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Abstract
A set S of vertices of a graph G such that 〈S〉 has an isolated vertex is called an isolate set of
G. The minimum and maximum cardinality of a maximal isolate set are called the isolate number
i0(G) and the upper isolate number I0(G) respectively. An isolate set that is also a dominating set
(an irredundant set) is an isolate dominating set (an isolate irredundant set). The isolate domina-
tion number γ0(G) and the upper isolate domination number Γ0(G) are respectively the minimum
and maximum cardinality of a minimal isolate dominating set while the isolate irredundance num-
ber ir0(G) and the upper isolate irredundance number IR0(G) are the minimum and maximum
cardinality of a maximal isolate irredundant set of G. The notion of isolate domination was intro-
duced in [5] and the remaining were introduced in [4]. This paper further extends a study of these
parameters.
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1. Introduction

By a graph G = (V,E), we mean a finite, non-trivial, undirected graph with neither loops nor
multiple edges. For graph theoretic terminology we refer to the book by Chartrand and Lesniak
[2].

The open neighbourhood N(v) of a vertex is the set of all vertices adjacent to v while the
closed neighbourhood N [v] is N(v)∪ {v}. The subgraph induced by a set S of vertices of a graph
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G is denoted by 〈S〉 with V (〈S〉) = S and E(〈S〉) = {uv ∈ E(G) : u, v ∈ S}. A vertex u is
said to be a private neighbour of a vertex v ∈ S with respect to the set S if N [u] ∩ S = {v} (In
particular, an isolated vertex in 〈S〉 is a private neighbour of itself with respect to the set S). The
private neighbour set of a vertex v with respect to the set S is denoted by pn[v, S].

A set D of vertices of a graph G is said to be a dominating set if every vertex in V − D is
adjacent to a vertex in D. A dominating set D is said to be a minimal dominating set if no proper
subset of D is a dominating set. The minimum cardinality of a minimal dominating set of a graph
G is called the domination number of G and is denoted by γ(G). The upper domination number
Γ(G) is the maximum cardinality of a minimal dominating set of G. The minimum cardinality of
an independent dominating set is called the independent domination number, denoted by i(G) and
the independence number β0(G) is the maximum cardinality of an independent set of G. A set S
is a total dominating set, if N(S) = V . The total domination number γt(G) equals the minimum
cardinality of a total dominating set of G. A set D ⊆ V (G) which is a dominating set of both
G and G is called a global dominating set. The minimum cardinality of a global dominating is
called the global domination number and is denoted by γg(G). A set S of vertices is irredundant
if every vertex v ∈ S has at least one private neighbour. The minimum and maximum cardi-
nality of a maximal irredundant set are respectively called the irredundance number ir(G) and
the upper irredundance number IR(G).

A set S of vertices of a graph G such that 〈S〉 has an isolated vertex is called an isolate set of
G. The minimum and maximum cardinality of a maximal isolate set are called the isolate num-
ber i0(G) and the upper isolate number I0(G). An isolate set that is also a dominating set (an
irredundant set) is an isolate dominating set (an isolate irredundant set). The isolate domination
number γ0(G) and the upper isolate domination number Γ0(G) are respectively the minimum and
maximum cardinality of a minimal isolate dominating set while the isolate irredundance number
ir0(G) and the upper isolate irredundance number IR0(G) are the minimum and maximum cardi-
nality of a maximal isolate irredundant set of G. An isolate set S of G with |S| = i0(G) is called
an i0-set of G. Similarly, γ0-set, Γ0-set, ir0-set are defined. The notion of isolate domination
was introduced in [5] and the remaining were introduced in [4]. An extended chain of inequalities
connecting all these parameters has been established in [4] as below:

ir(G) ≤ ir0(G) ≤ γ0(G) ≤ i(G) ≤ β0(G) ≤ Γ0(G) = Γ(G) ≤ IR0(G) = IR(G) ≤ I0(G) (1)

This paper further studies these concepts by establishing some relationship among those pa-
rameters. We need the following results.

Theorem 1.1 ([4]). Let S be an isolate set of a graph G. Then, S is a maximal isolate set of G if
and only if every vertex in V − S is adjacent to all the isolates of S.

Theorem 1.2 ([3]). If G is a graph of order n with no isolates, then γ(G) ≤ n
2
.

Theorem 1.3 ([1]). For any graph G, γ(G)
2
≤ ir(G) ≤ γ(G) ≤ 2ir(G)− 1.

Theorem 1.4 ([4]). Every minimal isolate dominating set of G is a maximal isolate irredudant set
of G.
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2. Main Results

In this section we establish some relationships among the isolate domination number and the
isolate parameters ir0 and i0. We first obtain a bound for i0 in terms of order and characterizes the
extremal graphs.

Theorem 2.1. For any graph G of order n, we have 1 ≤ i0(G) ≤ n. Further,

(i) i0(G) = 1 if and only if ∆(G) = n− 1.

(ii) i0(G) = 2 if and only if G = H +K2, where H is any graph with ∆(H) ≤ |V (H)| − 2.

(iii) i0(G) = n if and only if G has an isolated vertex.

Proof. (i) If ∆(G) = n − 1, then a vertex of degree n − 1 forms a maximal isolate set so that
i0(G) = 1. On the other hand if {u} is a maximal isolate set of G, then every vertex of G
other than u must be adjacent to u so that deg u = n− 1.

(ii) Suppose i0(G) = 2 and S is an i0-set of G. Then, S is an independent set of G and there-
fore by Theorem 1.1, we have every vertex of V − S is adjacent to both the vertices of S.
Therefore G = K2 + H , where H = 〈V − S〉. Further, ∆(G) < |V (G)| − 1 as i0(G) > 1,
and so ∆(H) < |V (H)| − 2. Conversely, if G = K2 + H , where H is any graph with
∆(H) ≤ |V (H)| − 2, then i0(G) ≥ 2. Further, since the vertices of K2 form a maximal
isolate of G, the result follows.

(iii) If G itself has an isolated vertex, then V (G) is the only maximal isolate set of G so that
i0(G) = n. Further, if i0(G) = n means V (G) is an isolate set so that there must be an
isolated vertex.

The following theorems establish some relationships among the isolate parameters i0, ir0 and
γ0 with global and total domination numbers.

Theorem 2.2. For any graph G, γt(G) ≤ i0(G) + 1 and the bound is sharp.

Proof. Let S be a maximal isolate set of G. Then, by Theorem 1.1, every vertex lying in V − S
is adjacent to all the isolates of 〈S〉 and consequently for any vertex u ∈ V − S, the set S ∪ {u}
is a total dominating set of G so that γt(G) ≤ i0(G) + 1. For stars, the value of γt is 2 whereas i0
equals 1.

Theorem 2.3. If diam G ≥ 5, then γg(G) ≤ γ0(G).

Proof. Let G be a graph of diameter at least 5 and let S be a γ0-set of G. Let us prove that S is a
global dominating set of G. That is, we need to verify that S is a dominating set of G as well. It is
clear that |S| ≥ 2 for otherwise diameter of G becomes two. Certainly, an isolated vertex of 〈S〉
will dominate all the vertices of S in G. Let us now see how the vertices of V − S are dominated
in G by S. If a vertex v ∈ V − S is a private neighbour of a vertex u in S with respect to S, then it
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will be dominated in G by a vertex of S other than u (this is possible as |S| ≥ 2). Therefore, only
the vertices of V − S that are not private neighbours of any vertex of S have to be dominated in
G by S. Now, if there is a vertex in V − S that is adjacent to all the vertices of S in G, then that
vertex will not be dominated in G by any vertex of S. But we prove that this situation does not
occur. Suppose in contrary that there is a vertex v ∈ V − S that is adjacent in G to all the vertices
of S. Then for any two vertices u1 and u2 of G, we have the following cases.

(i) If u1, u2 ∈ S, then (u1, v, u2) is a path connecting u1 and u2 and therefore d(u1, u2) ≤ 2.

(ii) Let u1, u2 ∈ V − S and u′1 and u′2 be the vertices in S adjacent to u1 and u2 respectively.
If u1 = u2, then (u1, u

′
1 = u′2, u2) is a u1 − u2 path; otherwise (u1, u′1, v, u′2, u2) is a path

connecting u1 and u2 provided v 6= u1, u2. Even if v = u1 then (u1 = v, u′2, u2) is a required
u1 − u2 path. Therefore d(u1, u2) ≤ 4.

(iii) Let u1 ∈ S, u2 ∈ V − S and u′2 be a vertex in S dominating u2. Then (u1, v, u′2, u2) will be
a path connecting u1 and u2 and therefore d(u1, u2) ≤ 3.

Therefore the conclusion that we draw is any two vertices of G are at a distance of at most four
so that diam G ≤ 4 which is a contradiction to the assumption that diam G ≥ 5. Hence all the
non-private neighbours of S in G are dominated in G by the vertices of S and so S is a dominating
set of G also. Therefore γg(G) ≤ |S| = γ0(G).

Remark 2.1. The above theorem need not be true for graphs of diameter less than five. For example,
for the graphs of diameter 1 (complete graphs) the value of γg is its order whereas γ0 is just 1. The
complete bipartite graph Kr,s, where 3 ≤ r ≤ s, is of diameter two such that γ0(Kr,s) = r and
γg(Kr,s) = 2. Further, graphs of diameter 3 and diameter 4 for which the value of γ0 exceeds the
value of γg are given in Figure 1.

Figure 1. (a) A graph G of diameter 4 for which γ0(G) = 4 < 5 = γg(G), (b) A graph H of diameter 3 for which
γ0(H) = 3 < 4 = γg(H)

Lemma 2.1. Let S be an i0-set of a graph G. If there is a vertex in V − S that is adjacent to all
the vertices of S, then diam G ≤ 3.
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Proof. If i0(G) = 1, then ∆(G) = |V (G)| − 1 so that diam G ≤ 2. Assume i0(G) ≥ 2. Let S be
an i0-set and v be a vertex in V −S that is adjacent to all the vertices of S. Therefore, two vertices
of G that belong to S are at a distance of at most two. Now, if x is an isolate of 〈S〉, it follows from
Theorem 1.1 that every vertex in V − S is adjacent to all the isolates of 〈S〉 and in particular to
the vertex x and so any two vertices of G lying in V − S are at a distance of at most two. Suppose
u1 and u2 are two vertices of G such that u1 ∈ S and u2 ∈ V − S. If u1 = x or u2 = v then
d(u1, u2) = 1, otherwise (u1, v, x, u2) is an u1 − u2 path in G so that d(u1, u2) ≤ 3. Thus diam
G ≤ 3.

Theorem 2.4. If diam G ≥ 4, then γg(G) ≤ i0(G).

Proof. Let G be a graph of diameter at least 4 and S be an i0-set of G. Then an isolate of 〈S〉
itself dominates all the vertices of V − S in G so that S is a dominating set of G by Theorem
1.1. Further, it follows from Lemma 2.1 that there is no vertex in V − S that is adjacent to all the
vertices of V − S. That is, every vertex in V − S has a non-neighbour in S so that the vertices
of V − S will be dominated in G by S. Certainly, an isolate of 〈S〉 dominates all the remaining
vertices of S in G. Thus S is a global dominating set of G. Hence the desired result follows.

The following theorem establishes an upper bound for γ0 in terms of i0 for C4-free graphs with
minimum degree at least 2.

Theorem 2.5. Let G be a C4-free graph and δ(G) ≥ 2. Then γ0(G) ≤
⌈
i0(G)

2

⌉
and the bound is

sharp.

Proof. Let S be an i0-set of G. We first claim that 〈S〉 has exactly one isolated vertex. Suppose
〈S〉 has more than one isolated vertices. Obviously, the set V − S must have at least two vertices;
for otherwise the degree of the isolates of 〈S〉 will be less than 2 which is not true as δ(G) ≥ 2.
Therefore |V − S| ≥ 2.

Figure 2. A C4-free graph G with δ(G) = 2 and γ0(G) =
⌈
io(G)

2

⌉

Now, by Theorem 1.1 that every isolate of 〈S〉 is adjacent to all the vertices of V − S and so
any two isolates of 〈S〉 together with any two vertices of V −S will form a cycle of length 4. This
is a contradiction and hence the claim follows. Therefore the set 〈S − {v}〉 will have no isolated
vertices, where v is the isolated vertex of S. By Theorem 1.2 that the cardinality of a γ-set D of
〈S−{v}〉 is less than or equal to |S|−1

2
. Now, the isolated vertices of S together with the set D will

form an isolate dominating set of G and hence γ0(G) ≤ |D|+ 1 ≤ |S|−1
2

+ 1 = |S|+1
2
≤
⌈
i0(G)+1

2

⌉
.

For the graph of Figure 2 the bound is attained.
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Corollary 2.1. If G is a C4-free graph with δ(G) ≥ 2, then γ0(G) ≤
⌈
n−δ+1

2

⌉
.

Proof. The result follows from the fact that i0(G) ≤ n− δ.

Theorem 1.3 gives a bound for γ(G) in terms of ir(G). Similar to this, in the following theo-
rem, we find an upper bound for γ0(G) in terms of ir0(G). It follows from Theorem 1.3 and Chain
1 that γ(G) ≤ 2ir(G)− 1 ≤ 2ir0(G)− 1. Thus we obtain a bound for γ(G) in terms of the isolate
irredundance number ir0. The following theorem provides a similar result for γ0.

Theorem 2.6. For any graph G, γ0(G) ≤ 2(ir0(G)− 1).

Proof. Let ir0(G) = k and let S = {v1, v2, v3, . . . , vt, vt+1, . . . , vk} be an ir0-set of G, where
vt+1, vt+2, . . . , vk are isolates of 〈S〉. Since S is irredundant, pn[vi, S] 6= φ, for 1 ≤ i ≤ k. Let
S ′ = {u1, u2, . . . , ut} where ui ∈ pn[vi, S] for 1 ≤ i ≤ t. Now, we claim that the set S ′′ = S ∪ S ′
is an isolate dominating set of G. Since vt+1, vt+2, . . . vk are the isolates of 〈S ′′〉, it is enough to
prove that S ′′ is a dominating set of G. If not, then there must be at least one vertex w ∈ V − S ′′
which is not dominated by S ′′. This means that w /∈ N [x], for any vertex x ∈ S ′′ and therefore
pn[w, S ∪ {w}] 6= φ. Hence the set S ∪ {w} is an isolate irredundant set which contradicts the
assumption that S is a maximal irredundant set. Therefore S ′′ is an isolate dominating set. Even
though S ′′ is an isolate dominating set it cannot be a minimal isolate dominating set; for otherwise
by Theorem 1.4, it will be a maximal isolate irredundant set, which would again contradicts the
maximality of S. Therefore γ0(G) ≤ |S ′′| − 1 ≤ 2(ir0(G)− 1).

3. Open Problems

We close the paper with the following interesting problems.

(i) Find a class of graphs for which all the parameters in the chain 1 are distinct.

(ii) It is proved in Theorem 2.2 that γt(G) ≤ i0(G) + 1. Find a characterization of graphs for
which γt(G) = i0(G) + 1.

(iii) The problem of characterizing C4-free graphs G with δ(G) ≥ 2 for which γ0(G) =
⌈
i0(G)

2

⌉
seems to be challenging.
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