* be a Γ_b -broadcast on a caterpillar *G* with size *m*. For every *f*-broadcast vertex *v*, we denote by P_v^f , according to presented case, a (v, v^p) -geodesic path if v^p is at distance $f(v)$ from v or a path with one edge e_v if $PB_f(v) = \{v\}$. We set $\mathcal{P}^f = \{P^f_v : v \in V_f^+(G)\}$. For brevity, we also denote by E_f and $\overline{E_f}$ the sets $\cup_{v \in V_f^+} E(P_v^f)$ and $E(G) \backslash E_f$, respectively. From Theorem 2.1 and Lemma 2.6, we get

$$
\Gamma_b(G) = \sum_{v \in V_f^+} f(v) = |E_f| \le m.
$$

Since $\Gamma_b(G) = m - |\overline{E_f}|$, it suffices to find a lower bound on $|\overline{E_f}|$ to get an upper bound on $\Gamma_b(G)$. Thereafter, we will frequently use this idea to reach a conclusion.

Let *CT* be a caterpillar. We will always draw caterpillars with the spine on a horizontal line, so that we can say that a spine vertex x_i is to the left (resp. to the right) of a spine vertex x_j of *CT*, and that a pendent neighbor of x_i is to the left (resp. to the right) of a pendent neighbor of x_j

Figure 1: *CT*(1*,* 0*,* 0*,* 3*,* 2*,* 2*,* 1*,* 0*,* 1).

whenever the spine vertex x_i is to the left (resp. to the right) of the spine vertex x_j , that is $i < j$ (resp. $i > j$).

Note that a caterpillar of length 0 is a star $K_{1,k}$ for some $k \geq 1$, and the upper broadcast domination number of a star is determined by Theorem 2.1. Therefore, in the rest of the paper, we will only consider caterpillars with positive length.

Let $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$. Following the terminology of [2] and [14], we denote by $CT(\ell_0, \ldots, \ell_n)$, $n \geq 1$, with $(\ell_0, \ldots, \ell_n) \in \mathbb{N}^* \times \mathbb{N}^{n-1} \times \mathbb{N}^*$, the caterpillar of length $n \geq 1$ with spine path $x_0 \ldots x_n$ such that each spine vertex x_i has ℓ_i pendent neighbors. For every *i* such that $\ell_i > 0$, $i = 0, \ldots, n$, we denote by $L(x_i) = \{y_i^1, \ldots, y_i^{\ell_i}\}$ the set of pendent neighbors of x_i . The caterpillar *CT*(1*,* 0*,* 0*,* 3*,* 2*,* 2*,* 1*,* 0*,* 1) is depicted in Figure 1.

We denote by $CT[i, j]$, the sub-caterpillar of CT induced by vertices x_i, \ldots, x_j and their pendent neighbors if $0 \le i \le j \le n$, and $CT[i, j] = \emptyset$ if $i > j$.

We say that a pattern of length $p + 1$, $\Pi = \pi_0 \dots \pi_p$, $p \ge 0$, $\pi_i \in \mathbb{N}$ for every $i, 0 \le i \le p$, *occurs* in a caterpillar $CT = CT(\ell_0, \ldots, \ell_n)$ if there exists an index $i_0, 0 \le i_0 \le n - p$, such that $CT[i_0, i_0 + p] = CT(\pi_0, \dots, \pi_p)$, that is, $\ell_{i_0+j} = \pi_j$ for every *j*, $0 \le j \le p$. We will also say that the caterpillar *CT contains* the pattern Π and that the sub-caterpillar $CT(\ell_{i_0}, \ldots, \ell_{i_0+p})$ of *CT* is an *occurrence* of the pattern Π.

We can extend the notation for patterns by setting π_i^+ to mean a spine vertex having at least π_i pendent neighbors.

We first prove a property of optimal dominating broadcasts of caterpillars.

Lemma 2.7. *For any caterpillar CT, there exists a* Γ*b-broadcast such that each broadcast vertex is either a leaf or a trunk.*

Proof. Let *f* be a Γ_b -broadcast of *CT*. Assume that there exists an *f*-broadcast vertex $x_i \in$ $V_f^+, i \in \{1, \ldots, n\}$ such that x_i is a stem. If $f(x_i) > 1$, then the minimality of the dominating broadcast *f* implies that x_i has a bordering private *f*-neighbor *s* such that $d(x_i, s) = f(x_i)$ and $f(y_i^j)$ $\mathcal{L}^{(j)}_i$ = 0 for every *j*, *j* = 1, ..., ℓ_i . Consider the mapping *g* obtained from *f* by replacing the *f*-values of x_i and y_i^1 by $g(x_i) = 0$ and $g(y_i^1) = f(x_i) + 1$. The mapping g is a minimal dominating broadcast with cost $\sigma(g) = \sigma(f) + 1 > \Gamma_b(CT)$, contradicting the optimality of f. Hence, $f(x_i) = 1$. Moreover, $PB_f(x_i)$ contains no trunk, for otherwise the mapping *h* obtained

from *f* by replacing the *f*-values of x_i and y_i^1 by $h(x_i) = 0$ and $h(y_i^1) = 2$ would be a minimal dominating broadcast with cost $\sigma(g) = \sigma(f) + 1 > \Gamma_b(CT) + 1$, contradicting the optimality of *f*. Now, the mapping *k* obtained from *f* by replacing the *f*-values of x_i and $y_i^1, \ldots, y_i^{\ell_i}$ by $k(x_i) = 0$ and $k(y_i^j)$ $\mathcal{L}^{j}(i) = 1$ for every $j, j = 1, \ldots, \ell_{i}$, is a minimal dominating broadcast with cost $\sigma(k) = \sigma(f) + \ell_i - 1$. The optimality of *f* then implies $\ell_i = 1$, so that we have $\sigma(k) = \sigma(f)$. We can repeat the previous transformation on *f* until we get a Γ_b -broadcast where each broadcast vertex is not a stem vertex. This completes the proof. \Box

3. Caterpillars with no trunks

Let $CT = CT(\ell_0, \ldots, \ell_n)$ be a caterpillar of length $n \geq 1$. For any minimal dominating broadcast *f* on *CT*, we assume that $f(y_i^1) \ge \cdots \ge f(y_i^{\ell_i})$ for every $i = 0, \ldots, n$.

We say that *CT* is *with no trunks* if $\ell_i \geq 1$ for every $i, i = 0, \ldots, n$.

In what follows, the *unitary dominating broadcast* is the dominating broadcast μ defined by $\mu(u) = 1$ if *u* is a leaf and $\mu(u) = 0$ otherwise. Since each stem is μ -dominated by one leaf and $PB_\mu(v) \neq \emptyset$ for each $v \in V_\mu^+$, then μ is a minimal dominating broadcast of cost $\sigma(u) = \sum_{i=0}^n \ell_i$.

In order to simplify the reading of this paper, the proofs of the lemmas which are quite technical are given in the appendix.

Lemma 3.1. *If* CT *is a caterpillar with no trunks, of length* $n \geq 1$ *and* f *is a* Γ_b *-broadcast on* CT *, then, every f*-broadcast vertex *v* is a leaf and the private *f*-neighbor of *v* is also a leaf if $f(v) \geq 2$.

Proof. By the proof of Lemma 2.7, we already know that every f-broadcast vertex is a leaf. Assume to the contrary that there exists some stem x_i which is a private f -neighbor of some f broadcast vertex *v*. Since $f(v) \geq 2$, then we necessarily have, $v \neq y_i^j$ \mathbf{I}_i^j , and more than that, $y_i^j \notin V_f^+$ for every $j = 1, \ldots, \ell_i$, so that y_i^j λ_i^j cannot be *f*-dominated, a contradiction. This completes the proof. \Box

We first determine the upper broadcast domination number of all caterpillars with no trunks of length at most 2.

Lemma 3.2. *If* CT *is a caterpillar with no trunks, of length* $n \leq 2$ *and size* m *, then*

$$
\Gamma_b(CT) = \begin{cases} m, & \text{if } n = 1 \text{ and } m = 3, \\ m - 1, & \text{if } n = 1 \text{ and } m \ge 4, \text{ or } n = 2 \text{ and } \ell_0 = \ell_1 = 1, \\ m - 2, & \text{otherwise.} \end{cases}
$$

Lemma 3.3. *If* CT *be a caterpillar with no trunks, of length* $n \geq 1$ *, then* $\Gamma_b (CT) \geq \left| \frac{3(n+1)}{2} \right|$ 2 k *.*

Corollary 3.1. *If* $CT = CT(\ell_0, \ldots, \ell_n)$ *is a caterpillar with no trunks, of length* $n \geq 1$ *, then* CT *is diametrical if and only if one of the following conditions is satisfied :*

- *1.* $n = 1, \ell_0 + \ell_1 \in \{2, 3\}.$
- *2.* $n = 2, \ell_0 = \ell_2 = 1$ *and* $\ell_1 \in \{1, 2\}.$

Proof. Let $CT = CT(\ell_0, \ldots, \ell_n)$ be a caterpillar with no trunks of length $n \geq 1$, and size m. We know by Lemma 3.3 that $\Gamma_b(CT) \geq \left| \frac{3(n+1)}{2} \right|$ 2 . Since diam(CT) = $n + 2$, we deduce that $\Gamma_b(CT) \geq \left(\frac{3(n+1)}{2}\right)$ 2 $\vert > \text{diam}(CT)$, whenever $n \geq 3$.

If $n = 1$, then $\text{diam}(CT) = 3$. From Lemma 3.2, we have $\Gamma_b(CT) = m$ if $m = 3$, and $\Gamma_b(CT) =$ *m* − 1 if *m* ≥ 4. It follows, $\Gamma_b(CT) = \text{diam}(CT)$ if and only if, $(\ell_0, \ell_1) \in \{(1, 1), (1, 2), (2, 1)\}.$ If $n = 2$, then $\text{diam}(CT) = 4$, and from the same lemma, we also have $\Gamma_b(CT) = m - 1$, if $\ell_0 = \ell_1 = 1$ (or $\ell_1 = \ell_2 = 1$, by symmetry), and $\Gamma_b(CT) = m - 2$ otherwise. Hence, we get $\Gamma_b(CT) = \text{diam}(CT)$ if and only if $(\ell_0, \ell_1, \ell_2) \in \{(1, 1, 1), (1, 2, 1)\}$. This completes the proof. \Box

Thanks to Corollary 3.1, we can only consider in the rest of the paper caterpillars *CT* with length *n* ≥ 3. Hence, each such caterpillar *CT* is not diametrical and each Γ*b*-broadcast *f* on *CT* satisfies $|V_f^+| \geq 2$.

Proposition 3.1. *If* CT *is a caterpillar of length* $n \geq 3$ *, with* $\ell_i \geq 2$ *for every* $i = 0, \ldots, n$ *, then* $\Gamma_b(CT) = \sum_{i=0}^n \ell_i$

Proof. Since the cost of the (minimal) unitary dominating broadcast is $\sum_{i=0}^{n} \ell_i$, we get $\Gamma_b(CT) \geq$ $\sum_{i=0}^{n} \ell_i$. Conversely, let *f* be a Γ_b -broadcast on *CT*, such that each *f*-broadcast vertex is a leaf (such a broadcast exists by Lemma 2.7). We first prove that $|\overline{E_f}| \geq n$. For that, consider any edge $x_i x_{i+1}$, $i \in \{0, \ldots, n-1\}$, of the spine $P_n = x_0 x_1 \ldots x_n$. If $x_i x_{i+1}$ is an edge of some $P_v^f \in \mathcal{P}^f$, then by Lemma 3.1, v^p is also a leaf non-adjacent to x_i . Thus, the set $\overline{E_f}$ contains $\ell_i \geq 2$ or $\ell_i - 1 \geq 1$ edges incidents to x_i depending on whether $x_{i-1}x_i$ is an edge of P_v^f , or not. If none of the paths of \mathcal{P}^f has $x_i x_{i+1}$ as an edge, then $x_i x_{i+1} \in \overline{E_f}$. It follows, $|\overline{E_f}| \ge n$, and thus $\Gamma_b(CT) = |E(CT)| - |\overline{E_f}| \leq |E(CT)| - n = \sum_{i=0}^n \ell_i$. This completes the proof. \Box

Lemma 3.4. *If* CT *is a caterpillar of length* $n \geq 3$ *, with* $\ell_i = 1$ *for every* $i = 0, \ldots, n$ *, and f is a* Γ_b *-broadcast on CT, then* $f(u) \neq 2$ *for every f-broadcast vertex u.*

Proof. Let *f* be a Γ_b -broadcast on *CT*. Assume, to the contrary, that $f(u) = 2$ for some $u \in V_f^+$. By Lemma 3.1, *u* and its private neighbor u^p are leaves. Since $f(u) = 2$, then *u* and u^p are adjacent to the same stem, a contradiction with the type of caterpillar, where $\ell_i = 1$ for every $i = 0, \ldots, n$. This completes the proof. \Box

Theorem 3.1. *If* CT *is a caterpillar of length* $n \geq 3$ *, with* $\ell_i = 1$ *for every* $i = 0, \ldots, n$ *, then* $\Gamma_b(CT) = \left\lfloor \frac{3(n+1)}{2} \right\rfloor$ 2 k *.*

Proof. By Lemma 3.3, we already have $\Gamma_b(CT) \geq \left(\frac{3(n+1)}{2}\right)^2$ 2 . For the converse, let *f* be a Γ_b broadcast on *CT*, such that each *f*-broadcast vertex is a leaf with an *f*-value different from 2. Thanks to Lemma 2.7 and Lemma 3.4, such a broadcast exists. Let $V_f^+ = \{v_1, \ldots, v_s\}$ be the set of *f*-broadcast vertices, ordered so that, for every $i, j = 0, \ldots, n - 1$, the stem adjacent to v_i , in the spine $P_n = x_0 x_1 \dots x_n$, lies left to the stem adjacent to v_j whenever $i < j$, and let $v_k \in V_f^+$, $k = 1, \ldots, s$. Since v_k is a leaf, we have $v_k = y_i^1$ for some $i \in \{0, \ldots, n\}$. In what follows, we denote by e_j the pendent edge $y_j^1 x_j$, $j \in \{0, \ldots, n\}$.

To prove the statement, we consider two cases.

1. $f(v_k) \geq 3$.

By Lemma 3.1, we know that the private neighbor v_k^p $\frac{p}{k}$ is a leaf. Hence, the (v_k, v_k^p) *k*)-geodesic P_{v_k} is the path $v_k x_i x_{i+1} \ldots x_{i+f(v_k)-2} v_k^p$ *k* **or** $v_k x_i x_{i-1} \ldots x_{i-f(u_k)+2} v_k^p$ *k* . Therefore, $\{e_{i+1}, \ldots, e_{i+f(v_k)-3}\} \subset \overline{E_f}$ or $\{e_{i-1}, \ldots, e_{i-f(v_k)+3}\} \subset \overline{E_f}$. In the case where $0 ≤ k < s$, $\overline{E_f}$ contains another edge, which is either $x_{i+f(v_k)-2}x_{i+f(v_k)-1}$ or x_ix_{i+1} , depending on whether v_k is to the left or to the right of v_k^p *k*. It follows, $|\overline{E_f}|$ ≥ $f(v_k)$ − 3 if $k = s$, and $|\overline{E_f}| \ge f(v_k) - 2$ otherwise.

2. $f(v_k) = 1$. Since, $P_{v_k} = y_i^1 x_i$ (recall that $v_k = y_i^1$), we infer that $x_i x_{i+1} \in \overline{E_f}$, and thus $|\overline{E_f}| \ge 1$, if $0 \leq k < s$.

Note that if an edge $x_j x_{j+1}$, $j = 0, \ldots, n-1$, of the spine P_n , appears in $\overline{E_f}$, then x_j is adjacent to the last pendent vertex, namely y_j^1 , of some path of \mathcal{P}^f , and since the paths of \mathcal{P}^f are pairwise disjoint by Lemma 2.6, we can say that

$$
|\overline{E_f}| = \sum_{\substack{k=1 \ f(v_k) \ge 3}}^{s-1} (f(v_k) - 2) + \sum_{\substack{k=1 \ f(v_k) = 1}}^{s-1} 1 + \begin{cases} f(v_s) - 3, & \text{if } f(v_s) \ge 3, \\ 0, & \text{if } f(v_s) = 1. \end{cases}
$$

Hence,

$$
|\overline{E_f}| = \left(\sum_{\substack{k=1 \ f(v_k) \ge 3}}^s (f(v_k) - 2)\right) + \sum_{\substack{k=1 \ f(v_k) = 1}}^s 1 - 1.
$$

It follows,

$$
|\overline{E_f}| \ge \Gamma_b(CT) - 2|\{v_k : f(v_k) \ge 3\}| - 1.
$$

Since $\Gamma_b(CT) = |E(CT)| - |\overline{E_f}|$ and the size of the caterpillar *CT* is $2n + 1$, we infer

$$
2\Gamma_b(CT) \le |E(CT)| + 2|\{v_k : f(v_k) \ge 3\}| + 1 = (2n + 2) + 2|\{v_k : f(v_k) \ge 3\}|,
$$

which leads to

$$
\Gamma_b(CT) \le n + 1 + |\{v_k : f(v_k) \ge 3\}|.
$$

It is not difficult to see that, in each sub-caterpillar $CT[i, i + 3]$, $i = 0, \ldots, n - 3$, the number of *f*-broadcast vertices *v* with an *f*-value $f(v) \ge 3$ cannot exceed 2. Then $|\{v_k : f(v_k) \ge 3\}| \le \frac{n+1}{2}$ and $\Gamma_b(CT) \leq \frac{3(n+1)}{2}$ $\frac{2^{i+1}}{2}$. This completes the proof.

Lemma 3.5. *If CT is a caterpillar CT with no trunks, of length* $n \geq 3$ *, then CT admits* a Γ_b *broadcast* f *with* $f(u) \neq 2$ *for every* $u \in V_f^+$.

Proof. Let *g* be a Γ_b -broadcast on the caterpillar *CT* and let $u \in V_g^+$, with $g(u) = 2$. By Lemma 3.1, *u* and its private neighbor u^p are leaves. Since $g(u) = 2$, then $u = y_i^1$ for some $i \in \{1, \ldots, n\}$, and u^p are adjacent to the same stem x_i . Consider the mapping f obtained from *g* by replacing the *g*-values of y_i^j j^j_i , $j = 1, \ldots, \ell_i$, by $f(y_i^j)$ \mathcal{L}_i^j = 1, *j* = 1, ..., ℓ_i . The mapping *f* is a minimal dominating broadcast on *CT* with cost $\sigma(f) = \sigma(g) + \ell_i - 2$. The optimality of *g* implies $\ell_i = 2$, so that we have $\sigma(f) = \sigma(g)$. We then repeat this transformation on each *g*-broadcast vertex with a value equal to 2 until we obtain a mapping with the required condition. This completes the proof. \Box

Lemma 3.6. *If CT is a caterpillar with no trunks, of length* $n \geq 3$ *, then CT admits* a Γ_b *-broadcast f* with $f(u) \leq 3$ *for every* $u \in V_f^+$.

Lemma 3.7. *If* CT *is a caterpillar with no trunks, of length* $n \geq 3$ *, then* CT *admits* $a \Gamma_b$ *-broadcast f, such that*

- *1. If* $\ell_0 + \ell_1 \geq 3$ *, then* $f(y_0^j)$ \mathcal{L}_{0}^{j} \neq 3 *for every j*, *j* = 1, ..., ℓ_{0} (*or, if* ℓ_{n-1} + ℓ_{n} \geq 3, then $f(y_{n}^{j})$ \neq 3 *for every j*, $j = 1, \ldots, \ell_n$ *).*
- 2. If y_i^1 is a f-broadcast vertex for some $i = 1, ..., n$, with $f(y_i^1) = 3$, then $PB_f(y_i^1)$ is equal *to either* $L(x_{i-1})$ *or* $L(x_{i+1})$ *(in that case,* y_i^1 *is said to have only one private side).*
- 3. If there exists a pendent vertex f-dominated by two f-broadcast vertices u et u' , then $d(u, u') =$ 3*.*

Let CT_5^4 be a caterpillar with no trunks of length 3, and having five pendent edges. Then CT_5^4 must be one of the caterpillars $CT(2, 1, 1, 1), CT(1, 2, 1, 1), CT(1, 1, 2, 1),$ or $CT(1, 1, 1, 2)$. We say that a caterpillar CT is CT_5^4 -free if CT contains none of the patterns 2111, 1211, 1121 or 1112. Further, in the following, we say that a mapping *g* on a caterpillar *CT* is a *good* Γ*b-broadcast* if *g* is a Γ_b -broadcast satisfying the conditions of Lemmas 3.1, 3.5, 3.6 and 3.7.

Lemma 3.8. *If CT is a caterpillar with no trunks, of length* $n \geq 3$ *, then CT admits* a Γ_b *-broadcast f* such that $f(y_i^j)$ $\mathcal{L}^{(j)}$ = 1 *for every* $j = 1, \ldots, \ell_i$, whenever $\ell_i \geq 3$, or $\ell_i = 2$ if CT is a CT⁴ *-free caterpillar.*

Let *CT* be a caterpillar with no trunks, of order $n \geq 3$, and let f be a Γ_b -broadcast on *CT*. For any stem x_i , $i = 0, \ldots, n$, with $\ell_i = 2$, we denote by $F_i^j = CT[i-j+1, i-j+4], j = 1, \ldots, 4$, a caterpillar *of type* CT_5^4 . On F_i^j θ_i^j , we consider a mapping θ_i^j θ_i^j , defined by θ_i^j $\theta_i^j(y_{i-j+2}^1) = \theta_i^j$ $i^j(y_{i-j+3}^1) = 3$ and θ_i^j $\mathcal{L}_i^j(v) = 0$ otherwise (see Figure 2).

Lemma 3.9. *If* CT *is a caterpillar of length* $n \geq 3$ *and* x_i *is a stem with* $\ell_i = 2$ *for some* $i \in \{0, \ldots, n\}$, then *CT* admits a Γ_b -broadcast *f* such that

- *1.* If x_i does not appear in any F_i^j $f(y_i^1) = f(y_i^2) = 1.$
- 2. If x_i is a stem of a sub-caterpillar CT' of CT , of type CT_5^4 , then either $f(y_i^1) = f(y_i^2) = 1$, $or f(y_i^1) = \theta_i^j$ $f_i^j(y_i^1)$ and $f(y_i^2) = \theta_i^j$ $f_i^j(y_i^2)$ for some $j \in \{1, \ldots, 4\}$, in which case $CT' = F_i^j$ *i and the restriction of f on* CT' *is* θ_i^j *i .*

Let CT_1 and CT_2 be two caterpillars of lengths n_1 and n_2 respectively. The *concatenation* of CT_1 and CT_2 is the caterpillar $CT_1 + CT_2$, of length $n_1 + n_2 + 1$, where

$$
(CT_1 + CT_2)[0, n_1] = CT_1,
$$

\n
$$
(CT_1 + CT_2)[n_1 + 1, n_1 + n_2 + 1] = CT_2,
$$

\n
$$
CT_1 + \emptyset = CT_1, \text{ and, } \emptyset + CT_2 = CT_2.
$$

Figure 2: The function θ_i^j , for some value of *j*.

Using the concatenation operation, we can define some transformations on any caterpillar *CT* of length *n*. For an integer i , $i = 0, \ldots, n - n_1$, let

• $CT[CT_1/\emptyset, i]$ be the caterpillar obtained from *CT* by removing $CT_1 = CT[i, i + n_1]$,

$$
CT[CT_1/\emptyset, i] = \begin{cases} CT[n_1 + 1, n], & \text{if } i = 0, \\ CT[0, n - n_1 - 1], & \text{if } i = n - n_1, \\ CT[0, i - 1] + CT[i + n_1 + 1, n], & \text{if } i = 1, ..., n - n_1 - 1, \end{cases}
$$

• $CT[\emptyset / CT_2, i]$ be the caterpillar obtained from CT by inserting CT_2 between the stems x_{i-1} and x_i of CT if $i \neq 0$, and the concatenation of CT_2 with CT otherwise,

$$
CT[\emptyset/CT_2, i] = \begin{cases} CT_2 + CT, & \text{if } i = 0, \\ CT[0, i - 1] + CT_2 + CT[i, n], & \text{if } i = 1, ..., n - n_1, \end{cases}
$$

• $CT[CT_1/CT_2, i]$ be the caterpillar obtained from CT by removing $CT_1 = CT[i, i + n_1]$ and by inserting CT_2 between the stems x_{i-1} and x_i of CT ,

$$
CT[CT_1/CT_2, i] = \begin{cases} CT_2 + CT[n_1 + 1, n], & \text{if } i = 0, \\ CT[0, n - n_1 - 1] + CT_2, & \text{if } i = n - n_1, \\ CT[0, i - 1] + CT_2 + CT[i + n_1 + 1, n], & \text{if } i = 1, ..., n - n_1 - 1. \end{cases}
$$

Lemma 3.10. *Let CT be a caterpillar with no trunks, of length* $n \geq 4$ *, and containing the patterns* 1 and 2^+ *. If* $M = CT(1, 1, 1, 1)$ *is a sub-caterpillar of CT, then*

$$
\Gamma_b(CT) = \Gamma_b(CT[M/\emptyset, i]) + 6.
$$

www.ejgta.org

For any caterpillar CT with no trunks and containing the patterns 1 and 2^+ , if the pattern $\Pi = 1 \dots 1$, of length $p + 1$, $p \ge 3$, occurs in *CT*, we can iteratively remove all sub-caterpillars isomorphic to *M*. The resulting caterpillar, denoted by *CT^r* , is called the *reduced caterpillar* of *CT*. We denote by $z_0 \ldots z_k$ the spines vertices of CT^r and by $L(z_i) = \{t_i^1, \ldots, t_i^{m_i}\}$ the set of pendent neighbors of *zⁱ* .

In view of Lemma 3.10, the following result is immediate.

Proposition 3.2. *If* CT *is a caterpillar with no trunks, of length* $n \geq 4$ *, containing the patterns* 1 *and* 2 ⁺*, and CT^r is a caterpillar of length k, then*

$$
\Gamma_b(CT) = \Gamma_b(CT^r) + 6n_M,
$$

where $n_M = \frac{n+1-k}{4}$ $\frac{1-k}{4}$ is the number of steps required to transform CT into CT^r .

Thanks to Proposition 3.1, if the length of CT^r is *k* and each spine z_i of CT^r has m_i pendent neighbors, with $m_i \geq 2$, then

$$
\Gamma_b(CT) = \Gamma_b(CT^r) + 6n_M = \sum_{i:m_i \ge 2} m_i + 6n_M,
$$

so we henceforth assume that CT^r is a caterpillar with a pattern 1 and 2^+ , and the pattern 1...1, of length $p + 1$, occurs in CT^r only if $0 \le p \le 2$.

Let *H* be one of the three sub-caterpillars $CT(1)$, $CT(1, 1)$ or $CT(1, 1, 1)$, of CT . In order to prove the next proposition, we introduce a new definition. A dominating broadcast *h* on *H* is *H-pendent restricted* if the pendent vertices of *CT*, different from those of *H*, are not *h*-dominated by some *h*-broadcast vertex of V_h^+ .

Denote

 $\widetilde{F}_H = \{h : h \text{ is a minimal } H\text{-pendent restricted dominating broadcast on } H\},\$

and let \tilde{h}_H be a minimal *H*-pendent restricted dominating broadcast on *H* with maximum cost

$$
\sigma(\tilde{h}_H) = \max\{\sigma(h) : h \in F_H\}.
$$

Since \tilde{h}_H is a minimal dominating broadcast on *H*, we get

$$
\sigma(\tilde{h}_H) \leq \Gamma_b(H).
$$

Proposition 3.3. Let CT be a caterpillar with no trunks, of length $n \geq 4$, and let $H = [i_0, i_1]$ be *one of the three sub-caterpillars* $CT(1)$ *,* $CT(1, 1)$ *or* $CT(1, 1, 1)$ *, of* CT *. If f is a* Γ ^{*b*}*-broadcast on CT, then*

$$
\sigma(\widetilde{h}_H) = \begin{cases} \Gamma_b(H), & \text{if } x_0 \in H \text{ or } x_n \in H, \text{ or } p = 0 \text{ and } x_0, x_n \notin H, \\ p+1, & \text{if } p = 1, 2 \text{ and } x_0, x_n \notin H. \end{cases}
$$

Proof. Let $H = [i_0, i_1]$, with $1 \leq i_1 - i_0 + 1 \leq 3$, and let *h* be a minimal *H*-pendent restricted dominating broadcast on *H*. We distinguish two cases.

1. $x_0 \in H$ or $x_n \in H$, or $p = 0$ and $x_0, x_n \notin H$. By symmetry, it suffices to consider the case $x_n \in H$ or, $p = 0$ and $x_0, x_n \notin H$. The mapping defined in Lemma 3.3 is a minimal *H*-pendent restricted dominating broadcast on *H* with cost $\frac{3(n+1)}{2}$ 2 |. Then,

$$
\left\lfloor \frac{3(n+1)}{2} \right\rfloor \le \sigma(\widetilde{h}_H) \le \Gamma_b(H)
$$

Since $\Gamma_b(H) = \left\lfloor \frac{3(n+1)}{2} \right\rfloor$ 2 |, we get $\sigma(\tilde{h}_H) = \Gamma_b(H) = \left| \frac{3(n+1)}{2} \right|$ 2 \vert .

2. $p = 1, 2$ and $x_1, x_n \notin H$.

If $p = 1$, then $i_1 = i_0 + 1$ and only these possibilities can occur:

$$
h(x_{i_0}) = h(x_{i_1}) = 0 \text{ and } h(y_{i_0}^1) = h(y_{i_1}^1) = 1, \text{ or}
$$

\n
$$
h(x_{i_0}) = h(x_{i_1}) = 1 \text{ and } h(y_{i_0}^1) = h(y_{i_1}^1) = 0, \text{ or}
$$

\n
$$
h(x_{i_0}) = h(y_{i_1}^1) = 0 \text{ and } h(y_{i_0}^1) = h(x_{i_1}) = 1, \text{ or}
$$

\n
$$
h(x_{i_0}) = h(y_{i_1}^1) = 1 \text{ and } h(x_{i_1}) = h(y_{i_0}^1) = 0.
$$

Since in each case, $\sigma(h) = 2$, we get $\sigma(h_H) = 2 = p + 1$. If $p = 2$, then $i_1 = i_0 + 2$ and only these possibilities can occur:

$$
h(y_{i_0}^1) = h(y_{i_0+1}^1) = h(y_{i_0+2}^1) = 1 \text{ and } h(x_{i_0}) = h(x_{i_0+1}) = h(x_{i_0+2}) = 0, \text{ or}
$$

\n
$$
h(x_{i_0+1}) = h(y_{i_0}^1) = h(y_{i_0+2}^1) = 1 \text{ and } h(x_{i_0}) = h(x_{i_0+2}) = h(y_{i_0+1}^1) = 0, \text{ or}
$$

\n
$$
h(x_{i_0}) = h(x_{i_0+1}) = h(x_{i_0+2}) = 1 \text{ and } h(y_{i_0}^1) = h(y_{i_0+1}^1) = h(y_{i_0+2}^1) = 0, \text{ or}
$$

\n
$$
h(x_{i_0}) = h(x_{i_0+2}) = h(y_{i_0+1}^1) = 1 \text{ and } h(y_{i_0}^1) = h(y_{i_0+2}^1) = h(x_{i_0+1}) = 0, \text{ or}
$$

\n
$$
h(x_{i_0}) = h(x_{i_0+2}) = h(y_{i_0}^1) = h(y_{i_0+1}^1) = h(y_{i_0+2}^1) = 0 \text{ and } h(x_{i_0+1}) = 2, \text{ or}
$$

\n
$$
h(x_{i_0}) = h(x_{i_0+1}) = h(x_{i_0+2}) = h(y_{i_0}^1) = h(y_{i_0+2}^1) = 0 \text{ and } h(y_{i_0+1}^1) = 3.
$$

Since in each case, $\sigma(h)$ is equal to 2 or 3, we get $\sigma(h_H) = 3 = p + 1$.

This completes the proof.

Let H_1, \ldots, H_s be the sequence of all maximal sub-caterpillars $CT(1), CT(1, 1)$ and $CT(1, 1, 1)$ in *CT^r* . In view of the previous results (Lemmas 1, 8-12,15 and 16), we can at this step, give the exact value of $\Gamma_b(CT^r)$ when the reduced caterpillar CT^r of CT contains the patterns 1 and 2^+ , and is CT_5^4 -free.

Lemma 3.11. *If CT is a caterpillar with no trunks of length* $n \geq 3$ *and let CT^{<i>r*} *be the reduced caterpillar of* CT *containing the patterns* 1 *and* 2^{+} *. If* CT^{r} *is and* CT^{4}_{5} -free*, then*

$$
\Gamma_b(CT^r) = \sum_{i=1}^s \sigma(\widetilde{h}_{H_i}) + \sum_{i:m_i \ge 2} m_i.
$$

From Proposition 3.2, and Lemma 3.11, we deduce the following formula.

 \Box

Theorem 3.2. *If* CT *is a caterpillar with no trunks, of length* $n \geq 3$ *, containing the patterns* 1 *and* 2^+ *, and* CT_5^4 -free*, then*

$$
\Gamma_b(CT) = 6 \times n_M + \sum_{i=1}^s \sigma(\widetilde{h}_{H_i}) + \sum_{i:m_i \ge 2} m_i.
$$

Concerning reduced caterpillars CT^r of length *k*, the formula of $\Gamma_b(CT^r)$ cannot be deduced so simply when CT_5^4 is an induced subgraph of CT^r , we need to prove some results beforehand. For that, we introduce a new mapping which gives, for a given dominating broadcast *f*, the *f*values of the pendent neighbors of a stem z_i , with $m_i = 2$, $i = 0, \ldots, k$, where all possibilities of these *f*-values are known thanks to Lemma 3.9.

Let $D = \{d_1, d_2, \ldots, d_{s'}\}$ be the set of stems in CT^r which are adjacent to exactly two leaves. We assume that the sequence *D* is ordered according to CT^r , that is d_i occurs before d_j in *D* if *i < j*.

For $d_i \in D$ and $j = 1, ..., 4$, let P_f be the function from D to $\{\theta_i^j\}$ a_i^j , $j = 1, \ldots, 5$, defined as follows

$$
P_f(d_i) = \begin{cases} \theta_i^j, & \text{if } CT[i-j+1, i-j+4] \text{ is a caterpillar of type } CT_5^4\\ \text{and } (f(t_i^1), f(t_i^2)) = (\theta_i^j(t_i^1), \theta_i^j(t_i^2)),\\ \theta_i^5, & \text{if } f(t_i^1) = f(t_i^2) = 1. \end{cases}
$$

We use the notation CT^i_f to denote either the caterpillar $F^j_i = CT[i - j + 1, i - j + 4]$ or $CT[i, i]$

$$
CT_f^i = \begin{cases} F_i^j, & \text{if } P_f(d_i) = \theta_i^j, j = 1, ..., 4, \\ CT[i, i], & \text{if } P_f(d_i) = \theta_i^5. \end{cases}
$$

Using previous results and applying them on the reduced caterpillar CT^r with CT^4_5 , we obtain the following theorem.

Theorem 3.3. *Let CT be a caterpillar with no trunks such that the reduced caterpillar CT^r has* $length \, k \geq 3$. If CT^r contains CT^4_5 , then CT^r admits a Γ_b -broadcast f such that

- *1.* V_f^+ contains no stems.
- 2. For every f -broadcast vertex $u, f(u) \in \{1, 3\}$.
- *3. For every pendent vertex t j* m_i , with $m_i \geq 3$ and $j = 1, \ldots, m_i$, $f(t_i^j)$ $\binom{3}{i} = 1.$
- 4. For every f-broadcast vertex t_i^1 with $f(t_i^1) = 3$,

(a) If
$$
i = 0
$$
 (resp. $i = k$), then $m_0 + m_1 = 2$ (resp. $m_{k-1} + m_k = 2$).

(b) If $i \notin \{0, k\}$, then $z_i \in CT_5^4$ and $P_f(z_i) \in \{\theta_i^1, \theta_i^2, \theta_i^3, \theta_i^4\}$.

Proof. From Lemmas 1, 8-11, *CT^r* admits a Γ*b*-broadcast *f* satisfying Items 1, 2, 3 and 4(a). We have to prove Item 4(b).

Let z_i be a stem of CT^r , $i \notin \{0, k\}$. The caterpillar CT^r contains CT^4_5 and thus CT^r contains the patterns 1 and 2^+ . From Lemma 3.7(2), we have either $PB_f(t_i^1) = L(z_{i-1})$ or $PB_f(t_i^1) =$ $L(z_{i+1})$, and if there exists a pendent vertex f-dominated by two f-broadcast vertices *u* and *u*', then $d(u, u') = 3$. Hence, the *f*-values of the pendent vertices of the sub-caterpillar $CT[i-1, i+2]$ (or, similarly $CT[i - 2, i + 1]$) of CT^r , are zero except for t_i^1 and t_{i+1}^1 in $CT[i - 1, i + 2]$, where $f(t_i^1) = f(t_{i+1}^1) = 3$. Since *f* satisfies the item 3 and *CT^r* contains no pattern 1111, we get $m_j \le 2$ for every *j* = *i* − 1, . . . , *i* + 2 in *CT*[*i*−1, *i* + 2], and more precisely $m_{i-1} + m_i + m_{i+1} + m_{i+2} \le 6$, for otherwise we could define a mapping on *CT^r* by modifying to 1 the *f*-values of each leaf of $CT[i-1,i+2]$, giving a minimal dominating broadcast on CT^r with cost greater than $\Gamma_b(T)$, a contradiction. On the other hand, if $m_{i-1} + m_i + m_{i+1} + m_{i+2} = 6$, we use the previous mapping, in order to have each leaf with an *f*-value different from 3, without modifying the cost of *f*. Therefore, $m_{i-1} + m_i + m_{i+1} + m_{i+2} = 5$ and we are done. \Box

Lemma 3.12. *Let CT be a caterpillar with no trunks such that the reduced caterpillar CT^r has* $length\ k \geq 3$. If CT^r contains CT^4_5 , then CT^r admits a Γ_b -broadcast f such that, for every stem $d_i \in D$ *, we have*

1. If
$$
P_f(d_i) = \theta_i^j
$$
 for some $j \in \{1, \ldots, 4\}$, then $\Gamma_b(CT^r) = \Gamma_b(CT^r[CT_f^i/K_{1,6}, i - j + 1])$

2. If
$$
P_f(d_i) = \theta_i^5
$$
, then $\Gamma_b(CT^r) = \Gamma_b(CT^r[CT_f^i/K_{1,6}, i]) - 4$.

Using Lemma 3.12 |*D*| times, we can infer the value of $\Gamma_b(CT^r)$ as a function of $\Gamma_b(CT^r_{\overline{D_2}})$, where $CT_{D_2}^r$ is the reduced caterpillar of a caterpillar CT with no pattern 2.

Theorem 3.4. *If CT is a caterpillar with no trunks such that the reduced caterpillar CT^r has length* $k > 3$ *, then*

$$
\Gamma_b(CT^r) = \Gamma_b(CT^r_{\overline{D_2}}) - 4n_{P_2},
$$

where n_{P_2} *is the number of stems in D, for which* $P_f(d_i) = \theta_i^5$.

It should be noted that the exact value of $\Gamma_b(CT_{\overline{D_2}}^r)$ is completely defined by Proposition 3.1 or Lemma 3.11 depending on whether $CT^r_{\overline{D_2}}$ contains the pattern 1 or not.

To use Lemma 3.12, we need to know, for a given Γ_b -broadcast f, the values of $P_f(d_i)$, for every stem d_i of CT^r adjacent to two leaves. Lemmas 3.13 and 3.14 provide a response to this need. For this, let us recall some notations previously introduced.

Let $CT^r = CT(m_0, \ldots, m_k)$ be the reduced caterpillar of CT, z_0, \ldots, z_k the spines vertices of CT^r , $L(z_i) = \{t_i^1, \ldots, t_i^{m_i}\}$ the set of pendent neighbors of z_i , for every $i = 0, \ldots, k$, and $D = \{d_1, d_2, \ldots, d_{s'}\}$ the set of stems in CT^r adjacent to two leaves. Denote by z_{i_0} and z_{i_1} , the first and the last stems of CT^r respectively, with $m_{i_0}, m_{i_1} \geq 2$.

We first study, in Lemma 3.13, the case where $m_{i_0}, m_{i_1} \geq 3$ by proving that CT^r admits a Γ_b -broadcast *f* such that if $d_1 = z_i$ for some index *i*, does not appear in any F_i^j C_{i}^{j} (of type CT_{5}^{4}), $j = 1, \ldots, 4$, then $P_f(d_1) = \theta_i^5$. Otherwise, $P_f(d_1) = \theta_i^j$ i_i , where *j* is the smallest integer for which $F_i^j = CT[i - j + 1, i - j + 4].$

Lemma 3.13. *Let CT be a caterpillar with no trunks such that the reduced caterpillar CT^r has* length $k \geq 3$, and satisfying $m_{i_0}, m_{i_1} \geq 3$. If CT^r contains CT^4_5 and $d_1 = z_i$ for some index i, *then* CT^r *admits* a Γ_b *-broadcast f such that*

- *1. If* $m_{i-3} = m_{i-2} = m_{i-1} = 1$ *, then* $P_f(d_1) = \theta_i^4$ *.*
- 2. *If* $m_{i-2} = m_{i-1} = 1$, $m_{i+1} = 1$ *and* $m_{i-3} \neq 1$, *then* $P_f(d_1) = \theta_i^3$.
- *3. If* $m_{i-1} = 1$ *,* $m_{i+1} = m_{i+2} = 1$ *and* $m_{i-2} \neq 1$ *, then* $P_f(d_1) = \theta_i^2$ *.*
- *4. If* $m_{i+1} = m_{i+2} = m_{i+3} = 1$ *and* $m_{i-1} \neq 1$ *, then* $P_f(d_1) = \theta_i^1$ *.*
- 5. If d_1 does not appear in any sub-caterpillar F_i^j P_j^j , $j = 1, ..., 4$, then $P_f(d_1) = \theta_i^5$.

Thanks to Lemma 3.13, we are able to determine $P_f(d_1)$. Afterwards, we consider the caterpillar $CT^r[CT_f^i/K_{1,6}, i-j+1]$ or $CT^r[CT_f^i/K_{1,6}, i]$, according to $P_f(d_1) = \theta_i^j$ i ^{*j*} for some *j* ∈ $\{1, \ldots, 4\}$ or $P_f(d_1) = \theta_i^5$. We use again Lemma 3.13 for the concerned caterpillar, with $|D| - 1$ stems adjacent to two leaves. Repeating this procedure |*D*| times, we obtain a caterpillar without pattern 2 (that is, a CT_5^4 -free caterpillar) and $P_f(d_i)$ is determined for every $i = 1, \ldots, s'$. The value of $\Gamma_b(CT^r)$ is deduced from Lemma 3.11 and Theorem 3.4.

Lemma 3.14. *Let CT be a caterpillar with no trunks such that the reduced caterpillar CT^r has* length $k \geq 3$. If CT^r contains CT^4_5 and $d_1 = z_{i_0}$, then CT^r admits a Γ_b -broadcast f such that

- *I.* $P_f(d_1) \notin \{\theta_{i_0}^3, \theta_{i_0}^4\}.$
- 2. *If* $i_0 \in \{1,3\}$ *and* $d_1 \in F_{i_0}^2$, *then* $P_f(d_1) = \theta_{i_0}^2$.
- *3. If* $i_0 \in \{0, 2\}$ *and* $d_1 \in F_{i_0}^1$, *then* $P_f(d_1) = \theta_{i_0}^1$.
- 4. If d_1 does not appear in any sub-caterpillar $F_{i_0}^j$ $P_j^j, j \in \{1, 2\}$, then $P_f(d_1) = \theta_{i_0}^5$.

For any reduced caterpillar with $m_{i_0} = 2$ (or $m_{i_1} = 2$ by symmetry), we are able to determine $P_f(d_1)$ (and $P_f(d_{s'})$ when $m_{i_1} = 2$), from Lemma 3.14. Similarly to what was discussed previously (case $m_{i_0} > 2$ and $m_{i_1} > 2$), we consider the caterpillar CT_1 representing $CT^r[CT_f^{i_0}/K_{1,6}, i_0$ $j+1$] or $CT^r[CT_f^{i_0}/K_{1,6}, i_0]$, according to $P_f(d_1) = \theta_i^j$ j_{i_0} for some $j \in \{1, ..., 4\}$ or $P_f(d_1) = \theta_{i_0}^5$. By symmetry, we do the same thing again on CT_1 when $m_{i_1} = 2$. Then, we use Lemma 3.13 for the resulting caterpillar, with $|D| - 1$ (or $|D| - 2$ when $m_{i_1} = 2$) stems adjacent to two leaves. Repeating this procedure $|D|$ times, we obtain a caterpillar without pattern 2 (that is, a CT_5^4 -free caterpillar) and for every $i = 1, \ldots, s'$, $P_f(d_i)$ is determined. The value of $\Gamma_b(CT^r)$ is deduced from Lemma 3.11 and Theorem 3.4.

Figure 3: Determination of CT_4^r .

Figure 4: Γ*b*-broadcast on *CT*.

4. Example

We illustrate through an example how we can find a Γ*b*-broadcast for caterpillars *CT* which contains the patterns 1 and 2^+ , and containing CT_5^4 . For this, we consider the following caterpillar $CT[(1)^3, 2, (1)^4, 3, (1)^7, 2, 1, 2, (1)^2, 2, 1].$

- Step 1. We delete the two occurrences of M in CT, that is *CT*[4 : 7] and *CT*[9 : 12]. Let $CT^r = [(1)^3, 2, 3, (1)^3, 2, 1, 2, (1)^2, 2, 1]$ (see Figure 3.(a)) and $n_M = 2$. We have $\Gamma_b(CT) = \Gamma_b(CT^r) + 6 \times n_M = \Gamma_b(CT^r) + 12$.
- **Step 2.** We determine θ_i^j $\frac{3}{i}$ for each pattern 2.
	- 1. In CT^r , $i_0 = 3$, $d_1 = z_3$ and $m_3 = 2$. According to Lemma 3.14, we have $P_f(d_1) = \theta_3^5$. We consider $CT_1^r = [(1)^3, 6, 3, (1)^3, 2, 1, 2, (1)^2, 2, 1]$ (see Figure 3.(b)).
	- 2. In CT_1^r , $m_{i_1} = 2$, $d_{|D_2|} = z_{13}$, and $i_0 = n 1$. According to Lemma 3.14, $P_f(d_{|D_2|}) =$ θ_{13}^3 . We consider $CT_2^r = [(1)^3, 6, 3, (1)^3, 2, 1, 2, 6]$ (see Figure 3.(e)).
	- 3. In CT_2^r , $m_{i_0} \geq 3$, $d_1 = z_8$, $m_5 = m_6 = m_7 = 1$ and $m_4 = 3 \neq 1$. According to Lemma 3.13, $P_f(d_1) = \theta_8^4$. We consider $CT_3^r = [(1)^3, 6, 3, 6, 1, 2, 6]$ (see Figure 3.(c)).
	- 4. In CT_3^r , $m_{i_0} \geq 3$, $d_1 = z_7$, and $d_1 \notin F_7^j$ $\forall j$, ∀ j ∈ {1, ..., 4}. According to Lemma 3.13, $P_f(d_1) = \theta_7^5$. We consider $CT_4^r = [(1)^3, 6, 3, 6, 1, 6, 6]$ (see Figure 3.(d)).

The last reduced caterpillar $CT^r_4 = [(1)^3, 6, 3, 6, 6, 6, 1]$ is a caterpillar without pattern 2 and $n_{P_2} = 2.$

Step 3. Calculation of Γ_b (*CT*).

Thanks to Proposition 3.2 and Theorem 3.4, we have $\Gamma_b(CT) = \Gamma_b(CT_4^r) + 6 \times n_M - 4 \times n_{P_2} = \Gamma_b(CT_4^r) + 4.$ The cost of Γ_b on caterpillar $CT^r_4[(1)^3, 6, 3, 6, 6, 6, 1]$ is calculate from the formula givin by Lemma 3.11. It follows, $\Gamma_b(CT) = 36$ and the Γ_b -broadcast on *CT* is depicted in Figure 4.

5. Conclusion

In this paper, we gave the exact value of Γ_b for any caterpillar without trunks. The study of caterpillars containing trunks seems more complicated in general. For future research, several problems seem interesting.

- Determine the value of Γ*b*(*CT*) for more general caterpillar classes, such that the class of caterpillars with no *k* consecutive trunks, $k \geq 2$.
- Let *m* and *n* be two positive integers. The value of $\Gamma_b(P_m \Box P_n)$, where \Box stands for the Cartesian product of graphs, has been determined in [4]. Determine the value of $\Gamma_b(P_m \circ P_n)$, for any other operation \circ , as it was done for the variant γ_b in [15].
- Determine the ratio between Γ_b and any other broadcast invariant (to our knowledge, this question has been studied in the literature only for boundary independence numbers in [13]).

References

- [1] D. Ahmadi, G.H. Fricke, C. Schroeder, S.T. Hedetniemi, and R.C. Laskar, Broadcast irredundance in graphs, *Congr. Numer.* 224 (2015), 17–31.
- [2] M. Ahmane, I. Bouchemakh, and E. Sopena, On the broadcast independence number of caterpillars, *Discrete Applied Math.* 244 (2018), 20–35. https://doi.org/10.1016/j.dam.2018.03.017
- [3] M. Ahmane, I. Bouchemakh, and E. Sopena, On the Broadcast Independence Number of Locally Uniform 2-Lobsters. *Discuss. Math. Graph Theory* 44 (2024), 199–229. https://doi.org/10.7151/dmgt.2443
- [4] I. Bouchemakh and N. Fergani, On the upper broadcast domination number, *Ars Combin.* 130 (2017), 151–161
- [5] S. Bouchouika, I. Bouchemakh, and E. Sopena, Broadcasts on Paths and Cycles, *Discrete Applied Math.* 283 (2020), 375–395. https://doi.org/10.1016/j.dam.2020.01.030
- [6] J.E. Dunbar, D.J. Erwin, T.W. Haynes, S.M. Hedetniemi, and S.T. Hedetniemi, Broadcasts in graphs, *Discrete Applied Math.* 154 (2006), 59–75. https://doi.org/10.1016/j.dam.2005.07.009
- [7] D. Erwin, *Cost domination in graphs*, Ph.D. Dissertation, Western Michigan University, 2001.
- [8] D. Erwin, Dominating broadcasts in graphs, *Bull. Inst. Combin. Appl.* 42 (2004), 89–105.
- [9] L. Gemmrich and C.M. Mynhardt, Broadcasts in Graphs: Diametrical Trees, *Australas. J. Combin.* 69(2) (2017), 243–258. https://ajc.maths.uq.edu.au/pdf/69/ajc_v69_p243.pdf
- [10] M.A. Henning, G. MacGillivray, and F. Yang, Broadcast domination in graphs. In T.W. Haynes, S.T. Hedetniemi and M. A. Henning (Eds.), Structures of domination in Graphs, Springer (2020), 15–46.
- [11] A. Laouar, I. Bouchemakh, and E. Sopena, On the Broadcast Independence Number of Circulant Graphs. *Discret. Math. Algorithms Appl.* 2350053 (2023). https://doi.org/10.1142/S1793830923500532
- [12] C.M. Mynhardt and A. Roux, Dominating and Irredundant Broadcasts in Graphs, *Discrete Applied Math.* 220 (2017), 80–90. https://doi.org/10.1016/j.dam.2016.12.012
- [13] C.M. Mynhardt and L. Neilson, Comparing Upper Broadcast Domination and Boundary Independence Broadcast Numbers of Graphs. *Trans. Comb.* 13(1) (2024), 105–126. https://doi.org/10.22108/toc.2023.127904.1836
- [14] S.M. Seager, Dominating Broadcasts of Caterpillars, *Ars Combin.* 88 (2008), 307–319.
- [15] K.W. Soh and K.M. Koh. Broadcast domination in graph products of paths. *Australas. J. Combin.* 59(3) (2014), 342–351. https://ajc.maths.uq.edu.au/pdf/59/ajc_v59_p342.pdf

6. Appendix

Proof of Lemma 3.2. Let *CT* be a caterpillar with no trunks, of length $n \leq 2$ and size *m*, and let *f* be a Γ*b*-broadcast on *CT*.

If $n = 1$ and $m = 3$, then *CT* is a path and $\Gamma_b (CT) = m$ (see Figure 5 (a)).

If $n \geq 2$ or $m \geq 4$, then *CT* is neither a path nor a star. By Theorem 2.1, we get $\Gamma_b(CT) \leq m-1$. For the converse, we have to define a minimal dominating broadcast on *CT* with cost *m* − 1 or $m-2$, according to the studied case.

Let μ be the unitary dominating broadcast on *CT*. Since μ is a minimal dominating broadcast with cost $m - n$, we infer $\Gamma_b(CT) \geq m - n$. For $n = 1$ and $m \geq 4$, we immediately get $\Gamma_b(CT) \geq m - 1$, and thus $\Gamma_b(CT) = m - 1$ (see Figure 5 (b)).

If $n = 2$ and $\ell_0 = \ell_1 = 1$ (the case $\ell_1 = \ell_2 = 1$ is similar, by symmetry), then the mapping g defined by $g(y_2^j)$ $\mathcal{L}(\hat{y}) = 1$ for every $j, j = 1, \ldots, \ell_2, g(y_0^1) = 3$, and $g(x) = 0$ otherwise is a minimal dominating broadcast with cost $m - 1$. Hence, $\Gamma_b(CT) \geq m - 1$, and thus $\Gamma_b(CT) = m - 1$ (see Figure 5 (c)).

If $n = 2$ and $\ell_1 \geq 2$, then $f(y_1^1) \leq 2$. Indeed, since the *f*-value for each vertex of *CT* does not exceed its eccentricity, we have $f(y_1^j)$ $\mathcal{L}_{1}^{(j)} \leq 3$ for every $j = 1, \ldots, \ell_1$. On the other hand $f(y_1^1) = 3$ cannot hold (recall that we assumed $f(y_i^1) \geq \cdots \geq f(y_i^{\ell_i})$ for every $i = 0, \ldots, n$), since otherwise $V_f^+ = \{y_1^1\}$ and we could set $g(x) = 1$ for every leaf *x*, giving a minimal dominating broadcast with cost $\sigma(g) \geq 4 \geq \sigma(f) + 1$, contradicting the optimality of f.

According to the *f*-values of pendent vertices y_1^j $j_1, j = 1, \ldots, \ell_1$, we discuss three cases. In each case, we prove the existence of at least two elements in $\overline{E_f}$, which allows us to get $\Gamma_b(CT) \leq m-2$.

- 1. $f(y_1^j)$ j_{1}^{j} = 1 for every $j = 1, ..., \ell_{1}$. We have PB ^{*f*} (*y*^{^{*j*}₁</sub>} $\{y_1^j\}$ and then, $P_{y_1^j} = y_1^j x_1$ for every $j = 1, \ldots, \ell_1$ and x_1 does not lie to any path P_v^f , where *v* is an *f*-broadcast vertex of CT , $v \neq y_1^j$ x_1^j . Thus, the edges x_0x_1 and x_1x_2 belong to E_f .
- 2. $f(y_1^j)$ j_{1}^{j} = 0 for every $j = 1, ..., \ell_{1}$. By Lemma 2.7, *y j* y_1^j is *f*-dominated by y_0^1 or y_2^1 . By Lemma 2.6, we have either $PB_f(y_0^1)$ = $L(x_1)$ or $PB_f(y_2^1) = L(x_1)$. Therefore, we have either $P_{y_0^1} = y_0^1 x_0 x_1 y_1^j$ or $P_{y_2^1} = y_2^1 x_2 x_1 y_1^j$ $\frac{j}{1}$ for some $j \in \{1, ..., \ell_1\}$, and the set $\overline{E_f}$ contains $\ell_1 - 1 \geq 1$ pendent edges and one of the edges x_0x_1 or x_1x_2 .
- 3. $f(y_1^1) = 2$.

We have $PB_f(y_1^1) = \{y_1^2, \ldots, y_1^{\ell_1}\}$, for otherwise the leaves adjacent to x_0 or to x_2 would not be dominated. Hence, $P_{y_1^1} = y_1^1 y_1^j$ j_1 for some $j \in \{2, ..., \ell_1\}$ and x_1 cannot lie on some path P_v^f , where *v* is a broadcast vertex different from y_1^1 . Therefore, the edges x_0x_1 and x_1x_2 belong to E_f .

If $n = 2$, $\ell_0 \geq 2$, $\ell_1 = 1$ and $\ell_2 \geq 2$, then, by the same arguments as above, the *f*-values of the leaves cannot exceed 3. We distinguish six cases.

Figure 5: Examples of Γ_b -broadcasts for $n = 1, 2$.

- 1. $f(y_0^j)$ ℓ_0^{j} = 0 for every $j = 1, ..., \ell_0$.
	- The vertex y_0^j σ ^{*i*} is *f*-dominated by y_2^1 , for otherwise $\sigma(f) = f(y_1^1) = 3$, contradicting the optimality of *f*. Therefore, $V_f^+ = \{y_2^1\}$ and $P_{y_2^1} = y_2^1 x_2 x_1 x_0 y_0^j$ j_0^j for some $j \in \{1, ..., \ell_0\}.$ Hence, $|\overline{E_f}| \ge (\ell_0 - 1) + \ell_1 + (\ell_2 - 1) = \ell_0 + \ell_2 - 1 \ge 3.$
- 2. $f(y_0^j)$ \mathcal{L}_{0}^{j} = 1 for every $j = 1, ..., \ell_{0}$, and $f(y_{2}^{l}) = 1$ for every $l = 1, ..., \ell_{2}$. We have $PB_f(y_0^j)$ $\begin{aligned} \begin{bmatrix} y_0^j \end{bmatrix} &= \{y_0^j\} \text{ and } PB_f(y_2^l) = \{y_2^l\}, \text{ and then } P_{y_0^j} = y_0^j x_0 \text{ and } P_{y_2^l} = y_2^l x_2. \end{aligned}$ Therefore, both edges x_0x_1 and x_1x_2 are in the set $\overline{E_f}$.
- 3. $f(y_0^j)$ $\binom{1}{0} = 1$ for every $j = 1, ..., \ell_0$, and $f(y_2^1) = 2$ (the case $f(y_0^1) = 2$ and $f(y_2^1) = 1$ for every $l = 1, \ldots, \ell_2$ is similar, by symmetry). We have PB ^{*f*} (*y*^{j})</sub> y_0^j $=$ y_0^j and $PB_f(y_2^1)$ $=$ $\{y_2^2, \ldots, y_2^{\ell_2}\}$, and then $P_{y_0^j}$ $=$ $y_0^j x_0$ and $P_{y_2^1}$ $=$ $y_2^1 y_2^l$ for some $l \in \{2, \ldots, \ell_2\}$. We have again both edges x_0x_1 and x_1x_2 in the set $\overline{E_f}$.
- 4. *f*(*y j* $\binom{1}{0} = 1$ for every $j = 1, ..., \ell_0$, and $f(y_2^1) = 3$ (the case $f(y_0^1) = 3$ and $f(y_2^1) = 1$ for every $l = 1, \ldots, \ell_2$ is similar, by symmetry). We have PB _{*f*} (y_0^j) $(y_0^j) = \{y_0^j\}$ for every $j = 1, ..., \ell_0$, and $PB_f(y_2^1) = y_1^1$, and then $P_{y_0^j} = y_0^j x_0$ and $P_{y_2^1} = y_2^1 x_2 x_1 y_1^k$ for some $k \in \{1, \ldots, \ell_1\}$. Thus, the edges $x_0 x_1$ and the $\ell_2 - 1 \ge 1$ leaves $y_2^l x_2$, $l = 2, \ldots, \ell_2$ belong to $\overline{E_f}$.
- 5. $f(y_0^1) = 2$ and $f(y_2^1) = 2$. We have $PB_f(y_0^1) = \{y_0^2, \ldots, y_0^{\ell_0}\}\$ and $PB_f(y_2^1) = \{y_2^2, \ldots, y_2^{\ell_2}\}\$, and then $P_{y_0^1} = y_0^1 y_0^j$ $_0^{\jmath}$ for some $j \in \{2, ..., \ell_0\}$, and $P_{y_2^1} = y_2^1 y_2^2$ for some $l \in \{2, ..., \ell_2\}$. It follows, $f(y_1^1) = 1$ and PB _{*f*}(y_1^1) = {*x*₁}. Thus, both edges x_0x_1 and x_1x_2 belong to $\overline{E_f}$.
- 6. $f(y_0^1) = 2$ and $f(y_2^1) = 3$ (the case $f(y_0^1) = 3$ and $f(y_2^1) = 2$ is similar, by symmetry). We have $PB_f(y_0^1) = \{y_0^2, \ldots, y_0^{\ell_0}\}\$ and $PB_f(y_2^1) = \{y_1^1\}\$, and then $P_{y_0^1} = y_0^1 y_0^j$ $\frac{3}{0}$ for some

(d) $n = 6$

Figure 6: Examples of the broadcast *f* defined in Lemma 3.3.

 $j \in \{2, ..., \ell_0\}$, and $P_{y_2^1} = y_2^1 x_2 x_1 y_1^l$. Hence, the edges $x_0 x_1$ and the $\ell_2 - 1 \ge 1$ leaves $y_2^l x_2$, $l = 2, \ldots, \ell_2$ belong to $\overline{E_f}$.

In each case, we proved that $\Gamma_b(CT) \leq m - 2$. Since $\Gamma_b(CT) \geq m - n \geq m - 2$, we get $\Gamma_b(CT) = m - 2$ (see Figure 5 (d) and (e)). This completes the proof. \Box

Proof of Lemma 3.3. Let $CT = CT(\ell_0, \ldots, \ell_n)$ be a caterpillar with no trunks, where $n + 1 =$ $4q + r$, $q \in \mathbb{N}^*$ and $r = 0, \ldots, 3$. We define a mapping f (see Figure 6), by setting, for $i =$ $0, \ldots, n-r$

$$
\begin{cases}\nf(y_i^1) = 3 & \text{if } i \equiv 1, 2[4] \\
f(y_n^j) = 1 \text{ for every } j = 1, ..., \ell_n, \\
f(y_n^1) = 3, & \text{if } r = 1 \\
f(y_n^1) = 3 \text{ and } f(y_{n-2}^j) = 1 \text{ for every } j = 1, ..., \ell_{n-2}, \text{ if } r = 3 \\
f(u) = 0, & \text{otherwise.} \n\end{cases}
$$

For all other vertex *u* of CT, we set $f(u) = 0$. The mapping f is clearly a minimal dominating broadcast, with cost

$$
\sigma(f) = \begin{cases} \frac{3(n+1)}{2}, & \text{if } r = 0, 2, \\ \frac{3n}{2} + \ell_n, & \text{if } r = 1, \\ \frac{3n}{2} + \ell_{n-2}, & \text{if } r = 3. \end{cases}
$$

It follows, $\sigma(f) \geq \left| \frac{3(n+1)}{2} \right|$ |, and then, $\Gamma_b(CT) \geq \left(\frac{3(n+1)}{2}\right)$ k . This completes the proof. \Box 2 2

(c)
$$
i - g(u) + 2 \ge 0
$$
 and $i + g(u) - 2 \le n$

Figure 7: Illustration for the proof of Lemma 3.6, Case 1.

Proof of Lemma 3.6. Let *g* be a Γ*b*-broadcast of *CT*. Assume that there exists a *g*-broadcast vertex $u = y_i^1$ for some $i \in \{0, ..., n\}$, with $g(u) \ge 4$ and *u* is the leftmost *g*-broadcast vertex with this property. By Lemma 3.1, u and its private neighbor u^p are leaves.

We will consider the sub-caterpillar $CT^* = CT[i_0, i_1]$, where i_0 and i_1 will be defined depending on the two following cases.

1. Every pendent vertex in $B_q(u)$ belongs to $PB_q(u)$. In that case, we set

$$
\left\{\begin{array}{ll} i_0=0 \text{ and } i_1=i+g(u)-2, & \text{if } i-g(u)+2<0, \\ i_0=i-g(u)+2 \text{ and } i_1=n, & \text{if } i+g(u)-2>n, \\ i_0=i-g(u)+2 \text{ and } i_1=i+g(u)-2, & \text{otherwise.} \end{array}\right. \qquad \left(\text{see Figure 7}\right)
$$

Obviously, we have $i_0 < i_1$. Moreover, $i_1 - i_0 + 1 \leq 3$ holds if and only if $i = 0$ and $g(u) = 4$ (or, $i = n$ and $g(u) = 4$, by symmetry). Indeed, If $i = 0$ and $g(u) = 4$, then $i - g(u) + 2 = -2 < 0$ and $i_1 - i_0 + 1 = 3 \le 3$. Conversely, assume that $i_1 - i_0 + 1 \le 3$ and $g(u) \ge 4$. If $i_1 - i_0 + 1 = i + g(u) - 1 \le 3$,

then *i* + 3 ≤ 3, that is *i* = 0, and *i* − *g*(*u*) + 2 < 0. If *i*₁ − *i*₀ + 1 = *n* − *i* + *g*(*u*) − 1 ≤ 3, then

Figure 8: Illustration for the proof of Lemma 3.6, Case 1.

n − *i* + 3 ≤ 3, that is *i* = *n*, and *i* + *g*(*u*) − 2 > *n*. If $0 \le i - g(u) + 2 < i + g(u) - 2 \le n$, then $i_1 - i_0 + 1 = 2g(u) - 3 \le 3$ leads to $g(u) \le 3$, a contradiction.

2. There exists a pendent vertex *v*, such that $v \in B_q(u)$ and $v \notin PB_q(u)$. In that case, there exists a broadcast vertex u' , $u' \neq u$, such that *v* is *g*-dominated by *u* and by *u'* with $g(u') \geq 3$. Since *u'* is a leaf, let $u' = y_j^1$ for some $j > i$. The bordering private g-neighbors of u and u' are $PB_g(u) = \{y_{i-g(u)+2}^1, \ldots, y_{i-g(u)+2}^{\ell_{i-g(u)+2}}\}$ and $PB_g(u') =$ $L(x_{j+g(u')-2}^1)$, respectively.

We set $i_0 = i - g(u) + 2$ and $i_1 = j + g(u') - 2$. The equality $i_1 - i_0 + 1 \ge 4$ must hold in this case since $i_1 - i_0 + 1 = j - i + g(u) + g(u') - 4 + 1 \ge 5$, so we can write $i_1 - i_0 + 1 = 4q + r$, where $q \in \mathbb{N}^*$ and $0 \le r \le 3$.

We define a mapping h, obtained from g by modifying only the g-values of the leaves between $y_{i_0}^1$ and $y_{i_1}^{\ell_{i_1}}$ (we already know that the stems must have *h*-value 0), according to the value of $i_1 - i_0 + 1$. We have two cases to consider.

1. $i_1 - i_0 + 1 \leq 3$.

In that case, every pendent vertex in $B_g(u)$ belongs to $PB_g(u)$, $i = 0$ and $g(u) = 4$ (the case $i = n$ and $g(u) = 4$ is similar, by symmetry).

If $i = 0$, we set $h(y_0^1) = 3$, $h(y_2^j)$ $\mathcal{L}_2^{\{1\}} = 1$ for every $j = 1, \ldots, \ell_2$, and $h(z) = 0$ for every $z \in \mathcal{L}_1$ $\{y_0^2, \ldots, y_0^{\ell_0}, y_1^1, \ldots, y_1^{\ell_1}\}$ (see Figure 8). The mapping *h* is a minimal dominating broadcast with cost $\sigma(h) = \sigma(g) + 3 + \ell_2 - g(u) = \sigma(g) + \ell_2 - 1$. The optimality of *g* then implies $\ell_2 = 1$, so that $\sigma(h) = \sigma(g)$.

2.
$$
i_1 - i_0 + 1 \ge 4
$$
.
\nFor $t = i_0, ..., i_1 - r$, we set $h(y_t^j) = 0$ for every $j = 2, ..., \ell_t$ with $\ell_t \ge 2$, and
\n
$$
h(y_t^1) = \begin{cases} 0, & \text{if } t - i_0 + 1 \equiv 0, 1[4], \\ 3, & \text{if } t - i_0 + 1 \equiv 2, 3[4]. \end{cases}
$$

For the case $r = 0$, all the vertices have a *h*-value. We can thus now assume $r \neq 0$. We consider two sub-cases depending on $i_0 = 0$ or not.

(a)
$$
i_0 \neq 0
$$
.
\nWe set $h(y_t^j) = 1$ for every $t = i_1 - r + 1, ..., i_1$ and $j = 1, ..., \ell_t$,
\n(b) $i_0 = 0$.
\nWe set
\n
$$
\begin{cases}\nh(y_{i_1}^j) = 1 \text{ for every } j = 1, ..., \ell_{i_1}, \\
h(y_{i_1-1}^j) = 0 \text{ for every } j = 1, ..., \ell_{i_1-1}, h(y_{i_1}^1) = 3 \text{ and } \\
h(y_{i_1}^j) = 0 \text{ for every } j = 2, ..., \ell_{i_1}, \\
h(y_{i_1-2}^j) = 0 \text{ for every } j = 1, ..., \ell_{i_1-2}, \\
h(y_{i_1-1}^j) = 0 \text{ for every } j = 1, ..., \ell_{i_1-1}, \\
h(y_{i_1}^j) = 3 \text{ and } h(y_{i_1}^j) = 0 \text{ for every } j = 2, ..., \ell_{i_1}, \\
h(y_{i_1}^j) = 3 \text{ and } h(y_{i_1}^j) = 0 \text{ for every } j = 2, ..., \ell_{i_1}, \\
\end{cases}
$$
 if $r = 3$.

We now determine the cost of the minimal dominating broadcast *h*. We distinguish three cases.

- (i) Every pendent vertex in $B_g(u)$ belongs to $PB_g(u)$ and $i g(u) + 2 < 0$. (the case $i + g(u) - 2 > n$ is similar by symmetry).
	- In that case, $4 \le i_1 i_0 + 1 = i + h(u) 1$, that is $i + h(u) ≥ 5$. We get

$$
\sigma(h) = \sigma(g) - g(u) + \begin{cases} \frac{3(i_1 - i_0 + 1)}{2}, & \text{if } r = 0, \\ \frac{3(i_1 - i_0)}{2} + 1, & \text{if } r = 1, \\ \frac{3(i_1 - i_0 - 1)}{2} + 3, & \text{if } r = 2, \\ \frac{3(i_1 - i_0 - 2)}{2} + 4, & \text{if } r = 3, \end{cases}
$$

that is,

$$
\sigma(h) = \sigma(g) + \begin{cases} i + \frac{i + g(u) - 3}{2}, & \text{if } r = 0, 2, \\ i + \frac{i + g(u) - 4}{2}, & \text{if } r = 1, 3. \end{cases}
$$
 (see Figure 9)

Since, $i + h(u) \ge 5$, we obtain $\sigma(h) \ge \sigma(g) + i + 1$ if $r = 0, 2$ and $\sigma(h) \ge \sigma(g) + i + \frac{1}{2}$ $\frac{1}{2}$, otherwise, contradicting the optimality of *g*.

(ii) Every pendent vertex in $B_g(u)$ belongs to $PB_g(u)$ and $0 \le i - g(u) + 2 < i + g(u) - 2 \le n$. In that case, $4 \le i_1 - i_0 + 1 = 2h(u) - 3$ is odd.

We get

$$
\sigma(h) = \sigma(g) - g(u) + \begin{cases} \frac{3(2g(u) - 4)}{2} + 1, & \text{if } r = 1, \\ \frac{3(2g(u) - 6)}{2} + 4, & \text{if } r = 3, \end{cases}
$$

and then $\sigma(h) = \sigma(g) + 2g(u) - 5 \ge \sigma(g) + 3$, contradicting the optimality of *g* (see Figure 10)).

(iii) Items (i) and (ii) are not satisfied.

In that case, we have $i_1 - i_0 + 1 = j - i + g(u') + g(u) - 3 ≥ 6$. Indeed, we have $g(u) ≥ 4$, *g*(*u*^{\prime}) ≥ 3, *j* − *i* ≥ 1 and if *j* − *i* = 1, then *g*(*u*^{\prime}) = *g*(*u*) ≥ 4, for otherwise *u*^{\prime} *g*-dominates *u p* .

For $i_0 = 0$, we get

Figure 9: Illustration for the proof of Lemma 3.6, Case 2.(i).

Figure 10: Illustration for the proof of Lemma 3.6, Case 2.(ii).

$$
\sigma(h) = \sigma(g) - g(u) - g(u') + \begin{cases} \frac{3(i_1 - i_0 + 1)}{2}, & \text{if } r = 0, \\ \frac{3(i_1 - i_0)}{2} + 1, & \text{if } r = 1, \\ \frac{3(i_1 - i_0 - 1)}{2} + 3, & \text{if } r = 2, \\ \frac{3(i_1 - i_0 - 2)}{2} + 4, & \text{if } r = 3, \end{cases}
$$

that is,

$$
\sigma(h) = \sigma(g) + \begin{cases} j - i + \frac{j - i + g(u') + g(u) - 9}{2}, & \text{if } r = 0, 2, \\ j - i + \frac{j - i + g(u') + g(u) - 10}{2}, & \text{if } r = 1, 3. \end{cases}
$$

Therefore, $\sigma(h) > \sigma(g)$, contradicting the optimality of *g* (see Figure 11). For $i_0 > 0$, we get

$$
\sigma(h) = \sigma(g) - g(u) - g(u') + \begin{cases} \frac{3(i_1 - i_0 + 1)}{2}, & \text{if } r = 0, \\ \frac{3(i_1 - i_0)}{2} + \ell_{i_1}, & \text{if } r = 1, \\ \frac{3(i_1 - i_0 - 1)}{2} + \ell_{i_1 - 1} + \ell_{i_1}, & \text{if } r = 2, \\ \frac{3(i_1 - i_0 - 2)}{2} + \ell_{i_1 - 2} + \ell_{i_1 - 1} + \ell_{i_1}, & \text{if } r = 3, \end{cases}
$$

that is,

$$
\sigma(h) = \sigma(g) + \begin{cases}\nj - i + \frac{j - i + g(u') + g(u) - 9}{2}, & \text{if } r = 0, \\
j - i + \frac{j - i + g(u') + g(u) - 12}{2} + \ell_{i_1}, & \text{if } r = 1, \\
j - i + \frac{j - i + g(u') + g(u) - 15}{2} + \ell_{i_1 - 1} + \ell_{i_1}, & \text{if } r = 2, \\
j - i + \frac{j - i + g(u') + g(u) - 18}{2} + \ell_{i_1 - 2} + \ell_{i_1 - 1} + \ell_{i_1}, & \text{if } r = 3.\n\end{cases}
$$
 (see Figure 12)

www.ejgta.org

Figure 11: Illustration for the proof of Lemma 3.6, Case 2.(*iii*) and $i_0 = 0$.

Figure 12: Illustration for the proof of Lemma 3.6, Case 2.(iii) and $i_0 > 0$.

If $r = 0$ or $r = 1$, we immediately obtain $\sigma(h) > \sigma(g)$, contradicting the optimality of g. If $r = 2$, then $\sigma(h) = \sigma(g) + j - i + \frac{j - i + g(u') + g(u) - 15}{2} + \ell_{i_1 - 1} + \ell_{i_1} \ge \sigma(g) - 2 + \ell_{i_1 - 1} + \ell_{i_1}$. The optimality of *g* then implies $\ell_{i_1-1} = \ell_{i_1} = 1$, in which case $\sigma(h) = \sigma(g)$. If $r = 3$, then $\sigma(h) = \sigma(g) + j - i + \frac{j - i + g(u') + g(u) - 18}{2} + \ell_{i_1 - 2} + \ell_{i_1 - 1} + \ell_{i_1}$ and $j - i + g(u') + g(u)$ must be even. Hence

$$
\sigma(h) \ge \sigma(g) + (j - i) - 4 + \ell_{i_1 - 2} + \ell_{i_1 - 1} + \ell_{i_1} \ge \sigma(g) - 3 + \ell_{i_1 - 1} + \ell_{i_1}.
$$

The optimality of *g* implies $\ell_{i_1-2} = \ell_{i_1-1} = \ell_{i_1} = 1$, in which case $\sigma(h) = \sigma(g)$. We repeat this transformation on each *g*-broadcast vertex with a value greater than 3 until obtaining a mapping with required condition. This completes the proof. \Box

Proof of Lemma 3.7. Let *g* be a Γ*b*-broadcast on the caterpillar *CT*, satisfying the conditions of Lemmas 2.7, 3.5 and 3.6. Then each *g*-broadcast vertex *u* is a leaf and has a *g*-value $g(u) \in \{1, 3\}$. Since $n \geq 3$, $|V_g^+| \geq 2$ by Corollary 3.1.

1. $\ell_0 + \ell_1 \geq 3$ and $g(y_0^1) = 3$.

In that case, we consider the mapping *f* obtained from *g* by replacing the *g*-values of the leaves of $CT[x_0, x_1]$ by the value 1. The mapping f is a minimal dominating broadcast on *CT* with cost $\sigma(f) = \sigma(g) - 3 + \ell_0 + \ell_1 \geq \Gamma_b(CT)$. The optimality of *g* implies $\ell_0 + \ell_1 = 3$, so that we have $\sigma(f) = \sigma(g)$. By symmetry, we also get $f(y_n^j) = 1$ for every *j*, $j = 1, \ldots, \ell_n$, if $\ell_{n-1} + \ell_n \geq 3$.

2. y_i^1 is a *f*-broadcast vertex for some $i = 1, \ldots, n$, with $f(y_i^1) = 3$.

By the minimality of the dominating broadcast *g*, $PB_f(y_0^1) = L(x_1)$ (resp. $PB_f(y_n^1) =$ $L(x_{n-1})$) if $g(y_0^1) = 3$ (resp. $g(y_n^1) = 3$). Now, assume to the contrary that there exists a *g*-broadcast vertex y_i^1 , $i = 2, ..., n - 1$, with $g(y_i^1) = 3$ and $PB_g(y_i^1) = L(x_{i-1}) \cup$ $L(x_{i+1})$. Consider the mapping f obtained from g by replacing the g-values of the leaves of $CT[i - 1, i + 1]$ by the value 1. The mapping f is a minimal dominating broadcast on *CT* with cost $\sigma(f) = \sigma(g) - 3 + \ell_{i-1} + \ell_i + \ell_{i+1} \geq \Gamma_b(CT)$. The optimality of *g* implies $\ell_{i-1} + \ell_i + \ell_{i+1} = 3$, so that we have $\sigma(f) = \sigma(g)$. By symmetry, we also get $f(y_n^j) = 1$ for every $j, j = 1, ..., \ell_n$, if $\ell_{n-1} + \ell_n \geq 3$.

3. There exists a pendent vertex f -dominated by two f -broadcast vertices u et u' .

Let *u* and *u'* be two *g*-broadcast vertices such that $N_f[u] \cap N_f[u']$ contains some leaf, say y_i^1 , and assume that *u* is to the left of *u*'. Then, we have $g(u) = g(u') = 3$. If $d(u, u') \neq 3$ then necessarily $d(u, u') = 4$, $PB_f(u) = L(x_{i-2})$ and $PB_f(u') = L(x_{i+2})$. Consider a mapping *f* defined by $f(y_i^j)$ *j*_{*i*−2} = 1 for every *j* = 1, . . . , $y_{i-2}^{\ell_{i-2}}$ $f(y_i^1) = f(y_{i+1}^1) = 3,$ $f(y_i^j)$ *j*_{−1}) = *f*(*y*^{*k*}) = *f*(*y*^{*l*}_{*i*+1}) = 0 for every *j* = 1, *y*^{*l*_{*i*-1}} $y_{i-1}^{\ell_{i-1}}, k = 2, \ldots, y_i^{\ell_i}, l = 2, \ldots, y_{i+1}^{\ell_{i+1}},$ and $f(v) = g(v)$ otherwise. The mapping f is a minimal dominating broadcast on CT with cost $\sigma(f) = \sigma(g) + \ell_{i-2}$, contradicting the optimality of *g*. This completes the proof.

 \Box

Figure 13: Illustration for the proof of Lemma 3.8, Case (1.a) and Case 2.

Proof of Lemma 3.8. Let *CT* be a caterpillar with no trunks, of length $n \geq 3$, and let *q* be a good Γ_b -broadcast on *CT*. Assume to the contrary that there exists a stem x_i with $\ell_i \geq 2$ and $g(y_i^1) \neq 1$ (that is, $g(y_i^j)$ \mathcal{L}_i^j \neq 1 for every $j = 1, \ldots, \ell_i$).

If $i = 0$ (the case $i = n$ is similar, by symmetry), then $\ell_0 + \ell_1 \geq 3$ and $g(y_0^1) \neq 3$ by Lemma 3.7(1). Hence, $g(y_0^1) = 0$ and y_0^1 is *g*-dominated by y_1^1 with a *g*-value $g(y_1^1) = 3$. By considering the same mapping *f* as in the proof of Lemma 3.7(1), we are done. Assume now $0 < i < n$. We have either $g(y_i^1) = 3$, or $g(y_i^1) = 0$.

1. $g(y_i^1) = 3$.

The leaf y_i^1 has only one private side by Lemma 3.7(2), and assume, without loss of generality, that $PB_g(y_i^1) = L(x_{i-1})$, which gives $i+1 \neq n$. By Lemma 3.7(3), we have $g(y_{i+1}^1) = 3$ and by Lemma 3.7(2), we have $PB_g(y_{i+1}^1) = L(x_{i+2})$.

Consider the mapping *f* obtained from *g* by replacing the *g*-values of the leaves of $CT[x_{i-1}, x_{i+2}]$ by the value 1. The mapping *f* is a minimal dominating broadcast on *CT* with cost $\sigma(f) = \sigma(g) - 6 + \ell_{i-1} + \ell_i + \ell_{i+1} + \ell_{i+2}$. According to the value of ℓ_i , we have two subcases to consider.

(a) $\ell_i \geq 3$.

In this case, the optimality of *g* implies $\ell_i = 3$ and $\ell_{i-1} = \ell_{i+1} = \ell_{i+2} = 1$, so that we have $\sigma(f) = \sigma(g)$ (see Figure 13(a)).

(b) $\ell_i = 2$ and *CT* is CT_5^4 -free.

In this case, it must be at least six pendent edges in the sub-caterpillar $CT[i - 1, i + 2]$, and then $\sigma(f) = \sigma(g) - 6 + \ell_{i-1} + \ell_i + \ell_{i+1} + \ell_{i+2} \ge \sigma(g) = \Gamma_b(CT)$. The optimality of *g* implies $\ell_{i-1} + \ell_i + \ell_{i+1} + \ell_{i+2} = 6$, that is the existence of two stems adjacent to two leaves and both others to one leaf, so that we have $\sigma(f) = \sigma(g)$.

Figure 14: Illustration for the proof of Lemma 3.9, Case 1.

2. $g(y_i^1) = 0$.

In that case, y_i^1 is *g*-dominated by some *g*-broadcast vertex, say without loss of generality y_{i+1}^1 , of *g*-value $g(y_{i+1}^1) = 3$, and then y_i^1 is a private *g*-border of y_{i+1}^1 by Lemma 3.7(3). Since $\ell_i + \ell_{i+1} \geq 3$, then $i + 1 \neq n$, by Lemma 3.7(1). Further, $i + 2 \neq n$, for otherwise $y_n^1, \ldots, y_n^{\ell_n}$ would be in $PB_g(y_{i+1}^1)$, contradicting Lemma 3.7(2). It follows, as in previous case, $PB_g(y_{i+1}^1) = L(x_i)$, $g(y_{i+2}^1) = 3$ and $PB_g(y_{i+2}^1) = L(x_{i+3})$. As before, we consider the mapping f obtained from g by replacing the g-values of the leaves of $CT[x_i, x_{i+3}]$ by the value 1 (see Figure 13 (c) and (d)). The mapping f is a minimal dominating broadcast on *CT* with cost $\sigma(f) = \sigma(g) - 6 + \ell_i + \ell_{i+1} + \ell_{i+2} + \ell_{i+3}$ and we conclude as previously. This completes the proof.

 \Box

Proof of Lemma 3.9. Let *g* be a good Γ*b*-broadcast on the caterpillar *CT* satisfying Lemma 3.8. If $g(y_i^1) = g(y_i^2) = 1$, we are done. Assume now $g(y_i^1) \neq 1$, that is $(g(y_i^1), g(y_i^2)) \in \{(0,0), (3,0)\}.$ The vertices y_i^1 and y_i^2 are *g*-dominated by some *g*-broadcast vertex *u* ($u = y_i^1$ can occur), with $g(u) = 3$ (observe that, by Lemma 3.7(1), $i \neq 0$). By Lemma 3.7(2), *u* has only one private side, and by Lemma 3.7(3), there exists a *g*-broadcast vertex *u'*, such that $g(u') = 3$ and $d(u, u') = 3$. Let $X = CT[i_0, i_0+3]$ be the sub-caterpillar of CT, whose leaves are those which are g-dominated by *u* or *u'* in *CT*. We consider two cases according to whether x_i appears in F_i^j or not.

1. x_i does not appear in any F_i^j $j^{j}, j = 1, \ldots, 4.$

In that case, *X* must have at least six pendent edges. Consider the mapping *f* obtained from *g* by replacing the *g*-values of the leaves of *X* by the value 1. The mapping *f* is a minimal dominating broadcast on *CT* with cost $\sigma(f) = \sigma(g) - 6 + \ell_{i_0} + \ell_{i_0+1} + \ell_{i_0+2} + \ell_{i_0+3} \ge \Gamma_b(CT)$. The optimality of *g* implies $\ell_{i_0} + \ell_{i_0+1} + \ell_{i_0+2} + \ell_{i_0+3} = 6$, so that we have $\sigma(f) = \sigma(g)$ and *f* satisfies the property (item 1) of the lemma, as required (see Figure 14).

2. x_i is a stem of a sub-caterpillar CT' of CT , of type CT_5^4 .

In that case, $\ell_{i_0} + \ell_{i_0+1} + \ell_{i_0+2} + \ell_{i_0+3} \leq 6$, for otherwise we could replace the *g*-values of every leaf of *X* by the value 1, and would get a minimal dominating broadcast on *CT*, with cost $\sigma(q) > \Gamma_b(CT)$, a contradiction with the optimality of *g*. On the other hand, if the equality $\ell_{i_0} + \ell_{i_0+1} + \ell_{i_0+2} + \ell_{i_0+3} = 6$ holds, then we consider the mapping *f* obtained from *g* by replacing the *g*-values of the leaves of $CT[i_0, i_0 + 3]$ by the value 1. The mapping *f* is a minimal dominating broadcast on *CT* with cost $\sigma(f) = \sigma(g)$ and satisfies $f(y_i^1) = f(y_i^2) =$ 1. Hence, we assume in what follows, $\ell_{i_0} + \ell_{i_0+1} + \ell_{i_0+2} + \ell_{i_0+3} = 5$, and we distinguish two cases depending on the value of $g(y_i^1)$ and $g(y_i^2)$.

(a) $g(y_i^1) = g(y_i^2) = 0.$

In that case, $X = CT[i - 3, i]$ with $u = y_{i-1}^1$ and $u' = y_{i-2}^1$, or $X = CT[i, i + 3]$ with $u = y_{i+1}^1$ and $u' = y_{i+2}^1$. In the first case, and since $\ell_{i-3} + \ell_{i-2} + \ell_{i-1} + \ell_i = 5$ holds, we deduce that $CT[i-3, i]$ is of type CT_5^4 , $g(y_i^1) = \theta_i^4(y_i^1)$ and $g(y_i^2) = \theta_i^4(y_i^2)$, in which case $CT' = X = F_i^4$ and the restriction of *g* on CT' is θ_i^4 . In the second case, and since $\ell_i + \ell_{i+1} + \ell_{i+2} + \ell_{i+3} = 5$ holds, we also deduce that $CT[i, i+3]$ is of type CT_5^4 , $g(y_i^1) = \theta_i^1(y_i^1)$ and $g(y_i^2) = \theta_i^1(y_i^2)$, in which case $CT' = X = F_i^1$ and the restriction of *g* on CT' is θ_i^1 .

(b) $g(y_i^1) = 3$ and $g(y_i^2) = 0$.

In that case, $u = y_i^1$ and $u' \in \{y_{i-1}^1, y_{i+1}^1\}$. The case $u' = y_{i-1}^1$, leads to $PB(y_i^1) =$ $L(x_{i+1})$ and $PB(y_{i-1}^1) = L(x_{i-2})$, that is $X = CT[i-2, i+1]$. Since $\ell_{i-2} + \ell_{i-1} + \ell_i + \ell_i$ $\ell_{i+1} = 5$ holds, $CT[i-2, i+1]$ is of type CT_5^4 , $g(y_i^1) = \theta_i^3(y_i^1)$ and $g(y_i^2) = \theta_i^3(y_i^2)$, in which case $CT' = X = F_i^3$ and the restriction of *g* on CT' is θ_i^3 . The case $u' = y_{i+1}^1$, $\text{implies } PB(y_i^1) = L(x_{i-1}) \text{ and } PB(y_{i+1}^1) = L(x_{i+2}), \text{ that is } X = CT[i-1, i+2].$ Since $\ell_{i-1} + \ell_i + \ell_{i+1} + \ell_{i+2} = 5$ holds, $CT[i-1, i+2]$ is of type CT_5^4 , $g(y_i^1) = \theta_i^2(y_i^1)$ and $g(y_i^2) = \theta_i^2(y_i^2)$, in which case $CT' = X = F_i^2$ and the restriction of *g* on CT' is θ_i^2 .

This completes the proof.

 \Box

Proof of Lemma 3.10. Let CT be a caterpillar of length $n > 4$, with no trunks and containing the patterns 1 and 2^+ , and let $v_0v_1v_2v_3$ be the spine of the sub-caterpillar M, where w_i is the leaf adjacent to v_i for $i = 0, \ldots, 3$. Proving the equality $\Gamma_b(CT) = \Gamma_b(CT[M/\emptyset, i]) + 6$, is equivalent to proving both inequalities: (1) $\Gamma_b(CT) + 6 \leq \Gamma_b(CT[\emptyset/M, i])$ and (2) $\Gamma_b(CT) - 6 \leq$ $\Gamma_b(CT[M/\emptyset,i]).$

- 1. Let *f* be a good Γ*b*-broadcast on the caterpillar *CT* satisfying Lemmas 3.8 and 3.9. To prove (1), it is enough to find a minimal dominating broadcast *g* on $CT[\emptyset/M, i]$ with cost $\Gamma_b(CT) + 6.$ If $i = 0$, then either $f(y_0^j)$ $(0, 0) \in \{0, 1\}$ for every $j = 1, \dots, \ell_0$ (that is, $f(y_0^j)$ $\binom{J}{0} = 0$ for every $j =$ $1, \ldots, \ell_0$ or $f(y_0^j)$ \mathcal{L}_{0}^{j} = 1 for every $j = 1, ..., \ell_{0}$, or $f(y_{0}^{1}) = 3$ (and then $f(y_{0}^{j})$ $\binom{J}{0} = 0$ for every
	- $j = 2, \ldots, \ell_0$). We distinguish two cases depending on the value of $f(y_0^j)$ $\{0\}, \forall j \in \{1, \ldots, \ell_0\}.$

Figure 15: Illustration for the proof of Lemma 3.10, Case 1 $i = 0$, Cases (a) and (b).

- (a) $f(y_0^j)$ $(y_0^j) = 0$ (resp. $f(y_0^j)$ $\mathcal{O}_0^{(j)}=1$) for every $j=1,\ldots,\ell_0.$ In that case, $PB_f(y_1^1) = L(x_0)$ (resp. $PB_f(y_0^j)$ \mathbf{y}_{0}^{j} = $\{y_{0}^{j}\}$ for every $j = 1, ..., \ell_{0}$ when $\ell_0 > 1$, or $PB_f(y_0^1) = \{x_0\}$ when $\ell_0 = 1$). We consider the mapping g defined by $g(w_1) = g(w_2) = 3$, $g(w_0) = g(w_3) = g(v_i) = 0$ for $i = 0, 1, 2, 3$, and $g(u) = f(u)$ otherwise (see Figure 15.(a)). We have $PB_g(w₁) = \{w₀\}$ and $PB_g(w₂) = \{w₃\}$, which implies that *g* is a minimal dominating broadcast on $CT[\emptyset/M, i]$ with cost $\Gamma_b(CT) + 6$.
- (b) $f(y_0^1) = 3$.

In that case, $PB_f(y_0^1) = L(x_1)$ in CT and we consider the mapping g defined by $g(w_0) = g(w_3) = 3$, $g(w_1) = g(w_2) = g(v_i) = 0$ for $i = 0, 1, 2, 3$, and $g(u) = f(u)$ otherwise (see Figure 15.(b)). We have $PB_g(w_0) = \{w_1\}$ and $PB_g(w_3) = \{w_2\}$, which implies that *q* is a minimal dominating broadcast on $CT[\emptyset/M, i]$ with cost $\Gamma_b(CT) + 6.$

- Let $i \in \{1, \ldots, n\}$. We distinguish four cases :
	- (a) $f(y_i^j)$ *i*−1) and $f(y_i^k)$ ∈ {0, 1} for every *j* = 1, . . . , ℓ_{i-1} and $k = 1, ..., \ell_i$. In that case, every leaf y_i^j *i*[→]_{*i*} −1</sub> (resp. *y*^k) is either its own private neighbor or is a private neighbor of y_{i-2}^1 (resp. y_{i+1}^1). We consider the mapping *g* defined as in Case 1a (see Figure 16.(a)).

Figure 16: Illustration for the proof of Lemma 3.10, Case 1 $i \neq 0$, Cases (*a*)-(*d*).

- (b) $f(y_{i-1}^1) = f(y_{y_i}^1) = 3.$ In that case, $\tilde{PB}_f(y_{i-1}^1) = L(x_{i-2})$ and $PB_f(y_i^1) = L(x_{i+1})$ in *CT*. We consider the mapping *g* defined as in Case 1b (see Figure 16.(b)).
- (c) $f(y_{i-1}^1) = 3$ and $f(y_i^k) \in \{0, 1\}$ for every $k = 1, \ldots, \ell_i$. In that case, $PB_f(y_{i-1}^1) = L(x_i)$ in *CT*. We consider the mapping *g* defined by $g(w_2) = g(w_3) = 3$, $g(w_0) = g(w_1) = g(v_i) = 0$, for $i = 0, 1, 2, 3$, and $g(u) = f(u)$ otherwise (see Figure 16.(b)). We have $PB_g(y_{i-1}^1) = \{w_0\}$, $PB_g(w_2) = \{w_1\}$ and $PB_{q}(w_{3}) = L(x_{i}).$ Therefore, *g* is a minimal dominating broadcast on $CT[\emptyset/M, i]$ with cost $\Gamma_b(CT) + 6$.
- (d) $f(y_i^j)$ *i*−1) ∈ {0, 1} for every *j* = 1, . . . , ℓ_i and $f(y_i^1) = 3$. In that case, $PB_f(y_i^1) = L(x_{i-1})$ in *CT*. We consider the mapping *g* defined by $g(w_0) = g(w_1) = 3$, $g(w_2) = g(w_3) = g(v_i) = 0$ for $i = 0, 1, 2, 3$, and $g(u) = f(u)$ otherwise (see Figure 16.(b)). We have $PB_q(w_0) = L(x_{i-1}), PB_q(w_1) = \{w_2\}$ and $PB_g(y_i¹) = \{w₃\}$. Therefore, *g* is a minimal dominating broadcast on $CT[\emptyset/M, i]$ with cost $\Gamma_b(CT) + 6$.
- 2. Let *f* be a good Γ*b*-broadcast on the caterpillar *CT* satisfying Lemmas 3.8 and 3.9. We prove the existence of a minimal dominating broadcast *g* on $CT[M/\emptyset, 0]$ with cost $\sigma(g) \geq$ $\Gamma_b(CT) - 6.$

We distinguish two cases, depending on whether $i \in \{0, n-4\}$ or not. Assume first $i = 0$ (the case $i = n - 4$ is similar by symmetry). We consider two subcases.

- (a) $f(y_0^1) = f(y_3^1) = 0$ and $f(y_1^1) = f(y_2^1) = 3$. In that case, $PB_f(y_1^1) = \{y_0^1\}$ and $PB_f(y_2^1) = \{y_3^1\}$. The mapping *g*, defined as the restriction of *f* on $CT[M/\emptyset, 0]$ remains a minimal dominating broadcast on $CT[M/\emptyset, 0]$ with cost $\Gamma_b(CT) - 6$. Similarly, if $f(y_0^1) = f(y_3^1) = 3$ and $f(y_1^1) = f(y_2^1) = 0$, then $PB_f(y_0^1) = \{y_1^1\}$ and PB _{*f*}(y_3^1) = { y_1^1 }. The previous broadcast *g* remains available.
- (b) $f(y_0^1) = 3$, $f(y_2^1) = 1$ and $f(y_1^1) = f(y_3^1) = 0$. In that case, $PB_f(y_0^1) = \{y_1^1\}$, and $PB_f(y_4^1) = \{y_3^1\}$ and and $PB_f(y_2^1) = \{y_2^1\}$, where $f(y_4^1) = 3$. If $n = 4$, then $CT[M/\emptyset, 0] = CT[4, 4]$ and by Theorem 2.1, $\Gamma_b(CT[M/\emptyset, 0]) = \ell_4$. The relation $\ell_4 = 1$ must be held, for otherwise we could set $h(y_1^1) = h(y_2^1) = 3, h(y_4^j)$ \mathcal{L}_4^{\jmath} = 1 for every $j = 1, \ldots, \ell_4$ and $h(u) = 0$ otherwise which would be a minimal dominating broadcast with cost $6+\ell_4$, contradicting the optimality of *f* when $\ell_4 > 1$. Thus, $\Gamma_b(CT) - 6 = 1 = \Gamma_b(CT[M/\emptyset, 0]).$ Since y_4^1 has one private side by Lemma 3.7(2), we have $n \neq 5$. Let then $n \geq 6$. We have $CT[3, 6] = CT(1, 1, 1, 1)$ or $CT[3, 6]$ is a caterpillar of type CT_5^4 , different from F_i^1 , by Lemmas 3.8 and 3.9 and by the fact that $\ell_3 = 1$. It follows, $f(y_5^1) = 3$ and $f(u) = 0$ for every other vertex of *CT*[3*,* 6]. On *CT*[*M*/Ø*,* 0], consider a mapping *g*, obtained from *f* by replacing the *f*-values of y_5^1 and y_6^1 by $g(y_5^1) = 0$ and $g(y_6^j)$ $\binom{3}{6} = 1$ for every $j = 1, \ldots, \ell_6$. So we have $PB_g(y_4^{\overline{1}}) = L(x_5)$ and $PB_g(y_6^{\overline{1}})$ $\binom{j}{6} = \{y_6^j\}$ for every $j = 1, \ldots, \ell_6$, which allows to say that *g* is a minimal dominating broadcast on $CT[M/\emptyset, 0]$ with cost $\sigma(g) = \Gamma_b(CT) + \ell_6 - 7 \geq \Gamma_b(CT) - 6$.

Figure 17: Illustration for the proof of Lemma 3.10, Case 2 $i \neq 0$, Case (a)

Let now $i \in \{1, \ldots, n-1\}$. We distinguish five sub-cases.

- (a) $f(y_i^1) = f(y_{i+3}^1) = 0$ and $f(y_{i+1}^1) = f(y_{i+2}^1) = 3$. In that case, $PB_f(y_{i+1}^1) = \{y_i^1\}$ and $PB_f(y_{i+2}^1) = \{y_{i+3}^1\}$. The mapping *g* defined as the restriction of *f* on $CT[M/\emptyset, i]$ remains a minimal dominating broadcast on $CT[M/\emptyset, i]$ with cost $\Gamma_b(CT) - 6$ (see Figure 17.(a)). Similarly, if $f(y_i^1) = f(y_{i+3}^1) = 3$ and $f(y_{i+1}^1) = f(y_{i+2}^1) = 0$, then $PB_f(y_i^1) = 0$ ${y_{i+1}^1}$ and $PB_f(y_{i+3}^1) = {y_{i+2}^1}$. The previous broadcast *g* remains available (see Figure 17.(b)). If $f(y_i^1) = f(y_{i+1}^1) = 3$ and $f(y_{i+2}^1) = f(y_{i+3}^1) = 0$, then $PB_f(y_{i+1}^1) = \{y_{i+2}^1\}$, PB _{*f*}(y_i^1) = $L(x_{i-1})$ and PB _{*f*}(y_{i+4}^1) = { y_{i+3}^1 }, with $f(y_{i+4})$ = 3. By considering again the same mapping *g*, we obtain $PB_g(y_{i+4}^1) = L(x_{i-1})$. Hence, *g* is a minimal dominating broadcast on $CT[M/\emptyset, 0]$ with cost $\sigma(g) = \Gamma_b(CT) - 6$ (see Figure 17.(c)).
- (b) $f(y_i^1) = f(y_{i+1}^1) = 3$, $f(y_{i+2}^1) = 0$ and $f(y_{i+3}^1) = 1$. In that case, $PB_f(y_i^1) = L(x_{i-1}), PB_f(y_{i+1}^1) = \{y_{i+2}^1\}$ and $PB_f(y_{i+3}^1) = \{y_{i+3}^1\}.$ Consider the mapping *g* on $CT[M/\emptyset, 0]$, obtained from *f* by replacing, for every $j =$ 1, . . . , ℓ_{i-1} , the *f*-values of y_{i-1}^j by 1 (see Figure 18.(a)). We have $PB_g(y_i^j)$ $\binom{j}{i-1} = \{x_{i-1}\}$ or $PB_g(y_i^j)$ \mathcal{L}^{j}_{i-1} = $\{y_{i-1}^{j}\}$ for every $j = 1, \ldots, \ell_{i-1}$. The mapping *g* is then a minimal dominating broadcast with cost $\sigma(g) = \Gamma_b(CT) - 7 + \ell_{i-1} \geq \Gamma_b(CT) - 6$.
- (c) $f(y_i^1) = 3$, $f(y_{i+1}^1) = f(y_{i+3}^1) = 0$ and $f(y_{i+2}^1) = 1$.

Figure 18: Illustration for the proof of Lemma 3.10, Case 2 $i \neq 0$, Cases (*b*)-(*e*).

In that case, by Lemma 3.7(3), $f(y_{i-1}^1) = 3$ which gives $f(y_i^j)$ $\binom{J}{i-2}$ = 0 for every $j =$ 1,..., ℓ_{i-2} . Hence, $PB_f(y_{i-1}^1) = \{y_{i-2}^1\}$, $PB_f(y_i^1) = \{y_{i+1}^1\}$, $PB_f(y_{i+2}^1) = \{y_{i+2}^1\}$ and $PB_f(y_{i+4}^1) = \{y_{i+3}^1\}$, with $f(y_{i+4}^1) = 3$. Consider the mapping *g* on $CT[M/\emptyset, 0]$, obtained from *f* by replacing, for every $j = 1, \ldots, \ell_{i-2}$, the *f*-values of y_{i-2}^j by 1 and the *f*-value of y_{i-1}^1 by 0 (see Figure 18.(b)). We have $PB_g(y_{i+4}^j) = L(x_{i-1})$ and $PB_g(y_i^j)$ $\{y_{i-2}^j\}$ for every $j = 1, \ldots, \ell_{i-2}$. The mapping *g* is then a minimal dominating broadcast with cost $\sigma(g) = \Gamma_b(CT) - 7 + \ell_{i-2} \geq \Gamma_b(CT) - 6$.

- (d) $f(y_i^1) = 3$, $f(y_{i+1}^1) = 0$ and $f(y_{i+2}^1) = f(y_{i+3}^1) = 1$.
	- In that case, by Lemma 3.7(3), $f(y_{i-1}^1) = 3$ and thus $f(y_i^j)$ $\binom{J}{i-2}$ = 0 for every $j =$ $1, \ldots, \ell_{i-2}$. Hence, $PB_f(y_{i-1}^1) = L(x_{i-2}), PB_f(y_i^1) = \{y_{i+1}^1\}, PB_f(y_{i+2}^1) = \{y_{i+2}^1\},$ PB _{*f*}(y_{i+3}^1) = { y_{i+3}^1 } and $f(y_{i+4}^1) \neq 3$. Consider the mapping *g* on $CT[M/\emptyset, 0]$, obtained from *f* by replacing, for every $j = 1, \ldots, \ell_{i-2}$, the *f*-values of y_{i-2}^j by 1 and for every $k = 1, \ldots, \ell_{i-1}$ the *f*-value of y_{i-1}^k by 1 (see Figure 18.[(c) and (d)]). We infer $PB_g(y_i^j)$ *i*−2) = {*y*^{*i*}_{*i*−2}}, *j* = 1, . . . , ℓ_{i-2} and $PB_g(y_{i-1}^k) = \{y_{i-1}^k\}$ for every $k = 1, \ldots, \ell_{i-1}$. The mapping *g* is then a minimal dominating broadcast with cost $\sigma(q) = \Gamma_b(CT) - 8 + \ell_{i-1} + \ell_{i-2} \geq \Gamma_b(CT) - 6.$
- (e) $f(y_i^1) = 0, f(y_{i+1}^1) = f(y_{i+2}^1) = f(y_{i+3}^1) = 1.$ In that case, $f(y_{i-1}^1) = f(y_{i-2}^1) = 3$, $f(y_i^j)$ ℓ_{i-3} = 0 for every $j = 1, \ldots, \ell_{i-3}$, and $f(y_{i+4}^1) \neq 3$. Moreover, we have $PB_f(y_{i-2}^1) = L(x_{i-3})$ and $PB_f(y_{i-1}^1) = \{y_i^1\}$. Consider the mapping *g* on $CT[M/\emptyset, 0]$, obtained from *f* by replacing, the *f*-values of *y j* j ^{*i*}−3</sub>, y_{i-2}^k and y_{i-1}^l by 1 for every $j = 1, \ldots, \ell_{i-3}, k = 1, \ldots, \ell_{i-2}, l = 1, \ldots, \ell_{i-1}$ (see Figure 18.(e)). The mapping *g* is a minimal dominating broadcast with cost $\sigma(g)$ = $\Gamma_b(CT) - 9 + \ell_{i-3} + \ell_{i-2} + \ell_{i-1} \geq \Gamma_b(CT) - 6.$

In each case, we proved the existence of a minimal dominating broadcast *g* on $CT[M/\emptyset, 0]$ with cost $\sigma(g) \geq \Gamma_b(CT) - 6$. Therefore, $\Gamma_b(CT) - 6 \leq \Gamma_b(CT[M/\emptyset, 0])$, as required. This completes the proof. \Box

Proof of Lemma 3.12. Let CT^r be the reduced caterpillar of CT and let d_i be a stem of CT^r with $m_i = 2$. Consider a Γ_b -broadcast *f* on CT^r satisfying the properties of Theorem 3.3.

1. $P_f(d_i) = \theta_i^j$ *i*_i for some $j \in \{1, ..., 4\}$.

In that case, $CT_f^i = F_i^j$ F_i^j and in the sub-caterpillar $F_i^j = CT^r[i - j + 1, i - j + 4]$ of type CT_5^4 , we have by Theorem 3.3(4.b), the only *f*-broadcast vertices are t_{i-j+2}^1 and t_{i-j+3}^1 , with $f(t_{i-j+2}^1) = f(t_{i-j+3}^1) = 3$. Therefore,

$$
\sigma(f) = \sum_{v \in V(CT^r[0,i-j])} f(v) + 6 + \sum_{v \in V(CT^r[i-j+5,n])} f(v).
$$

Consider now a Γ_b -broadcast *g* on $CT^r[CT_f^i/K_{1,6}, i - j + 1]$. Thanks to Theorem 3.3(3), $g(t_{i-j+1}^s) = 1$ for every $s = 1, ..., 6$. Then,

$$
\sigma(g) = \sum_{v \in V(CT^r[0,i-j])} g(v) + 6 + \sum_{v \in V(CT^r[i-j+2,n-3])} g(v).
$$

www.ejgta.org

We have $\sum_{v \in V(CT^r[0,i-j])} f(v) = \sum_{v \in V(CT^r[0,i-j])} g(v)$. Indeed, assume first

$$
\sum_{v \in V(CT^r[0,i-j])} f(v) > \sum_{v \in V(CT^r[0,i-j])} g(v).
$$

In CT^r , the private *f*-borders of the *f*-broadcast vertices t^1_{i-j+2} and t^1_{i-j+3} lie in F_i^j i^{\prime} , and apart from these *f*-private borders, F_i^j does not contain any other *f*-private borders. Then the mapping *h* defined by $h(v) = f(v)$ if $v \in V(CT^r[0, i - j])$ and $h(v) = g(v)$ otherwise, would be a minimal dominating broadcast on $CT^r[CT_f^i/K_{1,6}, i - j + 1]$ with cost $\sigma(h)$ $\sigma(g)$, a contradiction with the optimality of *g*. Now if

$$
\sum_{v \in V(CT^r[0,i-j])} f(v) < \sum_{v \in V(CT^r[0,i-j])} g(v)
$$

then, the mapping *k* defined by $k(v) = g(v)$ if $v \in V(CT^r[0, i - j])$, and $k(v) = f(v)$ otherwise, would be a minimal dominating broadcast on CT^r with cost $\sigma(k) > \sigma(f)$, again a contradiction with the optimality of *f*.

By the same arguments as above, we can prove that

$$
\sum_{v \in V(CT^r[i-j+5,n])} f(v) = \sum_{v \in V(CT^r[i-j+2,n-3])} g(v).
$$

It follows, $\sigma(f) = \sigma(q)$.

2. $P_f(d_i) = \theta_i^5$.

In that case, $CT^i_f = CT[i, i]$ and $f(t^1_i) = f(t^2_i) = 1$. Moreover, each of these *f*-broadcast vertices is its own bordering private *f*-neighbor and apart these two *f*-private borders, *CT*[*i, i*] does not contain any other *f*-private borders. Let *g* be a Γ_b -broadcast on $CT^r[CT_f^i/K_{1,6}, i]$ as defined in Item 1, that is, $g(t_i^s) = 1$ for every $s = 1, \ldots, 6$. Again, each of these six *g*-broadcast vertices is its own bordering private *g*-neighbor and *CT*[*i, i*] does not contain any other private *g*-neighbor. We have,

$$
\sigma(f) = \sum_{v \in V(CT^r[0,i-1])} f(v) + 2 + \sum_{v \in V(CT^r[i+1,n])} f(v),
$$

and

$$
\sigma(g) = \sum_{v \in V(CT^r[0,i-1])} g(v) + 6 + \sum_{v \in V(CT^r[i+1,n])} g(v).
$$

By the same arguments as in the proof of Item 1, we get

$$
\sum_{v \in V(CT^{r}[0,i-1])} f(v) = \sum_{v \in V(CT^{r}[0,i-1])} g(v)
$$

and

$$
\sum_{v \in V(CT^r[i+1,n])} f(v) = \sum_{v \in V(CT^r[i+1,n])} g(v).
$$

Hence, $\sigma(f) = \sigma(g) - 4$.

This completes the proof.

Proof of Lemma 3.13. Let *g* be a Γ*b*-broadcast on *CT^r* satisfying the properties of Theorem 3.3 and let $d_1 = z_i$ for some index $i \in \{0, \ldots, k\}.$

1. Assume that $m_{i-3} = m_{i-2} = m_{i-1} = 1$. Since the pattern 1111 does not occur in CT^r , we have $m_{i-4} \geq 3$ and then $g(t_i^j)$ *j*_{*i*−4}) = 1 for every *j* = 1, . . . , m_{i-4} . Moreover, $P_f(d_1) = \theta_i^5$ cannot hold, because otherwise $g(t_{i-3}^1) = g(t_{i-2}^1) = g(t_{i-1}^1) = g(t_i^1) = g(t_i^2) = 1$ and the mapping h obtained from g by setting $h(t_{i-3}^1) = h(t_i^1) = h(t_i^2) = 0$, $h(t_{i-2}^1) = h(t_{i-1}^1) = 3$ and $h(u) = g(u)$, otherwise, the mapping h would be a minimal dominating broadcast on *CT^{<i>r*}</sup> with cost $\sigma(h) = \sigma(g) - 5 + 6 = \Gamma_b(CT^r) + 1$, a contradiction with the optimality of *g*.

If $P_g(d_1) = \theta_i^1$, then $g(t_i^1) = g(t_i^2) = g(t_{i+3}^1) = 0$, $g(t_{i-3}^1) = g(t_{i-2}^1) = g(t_{i-1}^1) = 1$ and $g(t_{i+1}^1) = g(t_{i+2}^1) = 3$. We define a mapping *f*, obtained from *g* by modifying some *g*values of the leaves of the sub-caterpillar $CT[i - 3, i + 3]$ as follows. We set $f(t_{i-3}^1) = 0$, $f(t_{i-2}^1) = f(t_{i-1}^1) = 3$, $f(t_{i+1}^1) = f(t_{i+2}^1) = f(t_{i+3}^1) = 1$, and $f(u) = g(u)$ otherwise. The mapping *f* is a minimal dominating broadcast on CT^r with cost $\sigma(f) = \sigma(g)$.

If $P_g(d_1) = \theta_i^2$, then $g(t_{i-1}^1) = g(t_i^2) = g(t_{i+2}^1) = 0$, $g(t_{i-3}^1) = g(t_{i-2}^1) = 1$ and $g(t_i^1) =$ $g(t_{i+1}^1) = 3$. We define a mapping *f*, obtained from *g* by modifying some *g*-values of the leaves of the sub-caterpillar $CT[i - 3, i + 2]$ as follows. We set $f(t_{i-3}^1) = f(t_i^1) = 0$, $f(t_{i+1}^1) = f(t_{i+2}^1) = 1$, $f(t_{i-2}^1) = f(t_{i-1}^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping *f* is a minimal dominating broadcast on CT^r with cost $\sigma(f) = \sigma(g)$.

If $P_g(d_1) = \theta_i^3$, then $g(t_{i-2}^1) = g(t_i^2) = g(t_{i+1}^2) = 0$, $g(t_{i-3}^1) = 1$ and $g(t_{i-1}^1) = g(t_i^1) = 3$. We define a mapping *f*, obtained from *g* by modifying some *g*-values of the leaves of the $\text{sub-caterpillar } CT[i-3, i+1] \text{ as follows. We set } f(t_{i-3}^1) = f(t_i^1) = 0, f(t_{i+1}^1) = 1,$ $f(t_{i-2}^1) = f(t_{i-1}^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping *f* is a minimal dominating broadcast on CT^r with cost $\sigma(f) = \sigma(g)$. Hence, CT^r admits a Γ_b -broadcast f such that $P_f(d_1) = \theta_i^4$.

2. Assume that $m_{i-2} = m_{i-1} = 1$ and $m_{i+1} = 1$. Since $m_{i-3} \geq 3$, we have $P_g(d_1) \neq \theta_i^4$. We also have $P_g(d_1) \neq \theta_i^5$, because otherwise $g(t_{i-2}^1) = g(t_{i-1}^1) = g(t_i^1) = g(t_i^2) = 1$, *g*(t_{i+1}) ∈ {0, 1} and the mapping *h* obtained from *g* by setting $h(t_{i-2}^1) = h(t_i^2) = h(t_{i+1}^1) =$ 0, $h(t_{i-1}^1) = h(t_i^1) = 3$, and $h(u) = g(u)$ otherwise, the mapping *h* would be a minimal dominating broadcast on CT^r with cost $\sigma(h) \ge \sigma(g) - 5 + 6 = \Gamma_b(CT^r) + 1$, a contradiction with the optimality of *g*.

If $P_g(d_1) = \theta_i^1$, then $g(t_i^1) = g(t_i^2) = g(t_{i+3}^1) = 0$, $g(t_{i-2}^1) = g(t_{i-1}^1) = 1$ and $g(t_{i+1}^1) =$ $g(t_{i+2}^1) = 3$. We define a mapping *f*, obtained from *g* by modifying some *g*-values of the leaves of the sub-caterpillar $CT[i - 2, i + 3]$ as follows. We set $f(t_{i-2}^1) = f(t_{i+1}^1) = 0$, $f(t_{i+2}^1) = f(t_{i+3}^1) = 1$, $f(t_{i-1}^1) = f(t_i^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping *f* is a minimal dominating broadcast on CT^r with cost $\sigma(f) = \sigma(g)$.

If $P_g(d_1) = \theta_i^2$, then $g(t_{i-1}^1) = g(t_i^2) = g(t_{i+2}^1) = 0$, $g(t_{i-2}^1) = 1$ and $g(t_i^1) = g(t_{i+1}^1) = 3$. We define a mapping *f*, obtained from *g* by modifying some *g*-values of the leaves of the $\text{sub-caterpillar } CT[i-2, i+2] \text{ as follows. We set } f(t^1_{i-2}) = f(t^1_{i+1}) = 0, f(t^1_{i+2}) = 1,$ $f(t_{i-1}^1) = f(t_i^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping *f* is a minimal dominating

 \Box

broadcast on CT^r with cost $\sigma(f) = \sigma(g)$. Hence, CT^r admits a Γ_b -broadcast f such that $P_f(d_1) = \theta_i^3$.

3. Assume that $m_{i-1} = 1$, $m_{i+1} = m_{i+2} = 1$ and $m_{i-2} \neq 1$. Since $m_{i-2} \geq 3$, we have $P_g(d_1) \notin \{\theta_i^3, \theta_i^4\}.$ If $P_g(d_1) = \theta_i^1$, and since the pattern 1111 does not occur in CT^r , then $m_{i+3} = 1$, $m_{i+4} \ge 2$, $g(t_i^1) = g(t_i^2) = g(t_{i+3}^1) = 0$, $g(t_{i-1}^1) = g(t_{i+4}^j) = 1$ for every $j \in \{1, ..., m_{i+4}\}$, and $g(t_{i+1}^1) = g(t_{i+2}^1) = 3$. We define a mapping *f*, obtained from *g* by modifying some *g*-values of the leaves of the sub-caterpillar $CT[i-1, i+3]$ as follows. We set $f(t_{i-1}^1) = f(t_{i+2}^1) = 0$, $f(t_{i+3}^1) = 1$, $f(t_i^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping *f* is a minimal dominating broadcast on CT^r with cost $\sigma(f) = \sigma(g)$.

If $P_g(d_1) = \theta_i^5$, then $g(t_{i-1}^1) = g(t_i^1) = g(t_i^2) = 1$, but $g(t_{i+1}^1) \neq 1$ and $g(t_{i+2}^1) \neq 1$, because otherwise the mapping *h* obtained from *g* by setting $h(t_{i-1}^1) = h(t_i^2) = h(t_{i+2}^1) = 0$, $h(t_i^1) = h(t_{i+1}^1) = 3$, and $h(u) = g(u)$ otherwise, the mapping *h* would be a minimal dominating broadcast on CT^r with cost $\sigma(h) = \sigma(g) - 5 + 6 = \Gamma_b(CT^r) + 1$, a contradiction with the optimality of *g*. Therefore, $(g(t_{i+1}^1), g(t_{i+2}^1)) \in \{(0,3), (1,0)\}$. Assume first $(g(t_{i+1}^1), g(t_{i+2}^1)) = (0, 3)$. Thanks to Theorem 3.3, we must have $g(t_{i+3}^1) = 3$ and $g(t_{i+4}^1) =$ 0, and since the pattern 1111 does not occur in CT^r , we also have $m_{i+3} + m_{i+4} \geq 3$. We now define a mapping *f* obtained from *g* by modifying some *g*-values of the leaves of the $\text{sub-caterpillar } CT[i-1, i+4] \text{ as follows. We set } f(t_{i-1}^1) = f(t_i^2) = f(t_{i+2}^1) = 0, f(t_{i+3}^j) = 0$ $f(t_{i+4}^k) = 1$ for every $j \in \{1, ..., m_{i+3}\}, k \in \{1, ..., m_{i+4}\}, f(t_i^1) = f(t_{i+1}^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping f is a minimal dominating broadcast on CT^r with cost $\sigma(f) = \sigma(g) - 9 + 6 + m_{i+3} + m_{i+4} = \sigma(g) + m_{i+3} + m_{i+4} - 3$. The optimality of *g* implies $m_{i+3} + m_{i+4} = 3$, and thus $\sigma(f) = \sigma(g)$.

For the case $(g(t_{i+1}^1), g(t_{i+2}^1)) = (1,0)$, we have, $g(t_{i+3}^1) = g(t_{i+4}^1) = 3$ and $g(t_{i+5}^j) = 0$ for every $j \in \{1, \ldots, m_{i+5}\}.$ We again define a mapping f obtained from g by modifying some *g*-values of the leaves of the sub-caterpillar $CT[i - 1, i + 5]$ as follows. We set $f(t_{i-1}^1) =$ $f(t_i^2) = f(t_{i+2}^1) = 0, f(t_{i+3}^j) = f(t_{i+4}^k) = f(t_{i+5}^{\ell}) = 1$ for every $j \in \{1, ..., m_{i+3}\},$ $k \in \{1, \ldots, m_{i+4}\}, \ell \in \{1, \ldots, m_{i+5}\}, f(t_i^1) = f(t_{i+1}^1) = 3$, and $f(u) = g(u)$ otherwise. As previously, we have, $m_{i+3}+m_{i+4}=3$ and the mapping f is a minimal dominating broadcast on CT^r with cost $\sigma(f) = \sigma(g) - 10 + 6 + m_{i+3} + m_{i+4} + m_{i+5} \ge \sigma(g) - 4 + 3 + m_{i+5}$. The optimality of *g* implies $m_{i+5} = 1$, and thus $\sigma(f) = \sigma(g)$. Hence, CT^r admits a Γ_b -broadcast *f* such that $P_f(d_1) = \theta_i^2$.

4. Assume that $m_{i+1} = m_{i+2} = m_{i+3} = 1$ and $m_{i-1} \neq 1$. Since the pattern 1111 does not occur in CT^r , we have $m_{i+4} \geq 2$ et since $m_{i-1} \geq 3$, we also have $P_g(d_1) \notin \{\theta_i^2, \theta_i^3, \theta_i^4\}.$ If $P_g(d_1) = \theta_i^5$, then $g(t_i^1) = g(t_i^2) = 1$ and equalities $g(t_{i+1}^1) = g(t_{i+2}^1) = g(t_{i+3}^1) = 1$ cannot hold, because otherwise the mapping *h* obtained from *g* by setting $h(t_i^1) = h(t_i^2)$ $h(t_{i+3}^1) = 0$, $h(t_{i+1}^1) = h(t_{i+2}^1) = 3$, and $h(u) = g(u)$ otherwise, would be a minimal dominating broadcast on CT^r with cost $\sigma(h) = \sigma(g) - 5 + 6 = \Gamma_b(CT^r) + 1$, a contradiction with the optimality of *g*. The case $g(t_{i+1}^1) = 0$ and $g(t_{i+2}^1) = 3$ leads to $g(t_{i+3}^1) = 3$ and $g(t_{i+4}^1) = 0$, and then we can define a mapping f obtained from g by modifying some gvalues of the leaves of the sub-caterpillar $CT[i, i + 4]$ as follows. We set $f(t_i^1) = f(t_i^2)$

 $f(t_{i+3}^1) = 0$, $f(t_{i+4}^j) = 1$ for every $j \in \{1, ..., m_{i+4}\}$, $f(t_{i+1}^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping f is a minimal dominating broadcast on CT^r with cost $\sigma(f)$ = $\sigma(g) - 5 + 3 + m_{i+4} = \sigma(g) + m_{i+4} - 2$. The optimality of *g* implies $m_{i+4} = 2$, and thus $\sigma(f) = \sigma(q)$.

The case $g(t_{i+1}^1) = 1$ and $g(t_{i+2}^1) = 0$ leads to $g(t_{i+3}^1) = g(t_{i+4}^1) = 3$ and $g(t_{i+5}^1) = 0$, and then we can define a mapping *f* obtained from *g* by modifying the *g*-values of the leaves of the sub-caterpillar $CT[i, i + 5]$ as follows. We set $f(t_i^1) = f(t_i^2) = f(t_{i+3}^1) = 0, f(t_{i+4}^j) = 0$ $f(t_{i+5}^k) = 1$ for every $j \in \{1, ..., m_{i+4}\}$ and $k \in \{1, ..., m_{i+5}\}, f(t_{i+1}^1) = f(t_{i+2}^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping f is a minimal dominating broadcast on CT^r with cost $\sigma(f) = \sigma(g) - 9 + 6 + m_{i+4} + m_{i+5} = \sigma(g) + m_{i+4} + m_{i+5} - 3$. The optimality of *g* implies $m_{i+4} = 2$ and $m_{i+5} = 1$, and thus $\sigma(f) = \sigma(g)$. The case $g(t_{i+1}^1) = g(t_{i+2}^1) = 1$ and $g(t_{i+3}^1) = 0$ leads to $g(t_{i+4}^1) = g(t_{i+5}^1) = 3$ and

 $g(t_{i+6}^1) = 0$, and then we can again define a mapping f obtained from g by modifying some *g*-values of the leaves of the sub-caterpillar $CT[i, i+6]$ as follows. We set $f(t_i^1) = f(t_i^2) = 0$, $f(t_{i+4}^j) = f(t_{i+5}^k) = f(t_{i+6}^\ell) = 1$ for every $j \in \{1, ..., m_{i+4}\}, k \in \{1, ..., m_{i+5}\}$ and $\ell \in \{1, ..., m_{i+6}\}, f(t_{i+1}^1) = f(t_{i+2}^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping *f* is a minimal dominating broadcast on CT^r with cost $\sigma(f) = \sigma(g) - 10 + 6 + m_{i+4} +$ $m_{i+5} + m_{i+6} = \sigma(g) + m_{i+4} + m_{i+5} + m_{i+6} - 4$. The optimality of *g* implies $m_{i+4} = 2$ and $m_{i+5} = m_{i+6} = 1$, and thus $\sigma(f) = \sigma(g)$. Hence CT^r admits a Γ_b -broadcast *f* such that $P_f(d_1) = \theta_i^1$.

5. This result is immediate from Lemma 3.9.

This completes the proof.

Proof of Lemma 3.14. Let *g* be a Γ*b*-broadcast on *CT^r* satisfying the properties of Theorem 3.3 and let $d_1 = z_{i_0}$ for some index $i \in \{0, ..., k\}.$

- 1. If $P_g(d_1) = \theta_{i_0}^3$, then $g(t_{i_0-2}^1) = g(t_{i_0+1}^1) = 0$ and $g(t_{i_0-1}^1) = g(t_{i_0}^1) = 3$. Since $i_0 \in \{2, 3\}$, we can define, in the case $i_0 = 2$, a mapping *f* by setting $f(t_{i_0-1}^1) = 0$, $f(t_{i_0}^1) = f(t_{i_0}^2) =$ $f(t_{i_0+1}^1) = 1$, $f(t_{i_0-2}^1) = 3$, and $f(u) = g(u)$ otherwise, and in the case $i_0 = 3$, $f(t_{i_0-1}^1) =$ $f(t_{i_0}^1) = f(t_{i_0}^2) = f(t_{i_0+1}^1) = 1$, $f(t_{i_0-3}^1) = 3$, and $f(u) = g(u)$ otherwise. In both cases, *f* is a minimal dominating broadcast on CT^r with cost $\sigma(f) = \sigma(g)$ and $P_f(d_1) \neq \theta_{i_0}^3$. If $P_g(d_1) = \theta_{i_0}^4$, then $g(t_{i_0-3}^1) = g(t_{i_0}^1) = 0$ and $g(t_{i_0-2}^1) = g(t_{i_0-1}^1) = 3$. We define a mapping *f* by setting $f(t_{i_0-2}^1) = 0$, $\tilde{f}(t_{i_0-1}^1) = f(t_{i_0}^1) = f(t_{i_0}^2) = 1$, $f(t_{i_0-3}^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping f is a minimal dominating broadcast on CT^r , with cost $\sigma(f) = \sigma(g)$, and $P_f(d_1) \neq \theta_{i_0}^4$.
- 2. From Item 1, we can assume without loss of generality that $P_g(d_1) \in \{\theta_{i_0}^1, \theta_{i_0}^2, \theta_{i_0}^5\}$.
	- (a) Let $i_0 = 1$ and $d_1 \in F_1^2 = CT[0, 3]$. We have then $m_0 = m_2 = m_3 = 1$ and $m_1 = 2$. If $P_g(d_1) = \theta_1^1$, then $m_0 = m_2 = m_3 = m_4 = 1$, $m_1 = 2$, $g(t_1^1) = g(t_2^1) = g(t_4^1) = 0$, $g(t_0^1) = 1$ and $g(t_2^1) = g(t_3^1) = 3$. We define a mapping *f* by setting $f(t_0^1) = f(t_3^1) = 0$, $f(t_4^1) = 1$, $f(t_1^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping f is a minimal dominating broadcast on CT^r , with cost $\sigma(f) = \sigma(g) - 4 + 4 = \sigma(g)$, and $P_f(d_1) = \theta_1^2$.

 \Box

If $P_g(d_1) = \theta_1^5$, then $g(t_1^1) = g(t_1^2) = 1$ and equalities $g(t_2^1) = g(t_3^1) = 1$ cannot hold, because otherwise the mapping *h* obtained from *g* by setting $h(t_0^1) = h(t_1^2) = h(t_3^1) =$ $0, h(t_1^1) = h(t_2^1) = 3$, and $h(u) = g(u)$, otherwise the mapping *h* would be a minimal dominating broadcast on CT^r with cost $\sigma(h) = \sigma(g) - 5 + 6 = \Gamma_b(CT^r) + 1$, a contradiction with the optimality of *g*. Hence, we get $(g(t_2^1), g(t_3^1)) \in \{(1,0), (0,3)\}.$ The case $g(t_2^1) = 1$ and $g(t_3^1) = 0$ implies $m_4 + m_5 = 3$ and $m_6 = 1$, $g(t_4^1) = g(t_5^1) = 1$ 3 and $g(t_6^1) = 0$. We define a mapping *f* by setting $f(t_0^1) = f(t_1^2) = 0$, $f(t_4^j) = 0$ $_{4}^{j}) =$ $f(t_5^k) = f(t_6^1) = 1$ for every $j = 1, ..., m_4$, $k = 1, ..., m_5$, $f(t_1^1) = f(t_2^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping f is a minimal dominating broadcast on CT^r , with cost $\sigma(f) = \sigma(g) - 10 + 7 + m_4 + m_5 = \sigma(g)$. The case $g(t_2^1) = 0$ and $g(t_3^1) = 3$ implies again $m_4 + m_5 = 3$, $g(t_4^1) = 3$ and $g(t_5^1) = 0$. We define a mapping *f* by setting $f(t_0^1) = f(t_1^2) = f(t_3^1) = 0, f(t_4^j)$ $f(t_5^k) = 1$ for every $j = 1, ..., m_4$, $k = 1, \ldots, m_5$, $f(t_1^1) = f(t_2^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping *f* is a minimal dominating broadcast on *CT^{r*} with cost $\sigma(f) = \sigma(g) - 9 + 6 + m_4 + m_5 = \sigma(g)$. Hence, in both cases, we get $P_f(d_1) = \theta_1^2$.

- (b) Let $i_0 = 3$ and $d_1 \in F_3^2 = CT[2, 5]$. We have then $m_0 = m_1 = m_2 = m_4 = m_5 = 1$ and $m_3 = 2$. If $P_g(d_1) = \theta_3^1$, then $m_6 = 1$, $g(t_1^1) = g(t_3^1) = g(t_6^1) = 0$, $g(t_2^1) = 1$ and $g(t_0^1) = g(t_4^1) = g(t_5^1) = 3$. We define a mapping *f* by setting $f(t_2^1) = f(t_5^1) = 0$, $f(t_6^1) = 1$, $f(t_3^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping f is a minimal dominating broadcast on CT^r , with cost $\sigma(f) = \sigma(g) - 4 + 4 = \sigma(g)$, and $P_f(d_1) = \theta_3^2$. If $P_g(d_1) = \theta_3^5$, then $g(t_1^1) = 0$, $g(t_2^1) = g(t_3^1) = g(t_3^2) = 1$ and $g(t_0^1) = 3$. Moreover, equalities $g(t_4^1) = g(t_5^1) = 1$ cannot hold, because otherwise the mapping *h* obtained from *g* by setting $h(t_1^1) = h(t_2^1) = h(t_3^2) = h(t_5^1) = 0$, $h(t_0^1) = h(t_3^1) = h(t_4^1) = 3$ and $h(u) = g(u)$, otherwise, the mapping *h* would be a minimal dominating broadcast on *CT^r* with cost $\sigma(h) = \sigma(g) - 8 + 9 = \Gamma_b(CT^r) + 1$, a contradiction with optimality of *g*. Therefore, $(g(t_4^1), g(t_5^1)) \in \{(1,0), (0,3)\}$. The case $g(t_4^1) = 1$ and $g(t_5^1) = 0$ implies $m_6 + m_7 = 3$, $m_8 = 1$, $g(t_6^1) = g(t_7^1) = 3$ and $g(t_8^1) = 0$. We define a mapping *f* by setting $f(t_2^1) = f(t_3^2) = 0$, $f(t_6^j)$ f_6^j = $f(t_7^k) = f(t_8^1) = 1$ for every $j = 1, \ldots, m_6$, $k = 1, \ldots, m_7, f(t_0^1) = f(t_3^1) = f(t_4^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping *f* is a minimal dominating broadcast on CT^r , with cost $\sigma(f) = \sigma(g) - 10 + 7 + m_6 +$ $m_7 = \sigma(g)$. The case $g(t_4^1) = 0$ and $g(t_5^1) = 3$ implies $m_6 + m_7 = 3$, $g(t_6^1) = 3$ and $g(t_7^1) = 0$. We define a mapping *f* by setting $f(t_2^1) = f(t_3^2) = f(t_5^1) = 0$, $f(t_6^j)$ f_6^j = $f(t_7^k)$ = 1 for every $j = 1, ..., m_6$, $k = 1, ..., m_7$, $f(t_3^2) = f(t_4^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping f is a minimal dominating broadcast on CT^r , with cost $\sigma(f) = \sigma(g) - 9 + 6 + m_6 + m_7 = \sigma(g)$. Hence, in both cases, we get $P_f(d_1) = \theta_3^2$.
- 3. As previously, we can assume that $P_g(d_1) \in \{\theta_{i_0}^1, \theta_{i_0}^2, \theta_{i_0}^5\}.$
	- (a) Let $i_0 = 0$ and $d_1 \in F_0^1 = CT[0, 3]$. We have then $m_1 = m_2 = m_3 = 1$, $m_0 = 2$, and $P_g(d_1) \neq \theta_0^2$. If $P_g(d_1) = \theta_0^5$, then $g(t_2^1) = g(t_3^1) = 1$ cannot hold, because otherwise $g(t_0^1) = g(t_0^2) = g(t_1^1) = 1$, and the mapping *h* obtained from *g* by setting $h(t_0^1) = h(t_0^2) = h(t_0^1) = 0, h(t_1^1) = h(t_2^1) = 3$ and $h(u) = g(u)$, otherwise, would be a

minimal dominating broadcast on CT^r with cost $\sigma(h) = \sigma(g) - 5 + 6 = \Gamma_b(CT^r) + 1$, a contradiction with optimality of *g*. Therefore, $(g(t_2^1), g(t_3^1)) \in \{(1, 0), (0, 3), (3, 3)\}.$ The case $g(t_2^1) = 1$ and $g(t_3^1) = 0$ implies $m_4 = 2$, $m_5 = m_6 = 1$, $g(t_6^1) = 0$, $g(t_1^1) = 1$, and $g(t_4^1) = g(t_5^1) = 3$. We define a mapping *f* by setting $f(t_0^1) = f(t_0^2) = 0$, $f(t_4^1) = f(t_4^2) = f(t_5^1) = f(t_6^1) = 1$, $f(t_1^1) = f(t_2^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping *f* is a minimal dominating broadcast on CT^r , with cost $\sigma(f) = \sigma(g)$ – $10 + 10 = \sigma(g)$. The case $g(t_2^1) = 0$ and $g(t_3^1) = 3$ implies $m_4 = 2, m_5 = 1, g(t_5^1) = 0$, $g(t_1^1) = 1$, and $g(t_4^1) = 3$. We define a mapping *f* by setting $f(t_0^1) = f(t_0^2) = f(t_3^1) =$ 0, $f(t_4^1) = f(t_4^2) = f(t_5^1) = 1$, $f(t_1^1) = f(t_2^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping *f* is a minimal dominating broadcast on CT^r , with cost $\sigma(f) = \sigma(g) - 9 + 9 = 0$ $\sigma(g)$. The case $g(t_2^1) = g(t_3^1) = 3$ implies $m_4 = 2$ and $g(t_1^1) = g(t_4^1) = 0$. We define a mapping *f* by setting $f(t_0^1) = f(t_0^2) = f(t_3^1) = 0$, $f(t_4^1) = f(t_4^2) = 1$, $f(t_1^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping f is a minimal dominating broadcast on CT^r , with cost $\sigma(f) = \sigma(g) - 8 + 8 = \sigma(g)$. Hence, in all three cases, we get $P_f(d_1) = \theta_0^1$.

- (b) Let $i_0 = 2$ and $d_1 \in F_2^1 = CT[2, 5]$. We have then $m_0 = m_1 = m_3 = m_4 = m_5 = 1$, $m_2 = 2$, and $P_g(d_1) \neq \theta_2^2$. Indeed, if $P_g(d_1) = \theta_2^2$, then $g(t_1^1) = g(t_4^1) = 0$, $g(t_0^1) = 1$, $g(t_5^1) \in \{0, 1\}$ 1 and $g(t_2^1) = g(t_3^1) = 3$, and the mapping *h* obtained from *g* by setting $h(t_2^1) = h(t_2^2) = h(t_5^1 = 0, h(t_0^1) = h(t_4^1) = 3$ and $h(u) = g(u)$, otherwise, would be a minimal dominating broadcast on CT^r with cost $\sigma(h) \ge \sigma(g) - 5 + 6 = \Gamma_b(CT^r) + 1$, a contradiction with optimality of *g*. Assume now $P_g(d_1) = \theta_2^5$. We then have $g(t_1^1) = 0$, $g(t_2^1) = g(t_2^2) = 1$ and $g(t_0^1) = 3$ and, either $g(t_3^1) = 1$ or $g(t_3^1) = 0$. For the case $g(t_3^1) = 1$, we define a mapping *f* by setting $f(t_0^1) = f(t_2^2) = f(t_3^1) = 0$, $f(t_1^1) =$ $f(t_2^1) = 3$ and, $f(u) = g(u)$ otherwise. The mapping *f* is a minimal dominating broadcast on CT^r , with cost $\sigma(f) = \sigma(g) - 6 + 6 = \sigma(g)$. For the case $g(t_3^1) = 0$, we get $m_6 = 2$, $g(t_4^1) = g(t_5^1) = 3$, and thus, we define again a mapping f by setting $f(t_2^1) = f(t_2^2) = f(t_5^1) = 0, f(t_6^1) = f(t_6^2) = 1, f(t_3^1) = 3$, and $f(u) = g(u)$ otherwise. The mapping *f* is a minimal dominating broadcast on CT^r , with cost $\sigma(f) = \sigma(g)$ – $5 + 5 = \sigma(g)$. Hence, in both cases, we get $P_f(d_1) = \theta_2^1$.
- 4. This result is immediate from Lemma 3.9.

This completes the proof.

 \Box