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Abstract
We introduce a model for inhomogeneous random graphs designed to have a lot of flex-
ibility in the assignment of the degree sequence and the individual edge probabilities
while remaining tractable. To achieve this we run a Poisson point process over the square
[0, 1]2, with an intensity proportional to a kernel W (x, y) and identify every couple of
vertices of the graph with a subset of the square, adding an edge between them if there is
a point in such subset. This ensures unconditional independence among edges and makes
many statements much easier to prove in this setting than in other similar models. Here
we prove sharpness of the connectivity threshold under mild integrability conditions on
W (x, y).
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1. Introduction and Model Description

In this paper we introduce a model to generate inhomogeneous random multigraphs
on n vertices, inspired by the corresponding representations as checkerboard (multi)-
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graphons, in which edges are sampled independently according to two parameters:

• A sequence (tn)n≥2 that controls the expected total number of edges in the multi-
graph.

• A symmetric kernel W , that is, a function W (x, y) : [0, 1]2 → R≥0 such that
W (x, y) = W (y, x) that indicates which edges have higher probability to be present.

We define (Gn(W, t))n≥2 as the sequence of graphs whose vertex and edge sets are
created as follows. The vertex set of the graph Gn(W, t) is created from its representation
as a checkerboard graphon (see e.g [13]), that is, we define it as Vn := {vi; i ∈ [n]}
and for every i ∈ [n] we define the interval Si := ((i − 1)/n, i/n]. To sample the edge
set of (Gn(W, t))n≥2, we run a Poisson point process over the square [0, 1] with intensity
tnW (x, y) and add an edge between vi and vj , i ≤ j, for every point in the square Si×Sj .

This is equivalent to adding between any couple of vertices {vi, vj}, i ≤ j, a number
of edges distributed as a Poisson random variable, whose parameter λij is given by

λij :=

∫
Si×Sj

tnW (x, y)dxdy, (1.1)

independent of each other. We also define the random graph G̃n(W, t) obtained from the
multigraph Gn(W, t) by erasing the multiedges and self-loops. In G̃n(W, t) every edge
{vi, vj} is present with probability

pij := 1− exp
{
−
∫
Si×Sj

tnW (x, y)dxdy
}
, (1.2)

independent of the others. It is straightforward to see that G̃n(W, t) is connected if and
only if Gn(W, t) is connected. We define for every subset F ⊆ [0, 1]2 and any q ≥ 1
the space Lq(F ) as the set of the kernels W such that

∫
F
W (x, y)qdy < ∞ and the

space Lloc
q (F ) as the set of all kernels W such that for every compact subset D ⊆ F ,∫

D
W (x, y)qdy < ∞. We also define ∥W∥q =

( ∫
[0,1]2

W (x, y)qdy
)1/q

. We will use
the abbreviation whp (with high probability) to mean with probability converging to 1.
If W (x, y) ∈ L1([0, 1]

2), then tn∥W∥1/2 is the expected number of edges in Gn(W, t),
so tuning opportunely the sequence (tn)n≥2 we can use this procedure to generate multi-
graphs with any given density of edges. For a given constant c, taking tn = cn2 results
in a dense graph, while taking tn = cn we obtain a sparse graph with finite average
degree. Note that G̃n(W, t) in some special cases is asymptotically equivalent to many
well-known models, such as the Erdős-Rényi random graph [5], if the kernel W (x, y) is
constant, the Norros-Reittu random graph [12], if W (x, y) = f(x)f(y) for some function
f : [0, 1] → R≥0, and the stochastic block model [10], if the kernel is piecewise constant.
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Note however that there are also several popular models that cannot be expressed in terms
of a sequence G̃n(W, t) for any kernel W , such as percolation on sparse graphs or random
intersection graphs (see [6, 9, 11, 14] for some connectivity results about those models).

This model is closely related to the general inhomogeneous random graph model de-
fined by Bollobás, Janson and Riordan in [2] which is also defined by a kernel W (x, y),
but is sampled by placing n points at random iid positions (xi)i∈[n] on the interval [0, 1]
and then adding the edge {vi, vj} to the graph with a probability that is given by some
function of W (xi, xj). In such setting the connectivity threshold was computed in [4],
finding similar results to those we present here, under stricter conditions on the kernel.
The main advantage of our definition of the sampling method is that it allows us to use
only one layer of randomness, contained entirely in the inhomogeneous spatial Poisson
Point Process with intensity W (x, y), instead of two subsequent randomizations first of
the vertex set and then of the edge set based on the positions of the vertices. Conse-
quently after we fix the parameters t,W , there is true independence between the exis-
tence and multiplicity of different edges in Gn(t,W ), while said independence holds in
the model defined in [2] only conditionally on the positions (xi)i∈[n] of the vertices. We
see in the proof of the main theorem of this paper how this property, besides being of gen-
uine theoretical interest, makes many arguments much easier, allows us to greatly relax
the integrability conditions compared to those required in [4] and sometimes allows for
a completely different approach. Another way to build inhomogeneous random graphs
are the percolation models introduced by Bollobás, Borgs, Chayes and Riordan in [1], in
which the sequence of random graphs is created by removing with uniform probability
edges from a sequence of deterministic dense graphs, which converge to a graphon W . In
this case, a connectivity threshold cannot be established generally, as connectivity can be
determined locally by the properties of a finite number of vertices in the original dense
graph (e.g. there could be a few isolated or very low-degree nodes), which would not be
captured by the graphon limit.

The fact that we are sampling our graphs from a kernel W (x, y) : [0, 1]2 7→ R≥0

suggests that this model might converge to some graphon, in the sense described in [3],
in the dense regime (i.e. when tn = cn2). This is the case, with the limit graphon given
by 1− e−cW (x,y), as indicated by (1.2).

2. The Main Theorem

In this section we formulate the main theorem of this paper, about the connectivity
threshold of the inhomogeneous multigraph we described, and discuss the conditions re-
quired to prove it.

We take tn = cn log n for some c ≥ 0, as this is the density scale at which the phase
transition for connectivity happens. We define
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H(x) :=

∫
[0,1]

W (x, y)dy, ν0 := ess inf
[0,1]

H(x), (2.1)

where by ess inf we denote the infimum of the set UH = {z : µ({x : H(x) < z}) = 0},
where with µ we denote the Lebesgue measure over [0, 1]2. We also require the kernel
W (x, y) to be irreducible, which means that there is no set B ⊂ [0, 1] such that 0 <
µ(B) < 1 and

∫
B×Bc W (x, y)dxdy = 0. What follows is the main theorem of the present

paper:

Theorem 2.1. Consider a sequence of graphs Gn(W, t), with tn = cn log n and W (x, y)
irreducible.

If c < 1/ν0 and H(x) ∈ Lloc
1 (F ) for some open set F ⊆ [0, 1] such that µ(F ) = 1,

then

lim
n→∞

P(Gn(W, t) is connected) = 0. (2.2)

If c > 1/ν0 and W (x, y) ∈ Lq([0, 1]
2) for some q > 2, then

lim
n→∞

P(Gn(W, t) is connected) = 1. (2.3)

In other words, under some integrability conditions, the graph is connected whp if
there are no vertices with an expected degree lower than log n and if there are not two
sets of vertices which are deterministically separated. We divide the proof in several
steps. First we analyze the threshold for the existence of isolated vertices and prove that
it coincides with what we claim to be the connectivity threshold. Then, we prove that
when c > ν0 the graph is actually connected, providing two separate arguments for the
non existence whp of small and large components.

Note that for the upper bound to hold we require the condition W (x, y) ∈ Lq([0, 1]
2),

which might seem counterintuitive since in most connectivity proofs (see [4, 5, 8]) the
most important role is played by the vertices of low degree, while the vertices of high
degree are almost irrelevant, since they tend to be always part of the giant component.
This condition is necessary because a vertex might have a high expected degree just be-
cause it is given a very large number of self loops or multiple edges, which do not actually
contribute to connectivity. The Lq condition is required to ensure that this effect is not
too drastic. It is easy to see, by stochastic domination, that if a kernel W (x, y) /∈ Lq

can be lower bounded by another kernel W ′(x, y) ∈ Lq such that Gn(W
′, t) satisfies the

conditions we require for it to be connected whp, then also Gn(W, t) is connected whp.
In this paper we do not discuss what happens if c = 1/ν0 or more in general if

limn→∞
tn

n logn
= 1/ν0, because in that regime the asymptotic probability of connectiv-

ity of the graph behaves differently based on the specific shape of the kernel W and it is
hard to give general formulas stated in term of relatively easy and natural conditions.
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3. Connection Probabilities

We first give a simple formula for the probability that a given set of vertices in
Gn(W, t) has no outgoing edges. For every A ⊂ [n] we define the set BA ⊂ [0, 1] as
BA :=

⋃
vi∈A Si, and the event CA as the event that all the edges between A and Ac are

vacant, i.e., that A is the union of connected components. This is a crucial notion for
the present paper, as the graph Gn(W, t) is connected if and only if there is no proper
subset A of [n] such that the event CA happens. Thus, we need a compact formula for the
probability of CA. Define the set [0, 1]2x := {(x, y) ∈ [0, 1]2 : x < y}. By the definition
of Gn(W, t) we write, using the symmetry of W (x, y)

P(CA) = exp
{
− tn

∫
(BA×Bc

A∪Bc
A×BA)∩[0,1]2x

W (x, y)dxdy
}

= exp
{
− tn

∫
BA×Bc

A

W (x, y)dxdy
}

(3.1)

Applying the definition of H(x) from (2.1), we rewrite

P(CA) = exp
{
− tn

(∫
BA

H(x)dx−
∫
BA×BA

W (x, y)dydx
)}

. (3.2)

4. The Lower Bound: the Number of Isolated Vertices

As in most connectivity proofs, the relevant parameter for connectivity of the graph is
the number Yn of isolated vertices. We first prove that the limit behavior of Yn is mainly
determined by its expectation in a much more general setting, requiring only that edges
are sampled independently, without assuming that the edge probabilities are defined using
W (x, y) and tn. Then we compute bounds on E[Yn] in the specific case of Gn(W, t).

4.1. Law of large number for isolated vertices
We first define a more general inhomogeneous random graph in which edges are sam-

pled independently but we do not ask for any regularity on the edge probabilities pij .
Given a number n and an array P = (pij)i<j≤n ∈ [0, 1](

[n]
2 ), we define the random graph

Gn(P) with vertex set {vi, i ∈ [n]}, in which each edge eij := {vi, vj} is present with
probability pij independent of the others.

We will prove that the existence of isolated points in Gn(P) is regulated mainly by the
first moment of their number. This result can be deduced from the main theorem of [7]
with some effort, seeing the edge addition process as a coupon collector over the vertices,
but we provide here a short and direct proof to improve readability of the paper.
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The graph G̃n(W, t) is a special case of Gn(P) in which the probabilities pij are
defined by (1.2), moreover, every vertex is isolated in G̃n(W, t) if and only if it is isolated
in Gn(W, t) (for our purposes we consider vertices with only self loops as isolated), so
the following theorem can be applied to both models. Define Yn as the number of isolated
vertices in Gn(P). We prove the following result about the concentration of the number
of isolated points:

Theorem 4.1. Consider a sequence of random graphs Gn(P) such that

lim
n→∞

E[Yn]/ log n = ∞,

then
lim
n→∞

Var(Yn)/E[Yn]
2 = 0. (4.1)

Proof. We write, defining the event Ii = {vi is isolated} for every i ∈ [n],

Var(Yn) = E[Y 2
n ]− E[Yn]

2 =
∑
i,j

P(Ii ∩ Ij)−
∑
i,j

P(Ii)P(Ij) (4.2)

=
∑
i,j

P(Ii)P(Ij | Ii)−
∑
i,j

P(Ii)P(Ij) =
∑
i

P(Ii)
∑
j

(
P(Ij | Ii)− P(Ij)

)
.

We take care of the elements of the sum such that i = j with the following upper bound:∑
i

P(Ii)
(
P(Ii | Ii)− P(Ii)

)
=

∑
i

P(Ii)(1− P(Ii)) ≤
∑
i

P(Ii) = E[Yn]. (4.3)

If i ̸= j we note that P(Ij | Ii) = P(Ij)/(1− pij), so that we can rewrite

P(Ij | Ii)− P(Ij) =
P(Ij)
1− pij

− P(Ij) = P(Ij)
pij

1− pij
. (4.4)

We thus obtain

Var(Yn) ≤ E[Yn] +
∑
i

P(Ii)
∑
j ̸=i

P(Ij)
pij

1− pij
. (4.5)

Define the expected degree of the vertex vi as di =
∑

j ̸=i pij . We divide the sum between
vertices of low and high expected degree and prove separate bounds for the two cases.
We choose as a boundary function for which the computations work out di = 3 log n. To
take care of the vertices vi such that di ≥ 3 log n, we obtain
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∑
i:di≥3 logn

P(Ii)
∑
j ̸=i

P(Ij)
pij

1− pij
≤

∑
i:di≥3 logn

(
1− di

n− 1

)n−1∑
j ̸=i

P(Ij)
pij

1− pij

≤ e−3 logn(1+o(1))n2, (4.6)

using that for every i, j

P(Ij)
pij

1− pij
= pij

∏
h̸=i,j

(1− pjh) ≤ 1. (4.7)

To control the vertices such that di < 3 log n instead, we write, for an arbitrary ε > 0,

∑
i:di<3 logn

P(Ii)
∑
j ̸=i

P(Ij)
pij

1− pij
(4.8)

=
∑

i:di<3 logn

P(Ii)
( ∑

j:pij≤ε

P(Ij)
pij

1− pij
+

∑
j:pij>ε

P(Ij)
pij

1− pij

)
.

We again bound

∑
i:di<3 logn

P(Ii)
∑

j:pij≤ε

P(Ij)
pij

1− pij
≤

∑
i

P(Ii)
∑
j

P(Ij)
ε

1− ε
= E[Yn]

2 ε

1− ε
. (4.9)

On the other hand, if di ≤ 3 log n, then there are at most (3/ε) log n distinct js such that
pij > ε, so, using again (4.7),∑

i:di<3 logn

P(Ii)
∑

j:pij>ε

P(Ij)
pij

1− pij
≤

∑
i:di<3 logn

P(Ii)
∑
j

1{pij>ε} (4.10)

≤ E[Yn](3/ε) log n.

Consequently, summing (4.6), (4.9) and (4.10) and substituting into (4.5), we obtain that
for every ε > 0

Var(Yn) ≤ E[Yn] + E[Yn]
2 ε

1− ε
+ E[Yn](3/ε) log n+ e−3 logn(1+o(1))n2, (4.11)

so that, since we assumed limn→∞ E[Yn]/ log n = ∞,

lim sup
n→∞

Var(Yn)/E[Yn]
2 ≤ ε

1− ε
, (4.12)

from the fact that ε is arbitrary the claim follows.
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4.2. The expected number of isolated vertices
We now study the asymptotic of E[Yn] for Gn(W, t), to prove that the threshold for the

existence of isolated vertices is indeed the claimed threshold for connectivity in Theorem
2.1.

We prove that when c < 1/ν0, E[Yn] ≫ log n, so that we can apply Theorem 4.1. If
c < 1/ν0, then for some ε > 0, there exists a set A ⊆ [0, 1] such that

µ(A) > ε; sup
x∈A

tnH(x) < (1− ε)n log n. (4.13)

We next define the sequence of functions Hn(x) as

Hn(x) = n

∫
[⌊xn⌋/n,⌈xn⌉/n]

H(x)dx. (4.14)

Note that Hn(x) is constant over the intervals ((i− 1)/n, i/n) and is not properly defined
for x = i/n for some i. To solve this issue we extend Hn(x) so that it is left continuous.
Since for every n, µ({i/n; i ∈ [n]}) = 0, this choice does not impact any of the following
arguments. We recall that, for every vertex vi, Ii = C({i}). By (1.2), for every x ∈ Si,
recalling (3.2),

P(Ii) ≥ exp
{
− tn

∫
Si

H(x)dx
}
≥ e−tnHn(x)/n. (4.15)

We assumed the existence of an open set F ⊆ [0, 1] such that µ(F ) = 1 and H(x) ∈
Lloc

1 (F ). By Lebesgue’s differentiation theorem, we have that Hn(x) → H(x) almost ev-
erywhere in F and thus almost everywhere in [0, 1]. Consequently, by Egorov’s theorem,
there exist a set B such that µ(B) < ε/2 and a number m such that, for every n > m,

sup
[0,1]\B

|Hn(x)−H(x)| < ε/2. (4.16)

Consequently,

µ(A \B) ≥ ε/2; sup
A\B

tnHn(x) < (1− ε/2)n log n. (4.17)

We define the set Mn(ε) := {x : tnHn(x) < (1 − ε/2)n log n}. We know that for
every n > m, µ(Mn(ε)) > ε/2, and that Mn(ε) is the disjoint union of intervals of the
form ((i− 1)/n, i/n]. We write

Vn(ε) := {i ∈ [n] : ((i− 1)/n, i/n] ⊆ Mn(ε)}, (4.18)

for every n > m. Using (4.15), we obtain
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|Vn(ε)| > nε/2; (4.19)

min
i∈Vn(ε)

P(Ii) ≥ min
i∈Vn(ε)

e−tnHn(x)/n ≥ n1−ε/2. (4.20)

Thus, we conclude

E[Yn] ≥
∑

i∈Vn(ε)

P(Ii) ≥
nε

2
n1−ε/2 ≫ log n, (4.21)

and consequently, using Theorem 4.1 we obtain, by Chebyshev’s inequality,

P(Yn = 0) = P(Yn ≤ 0) ≤ Var(Yn)

E[Yn]2
, (4.22)

so that limn→∞ P(Yn = 0) = 0.

5. The Upper Bound

In this section we prove the upper bound on the connectivity threshold, that is, that
when c > 1/ν0 the graph is connected whp. The proof is divided in two steps, first we
show that whp there are no small components and then that there are not multiple giant
components.

5.1. No small components
We next prove that if c > 1/ν0, then exists an ε > 0 such that whp every component

of Gn(W, t) has size at least nε.

Proposition 5.1. Consider a sequence of graphs Gn(W, t), with an irreducible kernel
W (x, y) ∈ Lq([0, 1]

2) for some q > 2 and tn = cn log n with c > 1/ν0. Then there exists
ε > 0 such that

lim
n→∞

P
( ⋃

A:|A|<εn

CA

)
= 0. (5.1)

Proof. We prove the claim using the union bound, that is, computing that

lim
n→∞

∑
A:|A|≤εn

P(CA) = 0. (5.2)

We recall the formula for P(CA) from (3.2). We lower bound, by the definition of ν0,
using that µ(BA) = |A|/n, ∫

BA

H(x)dx ≥ |A|
n

ν0 (5.3)
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We next bound for all A, using Hölder’s inequality,∫
BA×BA

W (x, y)dydx ≤ µ(BA)
2−2/q

(∫
BA×BA

W (x, y)qdydx
)1/q

, (5.4)

for any q > 1, so that, for every BA such that µ(BA) ≤ ε,∫
BA×BA

W (x, y)dydx ≤ |A|
n

ε1−2/q∥W∥q. (5.5)

We choose ε, q such that ε1−2/q∥W∥q < ν0−1/c
2

, which is possible because of the
assumptions we made on W (x, y) in Section 1. Substituting the bounds from (5.3) and
(5.5) into (3.2), we obtain, for every A such that |A| < εn,

P(CA) ≤ exp
{
− tn

( |A|
n

ν0 −
|A|
n

ν0 − 1/c

2

)}
(5.6)

≤ exp
{
− cn log n

|A|
n

ν0 + 1/c

2

}
= exp

{
− |A| log ncν0 + 1

2

}
= n−|A|(1+δ),

for some appropriate δ > 0. Finally

lim
n→∞

∑
A:|A|<εn

P(CA) ≤ lim
n→∞

εn∑
i=1

(
n

i

)
n−i(1+δ) ≤ lim

n→∞

εn∑
i=1

n−iδ = 0. (5.7)

5.2. No multiple giants
Next, we prove that for every ε > 0, there cannot be a set of vertices of size at least

εn that is not connected to its complementary.

Proposition 5.2. Consider a sequence of graphs Gn(W, t), with an irreducible kernel
W (x, y) ∈ Lq([0, 1]

2) for some q > 2 and tn = cn log n with cν0 > 1. Then for every
ε > 0,

lim
n→∞

P
( ⋃

A:εn<|A|≤n/2

CA

)
= 0. (5.8)

Proof. Recall the definitions of BA and CA given at the beginning of Section 3. Even
when |A| > εn, the equality in (3.1) applies. By definition µ(BA) = |A|/n. By [1,
Lemma 7]1, we know that for every ε > 0, if W (x, y) is irreducible,

1The result is originally proved for bounded kernels, but if (5.9) holds for the kernel W ′(x, y) :=
max{W (x, y), 1} it holds also for W (x, y) by domination, and W ′(x, y) is irreducible if and only if
W (x, y) is irreducible.
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inf
B:ε≤µ(B)≤1/2)

∫
B×Bc

W (x, y)dxdy = δ(W, ε) > 0. (5.9)

This in particular holds for all BA for A such that ε < |A|/n ≤ 1/2. Consequently, by
(3.1)

max
A:εn≤|A|≤n/2)

P(CA) ≤ sup
B:ε≤µ(B)≤1/2)

exp
{
− tn

∫
B×Bc

W (x, y)dxdy
}

≤ e−tnδ(W,ε). (5.10)

Thus, we bound using again the first moment method

lim
n→∞

P
( ⋃

A:εn<|A|<n/2

CA

)
≤ lim

n→∞

∑
A:εn<|A|≤n/2

P(CA) ≤ lim
n→∞

2ne−tnδ(W,ε) (5.11)

= lim
n→∞

e−n(cδ(W,ε) logn−log 2) = 0.

We can finally use all the results we obtained to prove Theorem 2.1.

Proof of Theorem 2.1. We know that

P(Gn(W, t) is connected) ≤ P(Yn = 0), (5.12)

so by (4.22) it follows that if c ≤ 1/ν0, then limn→∞ P(Gn(W, t) is connected) = 0.
On the other hand, for Gn(W, t) to be disconnected, there must exist a set A of at

most n/2 vertices such that CA happens. By Propositions 5.1 ad 5.2, we obtain that for
c > 1/ν0,

lim
n→∞

P
( ⋃

A:|A|≤n/2

CA

)
≤ lim

n→∞

(
P
( ⋃

A:|A|<εn

CA

)
+ P

( ⋃
A:εn<|A|≤n/2

CA

))
= 0, (5.13)

so the claim follows.
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