Electronic Journal of Graph Theory and Applications

Maximum average degree of list-edge-critical graphs and Vizing's conjecture

Joshua Harrelson ${ }^{\text {a }}$, Hannah Reavis ${ }^{\text {b }}$
${ }^{a}$ Faculty of Mathematics and Statistics, Middle Georgia State University, United States
${ }^{b}$ Department of Mathematics and Statistics, Middle Georgia State University, United States
joshua.harrelson@mga.edu, hannah.reavis@mga.edu

Abstract

Vizing conjectured that $\chi_{\ell}^{\prime}(G) \leq \Delta+1$ for all graphs. For a graph G and nonnegative integer k, we say G is a k-list-edge-critical graph if $\chi_{\ell}^{\prime}(G)>k$, but $\chi_{\ell}^{\prime}(G-e) \leq k$ for all $e \in E(G)$. We use known results for list-edge-critical graphs to verify Vizing's conjecture for G with $\operatorname{mad}(G)<\frac{\Delta+3}{2}$ and $\Delta \leq 9$.

Keywords: list-edge-coloring, maximum average degree, discharging Mathematics Subject Classification: 05C07, 05C10, 05C15
DOI: 10.5614/ejgta.2022.10.2.4

1. Introduction

We consider only simple graphs in this paper. It will be convenient for us to define for a graph G, the vertex set $V_{x}=\{v \in V(G) \mid d(v)=x\}$ and the set $V_{[x, y]}=\{v \in V(G) \mid x \leq d(v) \leq y\}$. An edge-coloring of G is a function which maps one color to every edge of G such that adjacent edges receive distinct colors. A k-edge-coloring of G is an edge-coloring of G which maps a total of k colors to $E(G)$. The chromatic index $\chi^{\prime}(G)$ is the minimum k such that G is k-edge-colorable. Vizing's Theorem [10] gives us $\chi^{\prime}(G) \leq \Delta+1$ for all graphs G where Δ is the maximum degree of G.

We are interested in a variation of edge-coloring called list-edge-coloring. A list-edge-coloring is an edge-coloring with the extra constraint that each edge can only be colored from a preassigned

Received: 6 August 2021, 13 April 2022, Accepted: 5 May 2022.
list of colors. Specifically, we say an edge-list-assignment of G is a function which maps a set of colors to every edge in G. If L is an edge-list-assignment of G, then we refer to the set of colors mapped to $e \in E(G)$ as the list, $L(e)$. We say that G is L-colorable if G can be properly edgecolored with every edge e receiving a color from $L(e)$. We say that G is k-list-edge-colorable if G is L-colorable for all L such that $|L(e)| \geq k$ for all $e \in E(G)$. We note this concept is referred to as k-edge-choosable in other papers. The list-chromatic index, $\chi_{\ell}^{\prime}(G)$, is the minimum k such that G is k-list-edge-colorable. So, we want to achieve a list-edge-coloring for all list-assignments L with minimal list-size k.

It is easy to see that $\chi_{\ell}^{\prime}(G) \geq \chi^{\prime}(G) \geq \Delta$ for all graphs. The List-Edge Coloring Conjecture proposes that $\chi_{\ell}^{\prime}(G)=\chi^{\prime}(G)$, but this has only been verified for a few special families of graphs, such as Galvin's result for the family of bipartite graphs [6]. In this paper, we will focus on a relaxation of the LECC proposed by Vizing.

Conjecture 1 (Vizing [9]). If G is a graph, then $\chi_{\ell}^{\prime}(G) \leq \Delta+1$.
This conjecture has been verified for all graphs with $\Delta \leq 4$. The $\Delta=3$ case was proved by Vizing [9] in 1976 and independently by Erdős, Rubin, and Taylor [5] in 1979. The $\Delta=4$ case of Conjecture 1 was proved in 1998 by Juvan, Mohar, Škrekovski [8].

The average degree of a graph G is $a d(G)=\frac{\sum d(v)}{v(G)}$. The maximum average degree of a graph G is $\operatorname{mad}(G)=\max \{\operatorname{ad}(H): H \subseteq G\}$. That is, $\operatorname{mad}(G)$ is the maximum of the set of average degrees of all subgraphs G.

Motivated by Vizing and the List Edge Coloring Conjecture, Woodall conjectured [11] if G has $\operatorname{mad}(G)<\Delta-1$, then $\chi_{\ell}^{\prime}(G)=\Delta$. Together with Borodin and Kostochka, Woodall [2] was able to verify his conjecture when $\operatorname{mad}(G)<\sqrt{2 \Delta}$.

We say that a graph G is k-list-edge-critical if $\chi_{\ell}^{\prime}(G)>k$, and $\chi_{\ell}^{\prime}(G-e) \leq k$ for all $e \in E(G)$. By taking advantage of known results for list-edge-critical graphs, we relax Woodall's conjecture by bounding $\Delta(G) \leq 9$ to verify Conjecture 1 when $\operatorname{mad}(G)<\frac{\Delta(G)+3}{2}$.

2. Main Result

In 1990, Borodin verified Conjecture 1 for planar graphs with $\Delta \geq 9$ (see [3]). This was improved to planar graphs with $\Delta \geq 8$ by Bonamy in 2015 (see [1]). In 2010, before Bonamy's result, Cohen and Havet wrote a new proof of Borodin's theorem which reduced the argument to about a single page (see [4]). Their new proof used the minimality of list-edge-critical graphs and a clever discharging argument. We state one of their lemmas below.

Lemma 2.1 (Cohen \& Havet [4]). If G is $(\Delta+1)$-list-edge-critical, then $\operatorname{deg}(u)+\operatorname{deg}(v) \geq \Delta+3$.
Lemma 2.1, together with Borodin, Kostochka, Woodall's generalization [2] of Galvin's Theorem, were used to prove the following lemma. This lemma is listed as Lemma 9 in [7] and was used to achieve edge-precoloring results.

Lemma 2.2 (Harrelson, McDonald, Puleo [7]). Let $a_{0}, a, b_{0} \in \mathcal{N}$ such that $a_{0}>2, b_{0}>a$, and $a+b_{0}=\Delta+3$. If G is $(\Delta+1)$-list-edge-critical, then

$$
2 \sum_{i=a_{0}}^{a}\left|V_{i}\right|<\sum_{j=b_{0}}^{\Delta}(a+j-\Delta-2)\left|V_{j}\right| .
$$

We apply Lemma 2.2 directly to graphs of bounded maximum average degree to prove our main result.

Theorem 2.1. If G has $\Delta(G)=\Delta \leq 9$ and $\operatorname{mad}(G)<\frac{\Delta+3}{2}$, then $\chi_{\ell}^{\prime}(G) \leq \Delta+1$.
Proof. Let $m=\frac{\Delta+3}{2}$ and assign integers, which we will call an initial charge, to every vertex and an artificial, global pot P. We denote and define these initial charges as follows: $\alpha(P)=0$ and $\alpha(v)=d(v)$ for all $v \in V(G)$. Let $\alpha(G)$ denote the sum of all initial charges. We know $a d(G)=\frac{\sum d(v)}{v(G)}$, rather $\alpha(G)=a d(G) \cdot v(G)<m \cdot v(G)$. We will apply a discharging step and denote $\alpha^{\prime}(v)$ as the final charge for $v \in V(G)$ after discharing. We will also use $\alpha^{\prime}(P)$ and $\alpha^{\prime}(G)$ to denote the final charges of P and G, respectively, after the discharging step. To get a contradiction, we will prove $\alpha^{\prime}(G) \geq m \cdot v(G)$ by showing $\alpha^{\prime}(P)>0$ and $\alpha^{\prime}(v) \geq m$ for all $v \in V(G)$.

We note that this theorem is known for $\Delta \leq 4$ so we may assume $5 \leq \Delta \leq 9$. For each of these values of Δ, we provide Tables 1 through 5. Each table provide a list of triples $\left(a_{0}, a, b_{0}\right)$ and their resulting inequalities from Lemma 2.2. Each table also presents the discharging step and verifies $\alpha^{\prime}(v) \geq m$ for all $v \in V(G)$. We let x_{i} be the sum of coefficients of V_{i} from the first table. For all values of Δ, we discharge in the following way; If $\operatorname{deg}(v)=i \geq m$, then v will give x_{i} to P. If $\operatorname{deg}(v)=i<m$, then v will take x_{i} from P.

For all values of Δ, we verify $\alpha^{\prime}(P)>0$ by using only strict inequalities and noting the lesser side of every inequality only contains vertices with degree less than m and the greater side every inequality only contains vertices with degree greater than m. This means more charge is put into P than is taken from P due to how we defined x_{i} in our discharging step.

If $\Delta=9$, then we consider the ordered triples in the form of $\left(a_{0}, a, b_{0}\right)$ and the system of inequalities resulting from Lemma 2.2 as displayed in Table 1. We note that the final charge of P is positive since adding all inequalities together yields:

$$
x_{3} V_{3}+x_{4} V_{4}+x_{5} V_{5}<x_{7} V_{7}+x_{8} V_{8}+x_{9} V_{9}
$$

The final charges from Table 1 gives

$$
a^{\prime}(G)=\alpha^{\prime}(P)+\sum_{v \in V(G)} \alpha^{\prime}(v)>m \cdot v(G)
$$

This is a contradiction for $\Delta=9$. We proceed through the remaining values of Δ using the same argument. We present a table for each value of Δ. Each table displays inequalities resulting from Lemma 2.2 and each table displays the discharging step to verify $\alpha^{\prime}(v)>m$ and $\alpha^{\prime}(P)>0$. Note that, for $\Delta=8$, we multiply the first inequality by $1 / 2$.

This completes the proof of Theorem 2.1.

Table 1. Inequalities and final charges for $\Delta=9$.
Lemma 2.2 inequalities for $\Delta=9$
Discharging for $\Delta=9, m=6$

$\left(a_{0}, a, b_{0}\right)$	Inequality
$(3,5,7)$	$V_{3}+V_{4}+V_{5}<\frac{1}{2} V_{7}+V_{8}+\frac{3}{2} V_{9}$
$(3,4,8)$	$V_{3}+V_{4}<\frac{1}{2} V_{8}+V_{9}$
$(3,3,9)$	$V_{3}<\frac{1}{2} V_{9}$

$\alpha(v)=i$	x_{i}	$\alpha^{\prime}(v)$
3	3	6
4	2	6
5	1	6
6	0	6
7	$\frac{1}{2}$	$\frac{13}{2}$
8	$\frac{3}{2}$	$\frac{13}{2}$
9	$\frac{6}{2}$	6

Table 2. Inequalities and final charges for $\Delta=8$.

Lemma 2.2 inequalities for $\Delta=8$		Discharging for $\Delta=8, m=\frac{11}{2}$		
$\left(a_{0}, a, b_{0}\right)$	Inequality	$\alpha(v)=i$	x_{i}	$\alpha^{\prime}(v)$
$(3,5,6)$	$\frac{1}{2}\left[V_{3}+V_{4}+V_{5}\right]<\frac{1}{2}\left[\frac{1}{2} V_{6}+\frac{2}{2} V_{7}+\frac{3}{2} V_{8}\right]$	3	$\frac{5}{2}$	$\frac{11}{2}$
$(3,4,7)$	$V_{3}+V_{4}<\frac{1}{2} V_{7}+\frac{2}{2} V_{8}$	4	$\frac{3}{2}$	$\frac{11}{2}$
		5	$\frac{1}{2}$	$\frac{11}{2}$
$(3,3,8)$	$V_{3}<\frac{1}{2} V_{8}$	6	$\frac{1}{4}$	$\frac{23}{4}$
		7	1	6
		8	$\frac{9}{4}$	$\frac{23}{4}$

Table 3. Inequalities and final charges for $\Delta=7$
Lemma 2.2 inequalities for $\Delta=7 \quad$ Discharging for $\Delta=7, m=5$

$\left(a_{0}, a, b_{0}\right)$	Inequality	$\alpha(v)=i$	x_{i}	$\alpha^{\prime}(v)$
$(3,4,6)$	$V_{3}+V_{4}<\frac{1}{2} V_{6}+\frac{2}{2} V_{7}$	3	2	5
$(3,3,7)$	$V_{3}<\frac{1}{2} V_{7}$	4	1	5
	5	0	5	
	6	$\frac{1}{2}$	$\frac{11}{2}$	
7	$\frac{3}{2}$	$\frac{11}{2}$		

Table 4. Inequalities and final charges for $\Delta=6$.
Lemma 2.2 inequalities for $\Delta=6 \quad$ Discharging for $\Delta=6, m=\frac{9}{2}$

$\left(a_{0}, a, b_{0}\right)$	Inequality	$\alpha(v)=i$	x_{i}	$\alpha^{\prime}(v)$
$(3,4,5)$	$V_{3}+V_{4}<\frac{1}{2} V_{5}+\frac{2}{2} V_{6}$	3	2	5
$(3,3,6)$	$V_{3}<\frac{1}{2} V_{6}$	4	1	5
	5	$\frac{1}{2}$	$\frac{9}{2}$	
		6	$\frac{3}{2}$	$\frac{9}{2}$

Table 5. Inequalities and final charges for $\Delta=5$.
Lemma 2.2 inequalities for $\Delta=5 \quad$ Discharging for $\Delta=5, m=4$

$\left(a_{0}, a, b_{0}\right)$	Inequality	$\alpha(v)=i$	x_{i}	$\alpha^{\prime}(v)$
$(3,3,5)$	$V_{3}<\frac{1}{2} V_{5}$	3	1	4
	4	0	4	
5	$\frac{1}{2}$	$\frac{9}{2}$		

3. Conclusion

The application of Lemma 2.2 can be improved for some values of $\Delta(G)$ presented in Theorem 2.1 to yield slightly greater values of $\operatorname{mad}(G)$. We can also apply Lemma 2.2 to any value of $\Delta(G)$, but this will lower the bound on $\operatorname{mad}(G)$. Specifically, we can find optimum values of $\operatorname{mad}(G)$ given $\Delta(G)$ for graphs of higher max-degree by "reverse-engineering" the inequalities of Lemma 2.2 as shown in the following example for $\Delta(G)=10$.

Example 1. Finding an optimal $\operatorname{mad}(G)$ for $\Delta(G)=10$.
Proof. Let $\operatorname{mad}(G)<m$ for some m, let $\alpha(P)=0$, and let $\alpha(v)=d(v)$ for all $v \in V(G)$. We wish to determine the largest number m such that $\alpha^{\prime}(P)>0$ and $\alpha^{\prime}(v) \geq m$ for all $v \in V(G)$. We begin by presenting a table of triples and their resulting inequalities from Lemma 2.2; however, we multiply each inequality by an arbitrary constant.

Table 6. Lemma 2.2 inequalities for $\Delta=10$

$\left(a_{0}, a, b_{0}\right)$	Inequality
$(3,6,10)$	$c_{1}\left(V_{3}+V_{4}+V_{5}+V_{6}<\frac{1}{2} V_{7}+\frac{2}{2} V_{8}+\frac{3}{2} V_{9}+\frac{4}{2} V_{10}\right)$
$(3,5,10)$	$c_{2}\left(V_{3}+V_{4}+V_{5}<\frac{1}{2} V_{8}+\frac{2}{2} V_{9}+\frac{3}{2} V_{10}\right)$
$(3,4,10)$	$c_{3}\left(V_{3}+V_{4}<\frac{1}{2} V_{9}+\frac{2}{2} V_{10}\right)$
$(3,3,10)$	$c_{4}\left(V_{3}<\frac{1}{2} V_{10}\right)$

As in Theorem 2.1, we let x_{i} be the sum of coefficients of V_{i} from this table. We will let "highdegree" vertices give charge to P while "low-degree" vertices take charge from P in the rules that follow. If $\operatorname{deg}(v)=i \geq\left\lceil\frac{1}{2} \Delta+2\right\rceil$, then v gives x_{i} to P. If $\operatorname{deg}(v)=i \leq\left\lfloor\frac{1}{2} \Delta+1\right\rfloor$, then v takes x_{i} from P. This yields the list of final charges displayed in Table 6 . We set each final charge greater than or equal to m.

Table 7. Final charges for Example 1.

V_{i}	Final Charge $\geq m$	Name
V_{3}	$3+c_{1}+c_{2}+c_{3}+c_{4} \geq m$	A
V_{4}	$4+c_{1}+c_{2}+c_{3} \geq m$	B
V_{5}	$5+c_{1}+c_{2} \geq m$	C
V_{6}	$6+c_{1} \geq m$	D
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
V_{10}	$10-\frac{4}{2} c_{1}-\frac{3}{2} c_{2}-\frac{2}{2} c_{3}-\frac{1}{2} c_{4} \geq m$	E

Increasing the constants $c_{1}, c_{2}, c_{3}, c_{4}$ increases the final charge of our "low-degree" vertices, but decreases the final charge of our "high-degree" vertices. We need all final charges to be greater than or equal to m so we must chose m carefully. While all vertices in $V_{[7,10]}$ give charge away, the vertices in V_{10} give the most, meaning inequality E has the strictest bound on m. With this in mind, we can find an optimal bound for m by adding inequalities in the following way:

$$
2 E+A+B+C+D \Longrightarrow 38+0 x_{1}+0 x_{2}+0 x_{3} \geq 6 m \Longrightarrow \frac{19}{3} \geq m
$$

We can now use this bound and the inequalities of the "low-degree" vertices from Table 6 to solve for $c_{1}, c_{2}, c_{3}, c_{4}$.

$$
\begin{array}{lll}
D & V_{6}: 6+c_{1} \geq \frac{19}{3} & \Longrightarrow c_{1}=\frac{1}{3} \\
C & V_{5}: 5+c_{1}+c_{2} \geq \frac{19}{3} & \Longrightarrow c_{2}=1 \\
B & V_{4}: 4+c_{1}+c_{2}+c_{3} \geq \frac{19}{3} & \Longrightarrow c_{3}=1 \\
A & V_{3}: 3+c_{1}+c_{2}+c_{3}+c_{4} \geq \frac{19}{3} & \Longrightarrow c_{4}=1
\end{array}
$$

We have shown that $\alpha^{\prime}(v) \geq \frac{19}{3}$ for our "low-degree" vertices in $V_{[3,6]}$. We only need to verify the values of $c_{1}, c_{2}, c_{3}, c_{4}$, and m give us appropriate inequalities for the "high-degree" vertices.

$$
\begin{array}{ll}
V_{7}: 7-\frac{1}{2} c_{1} & >\frac{19}{3} \\
V_{8}: 8-\frac{2}{2} c_{1}-\frac{1}{2} c_{2} & >\frac{19}{3} \\
V_{9}: 9-\frac{3}{2} c_{1}-\frac{2}{2} c_{2}-\frac{1}{2} c_{3} & >\frac{19}{3} \\
V_{10}: 10-\frac{4}{2} c_{1}-\frac{3}{2} c_{2}-\frac{2}{2} c_{3}-\frac{1}{2} c_{4} & =\frac{19}{3}
\end{array}
$$

So $m=\frac{19}{3}$ is a feasible bound for $\operatorname{mad}(G)$ when $\Delta(G)=10$. This means if a graph H has $\Delta(H) \leq 10$ and $\operatorname{mad}(H)<\frac{19}{3}$, then $\chi_{\ell}^{\prime}(H) \leq \Delta+1$.

Lemma 2.2 can be thought of as a generalization Cohen and Havet's argument in [4]. Both of these results use forbidden structures to force good counts of low and high degree vertices by relying on Galvin's Theorem [6]. In this sense, good counts are achieved from knowing the list-edge-colorability of bipartite graphs. We are interested in how the list-edge-colorability of other simple families of graphs could be used to develop counts to verify Vizing's Conjecture or even the LECC for a wider range of graphs than is currently known.

References

[1] M. Bonamy, Planar graphs with $\Delta \geq 8$ are $(\Delta+1)$-edge-choosable, Seventh Euro. Conference in Comb., Graph Theory and App., CRM series, Edizioni della Normale 16 (2013). https://doi.org/10.1137/130927449
[2] O.V. Borodin, A. V. Kostochka, and D. R. Woodall, List edge and list total colorings of multigraphs, J. Combin. Theory Ser. B 71 (1997), 184-204. https://doi.org/10.1006/jctb.1997.1780
[3] O.V. Borodin, A generalization of Kotzig's theorem on prescribed edge coloring of planar graphs, Mat. Zametki 48 (1990), 1186-1190. https://doi.org/10.1007/BF01240258
[4] N. Cohen and F. Havet, Planar graphs with maximum degree $\Delta \leq 9$ are $(\Delta+1)$-edge-choosable-a short proof, Discrete Math. 310 (2010), 3049-3051. https://doi.org/10.1016/j.disc.2010.07.004
[5] P. Erdõs, A. Rubin, and H. Taylor, Choosability in graphs. Congr. Numer. 26 (1979), 125-157.
[6] F. Galvin, The list chromatic index of a bipartite multigraph, Journal of Combinatorial Theory, Ser. B 63 (1995), 153-158. https://doi.org/10.1006/jctb.1995.1011
[7] J. Harrelson, J. McDonald, and G. Puleo, List-edge-colouring planar graphs with precoloured edges, European J. of Combin. 75 (2019), 55-65. https://doi.org/10.1016/j.ejc.2018.07.003.
[8] M. Juvan, B. Mohar, and R. Škrekovski, List total colorings of graphs, Combin. Probab. Comput. 7 (1998), 181-188. https://doi.org/10.1017/S0963548397003210
[9] V.G. Vizing, Colouring the vertices of a graph with prescribed colours, Diskret. Analiz 29 (1976), 3-10 (In Russian).
[10] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz 3 (1964), 25-30.
[11] D. Woodall, The average degree of a multigraph critical with respect to edge or total choosability, Discrete Math. 310(6-7) (2010), 1167-1171. https://doi.org/10.1016/j.disc.2009.11.011

