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Abstract

An anti-magic graph is a graph whose |E| edges can be labeled with the first |E| natural numbers
such that each edge receives a distinct number and each vertex receives a distinct vertex sum which
is obtained by taking the sum of the labels of all the edges incident to it. We prove that the multi-
bridge graph is anti-magic.
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1. Introduction

Let G = (V,E) be a graph with neither loop nor multiple edges. An anti-magic labeling of
G is a bijection ϕ from E to {1, 2, . . . , |E|} such that the sum of the labels on the edges incident
to a vertex, called the vertex sum, is distinct for each vertex. A graph is anti-magic if it admits an
anti-magic labeling.

The concept of anti-magic graphs has its origin from the book [7] where Hartsfield and Ringel
conjectured that all connected graphs but the single edge K2 are anti-magic. Since then, the prob-
lem of deciding which graphs are anti-magic has attracted much attention. Nevertheless the con-
jecture remains unsettled despite concerted efforts by mathematicians in graph theory.
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In the same book, Hartsfield and Ringel remarked that even when the conjecture is restricted
to trees, no complete affirmative answer has been offered. Some results concerning the anti-
magicness of trees are given in [8] and [9].

On the other hand, by confining the attention on regular graphs, the situation turns out to be a
lot more delightful. In [4], Cranston showed that every regular bipartite graph with degree at least
2 is anti-magic. In [5], Cranston et al. proved that Hartsfield and Ringel’s conjecture is true for
all odd regular graphs. Shortly afterwards, in [3], Chang et al. proved that all even regular graphs
are anti-magic. By modifying the argument used in [5], Bérczi et al. in [2] also proved that even
regular graphs are anti-magic. For more details on anti-magic graphs, we refer the reader to [6].
For some recent results on anti-magic graphs, we refer the reader to [10].

In view of this, we turn our attention to graphs which are close to being regular.
Consider a graph with only two vertices and having r multiple edges joining them, r ≥ 3.

Subdivide the edges of this graph arbitrarily so that at most one edge is not subdivided. Call the
result graph an r-bridge graph and denote it by θ(m1,m2, . . . ,mr) if the lengths of the paths are
m1,m2, . . . ,mr respectively.

The purpose of this paper is to prove the following result.

Theorem 1.1. Every r-bridge graph is anti-magic.

In a forth-coming paper, we shall make use of the above result to prove the anti-magicness of
a class of not quite regular graphs. Hence it is an appetizer result for a more general result which
is to appear later.

We note in passing that in [1], Alon et al. proved that all dense graphs are anti-magic while
in [11], Wang initiated the investigation on the anti-magicness of sparse graphs. Incidentally, the
graphs in this paper and those in our forth-coming papers are sparse graphs.

2. The proof of Theorem 1.1

Throughout this section, we shall assume that in the graph θ(m1,m2, . . . ,mr), the path lengths
satisfy the condition m1 ≥ m2 ≥ · · · ≥ mr. Also, we shall call the paths in θ(m1,m2, . . . ,mr)
the mi-path, i = 1, 2, . . . , r.

Let x and y denote the two vertices of degree r in θ(m1,m2, . . . ,mr) and let w(x), w(y) denote
the vertex sums of x, y respectively.

The proof is divided into three cases.
Case 1. r = 3k.
Suppose k = 1.
The labelings depicted in Figure 1 show that if m1 ≤ 2, the 3-bridge graph is anti-magic.

Hence we assume that m1 ≥ 3.
Subcase 1.1. m1 +m2 +m3 is odd.
Let ϕ0 denote the following edge labeling on the 3-bridge graph.
(i) Label the edges of the m1-path with 1, 2, . . . ,m1 successively starting from the vertex x.
(ii) Label the edges of the m3-path with m1 + 1,m1 + 2, . . . ,m1 + m3 successively starting

from the vertex y.
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Figure 1. Anti-magic labelings where m1 = 2.

(iii) Label the edges of the m2-path with m1 + m3 + 1,m1 + m3 + 2, . . . ,m1 + m3 + m2

successively starting from the vertex x.
Figure 2(i) illustrates the case (m1,m2,m3) = (5, 4, 2).
Note that the vertex sums of the degree-2 vertices consist of distinct odd natural numbers and

that the vertex sums of x and y are both even and are given by w(x) = 2(m1 + m3 + 1) and
w(y) = 2m1 +m1 +m2 +m3 + 1 respectively.

This shows that ϕ0 is an anti-magic labeling of the 3-bridge graph.

Figure 2. Two anti-magic labelings on 3-bridges.

Subcase 1.2. m1 +m2 +m3 is even.
In this case, an anti-magic labeling is obtained by swapping the labels m1 − 1,m1 (on the last

two edges of the m1-path) from the anti-magic labeling ϕ0 given in Subcase 1.1. Note that there
are only three vertices whose vertex-sums are even, namely x, y and the second last vertex on the
m1-path. Since the vertex-sums are 2(m1+m3+1), 2m1+m1+m2+m3 and 2m1−2 respectively,
they are distinct natural numbers.

The vertex-sums of the rest of the vertices are distinct odd natural numbers.
Figure 2(ii) illustrates the case (m1,m2,m3) = (5, 4, 3).
Now suppose k ≥ 2.
For each i = 1, 2, . . . , k, let Hi denote the 3-bridge subgraph induced by the m3i−2-path,

m3i−1-path and the m3i-path.
Define p0 = 0 and pi = pi−1 +m3i−2 +m3i−1 +m3i for i ≥ 1.
For each i = 1, 2, . . . , k, label the edges of Hi so that
(i) the edges of them3i−2-path receive the labels pi−1+1, pi−1+2, . . . , pi−1+m3i−2 successively

starting from the vertex x,
(ii) and then label the edges of them3i-path with pi−1+m3i−2+1, pi−1+m3i−2+2, . . . , pi−1+

m3i−2 +m3i successively starting from the vertex y.
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(iii) Finally, label the edges of the m3i−1-path with pi−1 + m3i−2 + m3i + 1, pi−1 + m3i−2 +
m3i + 2, . . . , pi−1 +m3i−2 +m3i +m3i−1 starting from the vertex x.

Figure 3 illustrates the cases (m1,m2, . . . ,m6) = (6, 6, 5, 4, 3, 2) and (m1,m2, . . . ,m6) =
(2, 2, . . . , 2).

Figure 3. Two anti-magic labelings on 6-bridges.

It is routine to check that the vertex sums of x and y are given by
w(x) = 2k + 2pk − 2

∑k

i=1
m3i−1 + 3

∑k−1

i=1
pi

and
w(y) = k + pk + 2

∑k

i=1
m3i−2 + 3

∑k−1

i=1
pi.

respectively.
Also, note that the vertex sums of the degree-2 vertices consist of odd distinct natural numbers

and are less than either of w(x) and w(y).
This completes the proof for Case 1.
Case 2. r = 3k + 1.
Suppose k = 1.
Subcase 2.1. Not all paths have the same length.
Let ϕ1 denote the following edge labeling on the 4-bridge graph.
(i) Label the edges of the m1-path with 1, 2, . . . ,m1 successively starting from the vertex x.
(ii) Label the edges of the m2-path with m1 + 1,m1 + 2, . . . ,m1 + m2 successively starting

from the vertex x.
(iii) Label the edges of the m3-path with m1 + m2 + 1,m1 + m2 + 2, . . . ,m1 + m2 + m3

successively starting from the vertex y.
(iv) Label the edges of the m4-path with m1 +m2 +m3 + 1,m1 +m2 +m3 + 2, . . . ,m1 +

m2 +m3 +m4 successively starting from the vertex y.
Figure 4(i) illustrates the case (m1,m2,m3,m4) = (5, 4, 3, 2).
Note that the vertex sums w(x) and w(y) of x and y are given by 3m1 + 2m2 + 2m3 +m4 + 2

and 4m1 + 3m2 +m3 + 2 respectively. Note that the vertex sums of the degree-2 vertices consist
of distinct natural odd numbers and they are all less than either of w(x) and w(y).

This means that ϕ1 is an anti-magic labeling of the 4-bridge.
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Figure 4. Two anti-magic labelings on 4-bridges.

Subcase 2.2. All paths have the same length m.
In this case, an anti-magic labeling is obtained by labeling the edges of the i-th path with the

labels (i − 1)m + 1, (i − 1)m + 2, . . . , im successively all starting from x to y. In this case
w(x) = 6m + 4 and w(y) = 10m. The rest of the vertex sums consist of distinct odd natural
numbers.

Figure 4(ii) illustrates the case m = 3.

Figure 5. Two anti-magic labelings on 7-bridges.

Now suppose k ≥ 2.
Let H1 denote the 4-bridge subgraph induced by the mj-path, j = 1, 2, 3, 4. Also, for each

i = 2, . . . , k, let Hi denote the 3-bridge subgraph induced by the m3i−1-path, m3i-path and the
m3i+1-path.

Define p0 = 0 , p1 = m1 +m2 +m3 +m4 and pi = pi−1 +m3i−1 +m3i +m3i+1 for i ≥ 2.
Label H1 using ϕ1 first. Then for each i = 2, . . . , k, label the edges of Hi so that
(i) the edges of them3i−1-path receive the labels pi−1+1, pi−1+2, . . . , pi−1+m3i−1 successively

starting from the vertex x, and
(ii) label the edges of the m3i+1-path with pi−1 + m3i−1 + 1, pi−1 + m3i−1 + 2, . . . , pi−1 +

m3i−1 +m3i+1 successively starting from the vertex y.
(iii) Finally, label the edges of the m3i-path with pi−1 + m3i−1 + m3i+1 + 1, pi−1 + m3i−1 +

m3i+1 + 2, . . . , pi−1 +m3i−1 +m3i+1 +m3i starting from the vertex x.
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Figure 5 illustrates the cases (m1,m2, . . . ,m7) = (6, 5, 4, 3, 3, 3, 2) and (m1,m2, . . . ,m7)
= (2, 2, . . . , 2).

It is routine to check that the vertex sums of x and y are given by
w(x) = 2pk + 2k +m1 −m4 +

∑k

i=2
(3pi−1 − 2m3i)

and
w(y) = k + 1 + 4m1 + 3m2 +m3 + 2(p1 − pk) +

∑k

i=2
(3pi + 2m3i−1) .

respectively.
Also, note that the vertex sums of the degree-2 vertices consist of distinct odd natural numbers

each of which is less than either of w(x) and w(y).
This completes the proof for Case 2.
Case 3. r = 3k + 2.
Suppose k = 1.
Let ϕ2 denote the following edge labeling on the 5-bridge graph.
(i) Label the edges of the m1-path with 1, 2, . . . ,m1 successively starting from the vertex x.
(ii) Label the edges of the m2-path with m1 + 1,m1 + 2, . . . ,m1 + m2 successively starting

from the vertex y.
(iii) For each i ∈ {3, 4, 5}, label the edges of the mi-path with qi + 1, qi + 2, . . . , qi + mi

successively all starting from x to y. Here q3 = m1 +m2 and qj = qj−1 +mj−1 for j ∈ {4, 5}.
Figure 6 illustrates the case (m1,m2,m3,m4,m5) = (6, 5, 4, 3, 2).

Figure 6. Anti-magic labeling of a 5-bridge.

Note that the vertex sums of x and y are given by w(x) = 4(m1 +m2) + 2m3 +m4 + 4 and
w(y) = 5m1 + 3(m2 +m3) + 2m4 +m5 + 1 respectively.

Clearly the vertex sums of the degree-2 vertices in ϕ2 consist of odd distinct natural numbers
and each is less than either of w(x) and w(y).

Hence ϕ2 is an anti-magic labeling of the 5-bridge.
Now suppose k ≥ 2.
Let H1 denote the 5-bridge induced by the mj-path, j = 1, 2, . . . , 5. Also, for each i =

2, . . . , k, let Hi denote the 3-bridge subgraph induced by the m3i-path, m3i+1-path and the m3i+2-
path.

Define p0 = 0 , p1 = m1 +m2 + · · ·+m5 and pi = pi−1 +m3i +m3i+1 +m3i+2 for i ≥ 2.
Label H1 using ϕ2 first. Then for each i = 2, . . . , k, label the edges of Hi so that
(i) the edges of the m3i-path receive the labels pi−1 + 1, pi−1 + 2, . . . , pi−1 +m3i successively

starting from the vertex x, and
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(ii) label the edges of them3i+2-path with pi−1+m3i+1, pi−1+m3i+2, . . . , pi−1+m3i+m3i+2

successively starting from the vertex y.
(iii) Finally, label the edges of them3i+1-path with pi−1+m3i+m3i+2+1, pi−1+m3i+m3i+2+

2, . . . , pi−1 +m3i +m3i+2 +m3i+1 starting from the vertex x.
Figure 7 illustrates the case (m1,m2, . . . ,m8) = (6, 5, 4, 3, 3, 3, 2, 2).

Figure 7. Anti-magic labeling of an 8-bridge.

It is routine to check that the vertex sums of x and y are given by
w(x) = 2(pk + k + 1 +m1 +m2 −m5)−m4 +

∑k

i=2
(3pi−1 − 2m3i+1)

and
w(y) = 2(2m1 +m2 +m3) +m4 + k + pk +

∑k

i=2
(3pi−1 + 2m3i)

respectively.
Also, note that the vertex sums of the degree-2 vertices consist of distinct odd natural numbers

each of which is less than either of w(x) and w(y).
This completes the proof for Case 3 and so is the proof for Theorem 1.1.
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