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Abstract

Let G(V,E) be a simple graph and f be a bijection f : V ∪ E → {1, 2, . . . , |V |+ |E|} where
f(V ) = {1, 2, . . . , |V |}. For a vertex x ∈ V , define its weight w(x) as the sum of labels of all
edges incident with x and the vertex label itself. Then f is called a super vertex local antimagic
total (SLAT) labeling if for every two adjacent vertices their weights are different. The super vertex
local antimagic total chromatic number χslat(G) is the minimum number of colors taken over all
colorings induced by super vertex local antimagic total labelings of G. We classify all trees T that
have χslat(T ) = 2, present a class of trees that have χslat(T ) = 3, and show that for any positive
integer n ≥ 2 there is a tree T with χslat(T ) = n.
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1. Introduction

All graphs defined in this paper are simple and connected. Introduced by Arumugam et al. [1],
a vertex local antimagic labeling is a bijective function f : E(G) −→ {1, 2, . . . , |E(G)|} such that
w(u) 6= w(v) for any adjacent vertices u and v, where the weight w(x) of a vertex x ∈ V is the
sum of labels of all edges incident with x. The minimum number of distinct weights needed for
a graph G to have a vertex local antimagic labeling is denoted by χla(G). They conjectured that
every connected graph other than K2 is a vertex local antimagic graph, which was confirmed by
Haslegrave using probabilistic method [4].

Putri et al. [7] introduced a new variant of vertex local antimagic labeling, called vertex local
antimagic total labeling. A vertex local antimagic total labeling is a bijective map f : V (G) ∪
E(G) −→ {1, 2, . . . , |V (G)| + |E(G)|} such that w(u) 6= w(v) for any two adjacent vertices u
and v. Here w(x) is the sum of labels of all edges incident with x and the label of x itself. The
minimum of distinct weights so that a graph G has vertex local antimagic total labeling is denoted
by χlat(G). The minimum number of distinct weights needed for a graph G to have a vertex local
antimagic labeling is denoted by χla(G). Lau [5] adopts a result from Haslegrave [4] to show
that every connected graph is a vertex local antimagic total graph. For more information on local
antimagic or antimagic labelings, we refer the reader to Gallian’s survey [3].

Furthermore, Slamin et al. [8] introduced a new variant of the labeling. A super vertex local
antimagic total labeling is a bijective map f : V (G) ∪ E(G) −→ {1, 2, . . . , |V (G)| + |E(G)|}
where f(V (G)) = {1, 2, . . . , |V (G)|} such that w(u) 6= w(v) for any two adjacent vertices u and
v, where w(x) = f(x) +

∑
xy∈E(G) f(xy).The minimum number of distinct weights needed for a

graphG to have a super vertex local antimagic labeling is denoted by χslat(G). From the definition,
we can perceive the super vertex local antimagic labeling as a vertex coloring of a graph with some
additional conditions. An easy observation then follows.

Observation 1.1. For any graph G, χslat(G) ≥ χ(G).

We limit our current research to some classes of trees; in particular, stars Sn, paths Pn, cater-
pillars Sn1,n2,...,nk

and shrubs Š(n1, n2, . . . , nk). A shrub Š(n1, n2, . . . , nk) is defined as a tree
constructed from a star Sm, every leaf of which is adjacent to some number of isolated vertices
(see [6]).

Slamin et al. [8] proved the following. If T is a tree on n ≥ 2 vertices with k leaves, then
χslat(T ) ≤ n − k + 1. For a star Sn and a double star Sk,n−k, we have χslat(Sn+1) = 2 and
χslat(Sk,n−k) = 3. In addition, if Pn is a path, χslat(Pn) = 3 if n is odd and n ≥ 5, or 3 ≤
χslat(Pn) ≤ 4 if n is even and n ≥ 6.

In this paper, we characterize trees T with χslat(T ) = 2, show existence of trees with χslat(T ) =
3, and construct trees T that have χslat(T ) = n for any positive integer n ≥ 2.

2. Characterization of Trees with χslat(T ) = 2

We start by determining the lower bound of χslat(T ). The following Lemma 2.1 shows suffi-
cient condition for vertices having different weights based on their degrees.
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Lemma 2.1. Let T be a tree graph which has SLAT-labeling f and v1, v2 ∈ V (T ). If 2 deg(v1) +
1 ≤ deg(v2), then w(v1) < w(v2).

Proof. Let deg(v1) = d and |V | = n, so that deg(v2) ≥ 2d+ 1 and |E| = n− 1. By assigning v1
and edges incident with v1 labels such that the weight of v1 is as large as possible, we have

w(v1) ≤ (d+ 1)|V |+ d|E| −
d∑

i=1

(i− 1)

w(v1) ≤ (d+ 1)n+ d(n− 1)− (d− 1)d

2

w(v1) ≤ 2dn+ n− d2 + d

2
.

Then, by assigning v2 and edges incident with v2 labels such that the weight of v2 is as small
as possible, we have

w(v2) ≥ (2d+ 1)|V |+
2d+1∑
i=1

(i+ 1)

w(v2) ≥ (2d+ 1)n+
(2d+ 1)(2d+ 2)

2
+ 1

w(v2) ≥ 2dn+ n+ 2d2 + 3d+ 1.

It can be seen that w(v1) < w(v2).

The following special case where v1 is a leaf will be useful.

Corollary 2.1. For an arbitrary tree, if v1 is a leaf vertex and v2 is a vertex with deg(v2) ≥ 3, then
w(v1) 6= w(v2).

Based on [8], χslat(Sn) = 2. We will show that stars are the only trees with χslat(T ) = 2. In
our proof, we provide a labeling different from the one in [8].

Theorem 2.1. Suppose T is a tree graph, then χslat(T ) = 2 if and only if T ∼= Sn for n ∈ N.

Proof. Let T ∼= Sn for n ∈ N, we will show that χslat(T ) = 2. By the fact that χ(T ) = 2 and
Observation 1.1 we conclude that χslat(T ) ≥ 2. To show χslat(T ) ≤ 2, define f : V (T )∪E(T ) −→
{1, 2, . . . , |V (T )|+ |E(T )|} as follows:

f(c) = n+ 1,

f(vi) = i, 1 ≤ i ≤ n,

f(cvi) = 2n+ 2− i, i ≤ i ≤ n.

From here, we get

w(vi) = 2n+ 2, 1 ≤ i ≤ n,

w(c) =
3

2
n2 +

5

2
n+ 1.
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Therefore, χslat(T ) ≤ 2. We conclude that if T ∼= Sn, then χslat(T ) = 2.
Now let χslat(T ) = 2, we will show that T ∼= Sn.
Let the partition of V (T ) be V1, V2. Without loss of generality, let x0 ∈ V1 and P = x0, y1, x1, . . .

be a diametrical path. Then x0 is of degree one. By Corollary 2.1, all vertices in V1 are of degree
at most two and therefore all vertices of V2 belong to P . Denote by p the number of leaves in V1
and by q the number of vertices of degree two. We want to show that q = 0.

Using this notation, we can see that P = x0, y1, x1, . . . , xq, yq+1 or P = x0, y1, x1, . . . , xq, yq+1, xq+1

and |V2| = q + 1. Therefore, we have

|V | = |V1|+ |V2| = (p+ q) + (q + 1) = p+ 2q + 1,

which yields
p = |V | − 2q − 1.

Denote by V i
1 the set of vertices of degree i in V1. Then we have |V 1

1 | = p and |V 2
1 | = q.

Denote |V | = m.
We know that all vertices in V1 have the same weight, call it w∗. We first look at the p vertices

of degree one, observing that ∑
xi∈V 1

1

w(xi) = pw∗. (1)

We also know that∑
xi∈V 1

1

w(xi) =
∑
xi∈V 1

1

f(xi) +
∑

xi∈V 1
1 ,xiyj∈E

f(xiyj)

≤
m∑

s=m−p+1

s +
2m−1∑

t=2m−p

t

=
(2m− p+ 1)p

2
+

(4m− p− 1)p

2
(2)

Combining (1) and (2), we obtain

pw∗ =
∑
xi∈V 1

1

w(xi) ≤
(2m− p+ 1)p

2
+

(4m− p− 1)p

2
, (3)

which yields

w∗ ≤ (2m− p+ 1)

2
+

(4m− p− 1)

2
= 3m− p, (4)

Now we look at the q vertices of degree two, observing that∑
xi∈V 1

2

w(xi) = qw∗. (5)
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We also know that∑
xi∈V 2

1

w(xi) =
∑
xi∈V 2

1

f(xi) +
∑

xi∈V 2
1 ,xiyj∈E

f(xiyj)

≥
q∑

s=1

s +

m+2q∑
t=m+1

t

=
(q + 1)q

2
+

(2m+ 2q + 1)(2q)

2
(6)

Combining (5) and (6), we obtain

qw∗ =
∑
xi∈V 2

1

w(xi) ≥
(q + 1)q

2
+

(2m+ 2q + 1)(2q)

2
, (7)

which for q > 0 yields

w∗ ≥ q + 1

2
+ (2m+ 2q + 1) = 2m+

5q + 3

2
. (8)

We noted above that
p = |V | − 2q − 1 = m− 2q − 1. (9)

Substituting (9) into (4), we have

w∗ ≤ 3m− p = 3m− (m− 2q − 1) = 2m+ 2q + 1. (10)

Now comparing (8) and (10), we get

2m+
5q + 3

2
≤ w∗ ≤ 2m+ 2q + 1, (11)

which is impossible for q > 0. Hence, q = 0. We already noticed that |V2| = q + 1 = 1, which
implies that T must be the star Sp.

In Figure 1, we give an example of SLAT labeling on S8.

Figure 1: SLAT labeling on S8, χslat(S8) = 2.

Corollary 2.2. Suppose T is a non-trivial tree graph and Sn is a star graph. If T is not isomorphic
to Sn, then χslat(T ) ≥ 3.
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3. Existence of Trees with χslat(T ) = 3

Slamin et al. in [8] investigated paths Pn and proved that χslat(Tn) = 3 when n is odd, and
3 ≤ χslat(Tn) ≤ 4 when n is even. In Theorem 3.1, we present a more straightforward proof.

Theorem 3.1. Let Pn be a path on n vertices, n ≥ 4. Then χslat(Pn) = 3 when n is odd or
n ∈ {4, 6, 8, 10} and 3 ≤ χslat(Pn) ≤ 4 when n is even and n ≥ 12.

Proof. Let V (Pn) = {vi|1 ≤ i ≤ n} andE(Pn) = {vivi+1|1 ≤ i ≤ n−1}with n ∈ N. According
to Corollary 2.2, graphs that are not isomorphic to a star have χslat(Pn) ≥ 3. To show the upper
bound, the problem is divided into two cases, according to the parity of n.

Case 1. n is odd
Define f : V (Pn) ∪ E(Pn) −→ {1, 2, 3, . . . , |V |+ |E|} as follows

f(vi) =


2i− 1, if ∈ {1, 2},

2, if i = n,
n− i+ 2, if 3 ≤ i ≤ n− 2, i is odd,
n− i+ 4, if 4 ≤ i ≤ n− 1, i is even.

f(vivi+1) =


2n− 1, if i = 1,
n+ i−1

2
, if 3 ≤ i ≤ n− 2, i is odd,

3
2
(n− 1) + i

2
, if 2 ≤ i ≤ n− 1, i is even.

Then we have the weights as follows.

w(vi) =


2n, if ∈ {1, n},

7
2
n− 1

2
, if 3 ≤ i ≤ n− 2, i is odd,

7
2
n+ 3

2
, if 4 ≤ i ≤ n− 1, i is even.

Therefore, χslat(Pn) ≤ 3.

Case 2. n is even
Define f : V (Pn) ∪ E(Pn) −→ {1, 2, 3, . . . , |V |+ |E|} as follows.

f(vi) =


n, if i = 1,

n− 1, if i = n,
n− i− 1, if 2 ≤ i ≤ n− 2, i is even,
n− i+ 1, if 3 ≤ i ≤ n− 1, i is odd.

f(vivi+1) =

{
n+ i

2
, if 2 ≤ i ≤ n− 2, i is even,

3
2
n+ i−1

2
, if 1 ≤ i ≤ n− 1, i is odd.

Then we have the weights as follows.

w(vi) =


5
2
n, if i = 1,

3n− 2, if i = n,
7
2
n, if 3 ≤ i ≤ n− 2, i is odd,

7
2
n− 2, if 2 ≤ i ≤ n− 1, i is even.
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We conclude that χslat(Pn) = 3 when n is odd or n{4, 6, 8, 10}, and 3 ≤ χslat(Pn) ≤ 4 when
n is even and n ≥ 12.

In Figure 2 we present SLAT labelings of P4, P6, P8, P10 and also P7 as an example for n odd.
The labeling is not unique. Here are some labelings for P6, P8, P10. First bracket is vertex labels,
second edges, third weights. The labelings for P6, P8, and P10 were found by Branson [2].

P6

[5, 3, 4, 1, 2, 6][11, 9, 7, 8, 10][16, 23, 20, 16, 20, 16]

P8

[8, 4, 1, 6, 5, 3, 2, 7][14, 12, 13, 11, 10, 9, 15][22, 30, 26, 30, 26, 22, 26, 22]
[8, 3, 4, 2, 5, 7, 1, 6][13, 14, 9, 10, 12, 11, 15][21, 30, 27, 21, 27, 30, 27, 21]
[7, 1, 2, 4, 6, 3, 5, 8][15, 12, 13, 11, 10, 9, 14][22, 28, 27, 28, 27, 22, 28, 22]
[5, 2, 7, 6, 8, 3, 4, 1][10, 15, 9, 12, 11, 13, 14][15, 27, 31, 27, 31, 27, 31, 15]
[3, 1, 5, 4, 7, 8, 6, 2][12, 15, 10, 14, 9, 11, 13][15, 28, 30, 28, 30, 28, 30, 15]
[4, 1, 7, 6, 5, 3, 8, 2][11, 15, 9, 12, 14, 10, 13][15, 27, 31, 27, 31, 27, 31, 15]
[7, 2, 3, 6, 1, 5, 4, 8][15, 11, 13, 9, 12, 10, 14][22, 28, 27, 28, 22, 27, 28, 22]
[6, 1, 3, 7, 2, 5, 4, 8][15, 12, 11, 10, 14, 9, 13][21, 28, 26, 28, 26, 28, 26, 21]

P10

[8, 1, 7, 3, 2, 5, 4, 9, 6, 10][19, 14, 15, 16, 18, 11, 12, 13, 17][27, 34, 36, 34, 36, 34, 27, 34, 36, 27]
[9, 6, 4, 5, 3, 7, 2, 1, 8, 10][19, 15, 12, 11, 17, 16, 13, 14, 18][28, 40, 31, 28, 31, 40, 31, 28, 40, 28]

Figure 2: SLAT labeling on P7, P4 and P6.

Based on the labelings of the short even paths above, we state the following.

Conjecture. For any even n ≥ 4, χslat(Pn) = 3.

As a common generalization of caterpillars and shrubs, we introduce a new class of trees called
shrubs. A shrub Ŝ(m,n, p) is defined by its vertex and edge set as follows.

V (Ŝ(m,n, p)) = {c, vi, vji , uk|1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p}
E(Ŝ(m,n, p)) = {cvi, vivji , cuk|1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p}
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When p = 0, then Ŝ(m,n, p) is a regular shrub (all uk vertices and cuk edges are omitted).
Else, if m ≤ 2, then Ŝ(m,n, p) is a caterpillar. However, when m = 0, n = 0, or m+ p = 1, then
Ŝ(m,n, p) is a star. Since we already know that χslat(T ) = 2 for T ∼= Sn, the case of graph which
is isomorphic to a star is omitted.

Theorem 3.2. Suppose Ŝ(m,n, p) is a modified shrub. For positive m,n, non-negative p and
m+ p 6= 1, χslat(Ŝ(m,n, p)) = 3.

Proof. Let Ŝ(m,n, p) = {c, vi, vji , uk|1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p} and E(Ŝ(m,n, p)) =
{cvi, vivji , cuk|1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p}. By Corollary 2.2, graphs other than stars have
χslat(Ŝ(m,n, p)) ≥ 3. To show the upper bound, the proof is divided into two cases.

Case 1. p+m ≥ n+ 1
The case is divided into three subcases, according to the parity of n and m.

Subcase 1.1. n is even
Define f : V ∪ E −→ {1, 2, 3, . . . , |V |+ |E|} as follows

f(uk) = k, 1 ≤ k ≤ p,

f(vji ) =

{
m(j − 1) + p+ i, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is odd,
mj − i+ p+ 1, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is even.

f(vi) = mn+ p+ i, 1 ≤ i ≤ m,

f(c) = m(n+ 1) + p+ 1,

f(viv
j
i ) =

{
m(2n− j + 1) + p+ i+ 1, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is even,
m(2n− j + 2) + p− i+ 2, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is odd.

f(cvi) = m(2n+ 2) + 2p− i+ 2, 1 ≤ i ≤ m,

f(cuk) = m(2n+ 1) + 2p− k + 2, 1 ≤ k ≤ p.

When p = 0, then vertices vk and edges cvk are omitted.

We have

w(uk) = w(vji ) = m(2n+ 1) + 2p+ 2, 1 ≤ k ≤ p, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

w(vi) = m(n(2n+
9

2
)− n(n+ 1)

2
+ 2) + p(n+ 3) +

3n

2
+ 2, 1 ≤ i ≤ m,

w(c) = m((2m+ 1)(n+ 1) + p(2n+ 3) + 2) +
p(3p+ 5)

2
− m(m+ 1)

2
+ 1.

It can be seen that these three weights are different.
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Subcase 1.2. Both n and m are odd
Define f : V ∪ E −→ {1, 2, 3, . . . , |V |+ |E|} as follows

f(uk) = k, 1 ≤ k ≤ p,

f(vji ) =

{
m(j − 1) + p+ i, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is odd,
mj − i+ p+ 1, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is even.

f(vi) =

{
mn+ p+ m+1

2
− i+ 1, if 1 ≤ i ≤ m+1

2
,

m(n+ 1) + p+ m+1
2
− i+ 1, if m+3

2
≤ i ≤ m.

f(c) = m(n+ 1) + p+ 1,

f(viv
j
i ) =

{
m(2n− j + 1) + p+ i+ 1, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is even,
m(2n− j + 2) + p− i+ 2, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is odd.

f(cvi) =

{
m(2n+ 1) + 2p+ 2i, if 1 ≤ i ≤ m+1

2
,

2mn+ 2p+ 2i, if m+3
2
≤ i ≤ m.

f(cuk) = m(2n+ 1) + 2p− k + 2, 1 ≤ k ≤ p.

When p = 0, then vertices vk and edges cvk are omitted.

We have

w(uk) = w(vji ) = m(2n+ 1) + 2p+ 2, 1 ≤ k ≤ p, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

w(vi) = m(2n(n+ 2) + (1− n)
n+ 1

2
+ 1) + p(n+ 3) +

m+ 3n

2
+ 2, 1 ≤ i ≤ m,

w(c) = m((2m+ 1)(n+ 1) + p(2n+ 3) + 2) +
p(3p+ 5)

2
− m(m+ 1)

2
+ 1.

It can be seen that these three weights are different.

Subcase 1.3. n is odd and m is even
Define f : V ∪ E −→ {1, 2, 3, . . . , |V |+ |E|} as follows

f(uk) = k, 1 ≤ k ≤ p,

f(vji ) =

{
m(j − 1) + p+ i, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is odd,
mj − i+ p+ 1, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is even.

f(vi) =

{
mn+ p+ i+1

2
+ 1, if 1 ≤ i ≤ m, i is odd,

mn+ p+ m+i
2

+ 1, if 1 ≤ i ≤ m, i is even.

f(c) = mn+ p+
m

2
+ 1,

f(viv
j
i ) =

{
m(2n− j + 1) + p+ i+ 1, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is even,
m(2n− j + 2) + p− i+ 2, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is odd.
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f(cvi) =

{
m(2n+ 1) + 2p+ i

2
+ 1, if 1 ≤ i ≤ m, i is even,

m(2n+ 1) + 2p+ m+i+1
2

+ 1, if 1 ≤ i ≤ m, i is odd.

f(cuk) = m(2n+ 1) + 2p− k + 2, 1 ≤ k ≤ p.

When p = 0, then vertices vk and edges cvk are omitted.

We have

w(uk) = w(vji ) = m(2n+ 1) + 2p+ 2, 1 ≤ k ≤ p, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

w(vi) = m(2n(n+ 2) + (1− n)
n+ 1

2
+ 1) + p(n+ 3) +

m+ 3n+ 1

2
+ 2, 1 ≤ i ≤ m,

w(c) = m((2m+ 1)(n+ 1) + p(2n+ 3) +
3

2
) +

p(3p+ 5)

2
− m(m+ 1)

2
+ 1.

It can be seen that these three weights are different.

Case 2. p+m < n+ 1
The case is divided into three subcases according to the parity of n and m.

Subcase 2.1. n is even
Define f : V ∪ E −→ {1, 2, 3, . . . , |V |+ |E|} as follows.

f(uk) = mn+ k, 1 ≤ k ≤ p,

f(vji ) =

{
m(j − 1) + i, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is odd,
mj − i+ 1, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is even.

f(vi) = mn+ p+ i+ 1, 1 ≤ i ≤ m,

f(c) = mn+ p+ 1,

f(viv
j
i ) =

{
m(2n− j + 2) + 2p+ i+ 1, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is even,
m(2n− j + 3) + 2p− i+ 2, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is odd.

f(cvi) = m(n+ 2) + p− i+ 2, 1 ≤ i ≤ m,

f(cuk) = m(n+ 2) + 2p− k + 2, 1 ≤ k ≤ p.

When p = 0, then vertices vk and edges cvk are omitted.

We have

w(uk) = w(vji ) = m(2n+ 2) + 2p+ 2, 1 ≤ k ≤ p, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

w(vi) = m(n(2n+
9

2
)− n(n+ 1)

2
+ 2) + 2p(n+ 1) +

3n

2
+ 3, 1 ≤ i ≤ m,

w(c) = m((m+ 2)(n+ 2) + p) +
p(3p+ 5)

2
− m(m+ 1)

2
+ 1.
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It can be seen that these three weights are different.

Subcase 2.2. Both n and m are odd
Define f : V ∪ E −→ {1, 2, 3, . . . , |V |+ |E|} as follows.

f(uk) = mn+ k, 1 ≤ k ≤ p,

f(vji ) =

{
m(j − 1) + i, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is odd,
mj − i+ 1, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is even.

f(vi) =

{
mn+ p+ m+1

2
− i+ 2, if 1 ≤ i ≤ m+1

2
,

m(n+ 1) + p+ m+1
2
− i+ 2, if m+3

2
≤ i ≤ m.

f(c) = mn+ p+ 1,

f(viv
j
i ) =

{
m(2n− j + 2) + 2p+ i+ 1, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is even,
m(2n− j + 3) + 2p− i+ 2, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is odd.

f(cvi) =

{
m(n+ 1) + p+ 2i, if 1 ≤ i ≤ m+1

2
,

mn+ p+ 2i, if m+3
2
≤ i ≤ m.

f(cuk) = m(n+ 2) + 2p− k + 2, 1 ≤ k ≤ p.

When p = 0, then vertices vk and edges cvk are omitted.

We have

w(uk) = w(vji ) = m(2n+ 2) + 2p+ 2, 1 ≤ k ≤ p, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

w(vi) = m(2n(n+ 2) + (1− n)
n+ 1

2
+ 1) + 2p(n+ 1) +

m+ 3n

2
+ 3, 1 ≤ i ≤ m,

w(c) = m((m+ 1)(n+
3

2
) + p(n+ 3)) +

p(3p+ 5)

2
+ 1.

It can be seen that these three weights are different.

Subcase 2.3. n is odd and m is even
Define f : V ∪ E −→ {1, 2, 3, . . . , |V |+ |E|} as follows.

f(uk) = mn+ k, 1 ≤ k ≤ p,

f(vji ) =

{
m(j − 1) + i, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is odd,
mj − i+ 1, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is even.

f(vi) =

{
mn+ p+ i+1

2
, if 1 ≤ i ≤ m, i is odd,

mn+ p+ m+i
2

+ 1, if 1 ≤ i ≤ m, i is even.

f(c) = mn+ p+
m

2
+ 1,
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f(viv
j
i ) =

{
m(2n− j + 2) + 2p+ i+ 1, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is even,
m(2n− j + 3) + 2p− i+ 2, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, j is odd.

f(cvi) =

{
m(n+ 1) + p+ i

2
+ 1, if 1 ≤ i ≤ m, i is even,

m(n+ 1) + p+ m+i+1
2

+ 1, if 1 ≤ i ≤ m, i is odd.

f(cuk) = m(2n+ 1) + 2p− k + 2, 1 ≤ k ≤ p.

When p = 0, then vertices vk and edges cvk are omitted.

We have

w(uk) = w(vji ) = m(2n+ 2) + 2p+ 2, 1 ≤ k ≤ p, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

w(vi) = m(2n(n+ 2) + (1− n)
n+ 1

2
+ 1) + 2p(n+ 1) +

m+ 3n+ 1

2
+ 2, 1 ≤ i ≤ m,

w(c) = m((m+ 1)(n+
3

2
) + p(2n+ 3) +

1

2
) +

p(3p+ 5)

2
+ 1.

It can be seen that these three weights are different.
From the above cases, we can conclude that χslat(Š

′(m,n, p)) ≤ 3. Hence, χslat(Š
′(m,n, p)) =

3.

In Figure 3, we have examples of two cases in the preceding theorem.

(a) T ∼= Ŝ(4, 3, 1). (b) T ∼= Ŝ(2, 3, 1).

Figure 3: SLAT labeling on T , χslat(T ) = 3.

Corollary 3.1. If a tree T is isomorphic to a regular shrub Š(n, n, n, . . . , n) or a caterpillar Sn1,n2

or Sn1,n2,n1 , then χslat(T ) = 3.

4. Construction of Trees T with χslat(T ) = n for any n ∈ N

Motivated by the fact that for any tree (an in fact for any bipartite graph) the regular chromatic
number χ(T ) = 2, it is natural to ask whether there exists k ∈ N such that for every tree T ,
χslat(T ) ≤ k. In the following theorem we show that no such bound exists.
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Theorem 4.1. For every n ≥ 2, there exists a tree T such that χslat(T ) = n.

Proof. The assertion for n = 2 follows from Theorem 2.1 and for n = 3 from Theorem 3.1.
Therefore, we only construct examples fro n ≥ 4.

We construct a tree T starting with the path Pn+1. For every i = 2, 3, . . . , n we define ti =⌊
i
2

⌋
+ 1 and join vertex vi to 2ti − 3 isolated vertices.

From this construction, we obtain deg(vi) = 2ti − 1, for 2 ≤ i ≤ n.
First, we need to show that χslat(T ) ≥ n. According to the definition of SLAT-labeling,

adjacent vertices must have different weights, therefore w(vi) 6= w(vi+1) for 1 ≤ i ≤ n.
By the graph construction, for any 1 ≤ i, j ≤ n such that j ≥ i + 2 the vertices vi, vj are

non-adjacent and satisfy the condition 2 deg(vi) + 1 ≤ deg(vj). It then follows from Lemma 2.1
that w(vi) 6= w(vj). In addition, it follows from Corollary 2.1 that the weights of vertices of degree
at least three are all greater than the weights of all leaves. Thus, the graph needs at least n distinct
weights, which means χslat(T ) ≥ n.

To show χslat(T ) ≤ n, we define a labeling f as follows. For i = 2, 3, . . . , n and l = 1, 2, . . . , ti
we denote by ei,l the pendant edges incident with vertex vi and by vi,l the leaf incident with ei,l.
First we label edge v1v2 with label |V | + 1. Then we label the remaining pendant edges starting
with the lowest available edge label |V |+ 2 in lexicographic order; that is, f(ei,l) < f(ei,s) for any
1 ≤ l < s ≤ ti and f(ei,l) < f(i, s) for any 2 ≤ i < j ≤ n and any l and s. Next, label the leaf
incident with an edge ei,l (or v1v2) so that the sum of the edge and vertex label equals 2|V |−n+2.

Then, label the vertices v2, v3, . . . , vn starting from f(v2) = |V |−n+2 consecutively in increas-
ing order. Finally, label the remaining edges starting from f(v2v3) = 2|V | − n + 2consecutively
in increasing order. From this labeling, we have w(vi,l) = 2|V | − n + 2 for every leaf vertex vi,l,
while 2|V | − n+ 2 < w(vi) ≤ w(vj) for 2 ≤ i < j ≤ n. Hence, χslat(T ) ≤ n.

We can conclude that χslat(T ) = n.

5. Open Problems

To conclude, we state some obvious open problems.

1. Characterize trees with χslat(T ) = 3.
2. Determine χslat(G) for other natural classes of graphs.
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