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Abstract

In this paper, we introduce a new family of cubic graphs Γ(m), called Generalized Pappus graphs,
where m ≥ 3. We compute the automorphism group of Γ(m) and characterize when it is a Cayley
graph.
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1. Introduction

The study of different families of graphs with respect to their group of symmetries is an impor-
tant aspect of modern algebraic graph theory. Among them the cubic families are one of the most
important class of graphs. Various important families of cubic graphs which are extensively stud-
ied are Generalized Petersen graphs [2], Double Generalized Petersen graphs [5], Zhou-Ghasemi
graphs [8], Zhou-Li graphs [9], Devilliers et.al. graphs [1], [4] etc. In this paper, we construct
another infinite family of cubic graphs starting from the well-known Pappus graph and study its
automorphism group and structural properties.

Pappus graph is a bipartite cubic graph with 18 vertices and 27 edges, formed as the Levi
graph of the Pappus configuration. It is named after Pappus of Alexandria who is believed to have
discovered the “hexagon theorem” describing the Pappus configuration. Recently, [7] proposed a
group theoretic generalization of Pappus configuration from a projective geometric viewpoint. Our
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goal is to generalize it from a graph theoretic viewpoint. To begin with, we define the Genralized
Pappus graph next. For other definitons and terminologies, readers are referred to [3].

Definition 1.1. Let m ≥ 3 be a positive integer and set n = 2m. The generalized Pappus graph
Γ(m) is defined on the vertex set V = {xi, yi, zi : i ∈ Zn}, where xi’s, yi’s and zi’s are called
the outer vertices, middle vertices and inner vertices respectively. There are four types of edges
between these vertices, namely outer edges of the form xi ∼ xi+1, spoke edges of the form xi ∼ yi,
middle edges of the form yi ∼ zi+1 and yi ∼ zi−1 and inner edges of the form zi ∼ zi+m. (Here
u ∼ v means u and v are adjacent.)
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x5 x2

y0 y1

y4 y3

y5 y2

z0 z1

z4 z3

z5 z2

Γ(3)
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Γ(4)

Figure 1. Generalized Pappus Graphs, Γ(3) and Γ(4).

It is obvious that Γ(m) is a cubic graph of order 6m and Γ(3) is the Pappus graph (See Figure
1). We denote the set of outer, spoke, middle and inner edges by Ω,Σ,M and I respectively, and
the set of vertices xi, yi and zi by X, Y and Z respectively.

2. Automorphism Group of Γ(m)

We start by noting some automorphisms of Γ(m). It can be easily checked that ρ : Γ(m) →
Γ(m) and τ : Γ(m) → Γ(m) defined by

ρ : xi 7→ xi+1 τ : xi 7→ x−i

yi 7→ yi+1 yi 7→ y−i

zi 7→ zi+1 zi 7→ z−i

are automorphisms of Γ(m) and ◦(ρ) = n; ◦(τ) = 2 and τρτ = ρ−1. Thus H = ⟨ρ, τ⟩ ∼= Dn, the
dihedral group of order 2n. Moreover, if m is odd, it can be shown that σ : Γ(m) → Γ(m) given
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by
σ : xi 7→ yi+m if i is even σ : xi 7→ zi+m if i is odd

yi 7→ xi+m yi 7→ zi
zi 7→ yi zi 7→ xi+m

is an automorphism of Γ(m) which does not belong to H . Also we have ◦(σ) = 3, σρσ = ρ and
στ = τσ.

Theorem 2.1. If m is odd, then Γ(m) is a Cayley graph.

Proof. We prove the theorem by showing that K = ⟨ρ, σ⟩ acts regularly on Γ(m). As |K| = 3n =
|Γ(m)|, it is enough to show that K acts transitively on the vertices of Γ(m).

Let us start with x0. Note that x0 can be mapped to any xi by applying suitable powers of
ρ. As σ(x0) = ym, we can map x0 to any yi by applying suitable powers of ρ on σ(x0). And,
as σρ(x0) = zm+1, we can map x0 to any zi by applying suitable powers of ρ on σρ(x0). Thus,
we can map x0 to any vertex of Γ(m) and vice-versa using the elements of K. Now, if we start
with two arbitrary vertices, we can map one to the other via x0. Hence, K acts transitively on the
vertices of Γ(m).

Lemma 2.1. Let φ ∈ Aut(Γ(m)), if φ(X) = X then φ ∈ H .

Proof. Let φ(x0) = xa, then φ(x1) = xa+1 or xa−1 (since φ(x1) ∼ φ(x0) = xa).
Let φ(x1) = xa+1. As φ(X) = X we have φ(x2) = xa+2, φ(x3) = xa+3, · · · , φ(xn−1) =

xa+n−1. Now as xi ∼ yi, φ(xi) = xa+i ∼ φ(yi) so we have φ(yi) = ya+i for all i. Again as
φ(yi−1) = ya+i−1 and φ(yi+1) = ya+i+1, we have φ(zi) = za+i for all i. Hence, φ = ρa ∈ H .

Let φ(x1) = xa−1. As φ(X) = X then φ(x2) = xa−2, φ(x3) = xa−3, · · · , φ(xn−1) =
xa−(n−1). Now as xi ∼ yi, φ(xi) = xa−i ∼ φ(yi) so we have φ(yi) = ya−i for all i. Again,
as φ(yi−1) = ya−(i−1) and φ(yi+1) = ya−(i+1), we have φ(zi) = za−i for all i. Hence we have,
φ = ρaτ ∈ H .

Lemma 2.2. Let φ ∈ Aut(Γ(m)) and m ̸= 3. If φ(xi) = xj and φ(yi) = yj for some i, j, then
φ ∈ H .

Proof. As φ(xi) = xj and φ(yi) = yj then φ(xi+1), φ(xi−1) ∈ {xj+1, xj−1}.
Let φ(xi+1) = xj+1 and φ(xi−1) = xj−1, then φ(xi+2) = xj+2 or yj+1. If φ(xi+2) = yj+1,

consider the cycle C : yi ∼ xi ∼ xi+1 ∼ xi+2 ∼ yi+2 ∼ zi+1 ∼ yi, then φ(C) : yj ∼ xj ∼ xj+1 ∼
yj+1 ∼ φ(yi+2) ∼ φ(zi+1) ∼ yj . For m ̸= 3, there exists a unique path P of length 3, namely
yj ∼ xj ∼ xj+1 ∼ yj+1 between yj and yj+1. Thus φ(C) is not a cycle, which is a contradiction.
Hence φ(xi+2) = xj+2. Similarly, it can be shown that φ(xi+k) = xj+k for all k, i.e., φ(X) = X .
Then by Lemma 2.1, we have φ ∈ H . Similarly if φ(xi+1) = xj−1 we can show φ ∈ H .

It is to be noted that if m = 3, there exists another path P ′ : yj ∼ zj−1 ∼ zj+2 ∼ yj+1 joining
yj and yj+1.

Lemma 2.3. Let φ ∈ Aut(Γ(m)) \H . Then φ can not map consecutive spokes into Σ.
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Proof. Let φ([xi, yi]) ∈ Σ. We will show φ([xi+1, yi+1]) /∈ Σ. Let m ̸= 3. As φ /∈ H , then by
Lemma 2.2, we have (φ(xi), φ(yi)) ̸= (xj, yj) for all j. However, as φ([xi, yi]) ∈ Σ, the orientation
of the spoke [xi, yi] is changed by φ. Thus, we assume that φ(xi) = yk and φ(yi) = xk for some
k. Now as φ(xi) ∼ φ(xi+1), we must have φ(xi+1) = zk−1 or zk+1, hence φ([xi+1, yi+1]) /∈ Σ.

Now let m = 3 and φ([xi, yi]) ∈ Σ. If φ(xi) = yk and φ(yi) = xk for some k, then as
φ(xi) ∼ φ(xi+1) we have φ(xi+1) = zk−1 or zk+1 and hence φ([xi+1, yi+1]) /∈ Σ. So, we assume
that φ(xi) = xk and φ(yi) = yk. Then φ(xi+1), φ(xi−1) ∈ {xk+1, xk−1}.

Let φ(xi+1) = xk+1, then φ(xi+2), φ(yi+1) ∈ {xk+2, yk+1}. If φ(yi+1) = xk+2 and φ(xi+2) =
yk+1 then φ([xi+1, yi+1]) = [xk+1, xk+2] /∈ Σ. If φ(yi+1) = yk+1 and φ(xi+2) = xk+2, consider
the cycle C1 : xi+1 ∼ yi+1 ∼ zi+2 ∼ zi+5 ∼ yi ∼ xi ∼ xi+1. Then φ(C1) : xk+1 ∼ yk+1 ∼
φ(zi+2) ∼ φ(zi+5) ∼ yk ∼ xk ∼ xk+1. As φ(C1) is a cycle then we have φ(zi+2) = zk+2 and
φ(zi+5) = zk+5 (See Figure 1(Left)). Now consider the cycle C2 : yi+1 ∼ xi+1 ∼ xi+2 ∼ xi+3 ∼
yi+3 ∼ zi+2 ∼ yi+1, then φ(C2) : yk+1 ∼ xk+1 ∼ xk+2 ∼ φ(xi+3) ∼ φ(yi+3) ∼ zk+2 ∼ yk+1. As
φ(C2) is a cycle then we have φ(xi+3) = xk+3 and φ(yi+3) = yk+3. Proceeding this way, we get
φ(X) = X and φ(Y ) = Y . Then by Lemma 2.1, we have φ ∈ H , which is a contradiction, hence
φ(yi+1) ̸= yk+1, i.e., φ([xi+1, yi+1]) /∈ Σ. Similarly we can proof this if φ(xi+1) = xk−1. This
completes the proof.

Corollary 2.1. Stab(Σ) = H .

Proof. It is clear that H stabilize Σ setwise, i.e., H ⊆ Stab(Σ). Let φ ∈ Stab(Σ). Then
φ([xi, yi]), φ([xi+1, yi+1]) ∈ Σ for all i, and thus by Lemma 2.3, we have φ ∈ H , i.e., Stab(Σ) ⊆
H .

Lemma 2.4. Let φ ∈ Aut(Γ(m)) \H and m ̸= 3. If φ([xi, yi]) ∈ Σ, then φ([xi+2, yi+2]) ∈ Σ.

Proof. Let φ(xi) = xj and φ(yi) = yj , then by Lemma 2.2, we have φ ∈ H , which is a contradic-
tion. So we assume that φ(xi) = yj and φ(yi) = xj . Then φ(xi+1), φ(xi−1) ∈ {zj+1, zj−1}.

Let φ(xi+1) = zj+1 and φ(xi−1) = zj−1. As φ(xi+2) ∼ φ(xi+1) and φ(xi) = yj then
φ(xi+2) = yj+2 or zj+1+m. We claim that φ(xi+2) = yj+2. If possible, let φ(xi+2) = zj+1+m.
As φ(yi+1) ∼ φ(xi+1) = zj+1, φ(xi) = yj and φ(xi+2) = zj+1+m, we have φ(yi+1) = yj+2. Now
consider the cycle C : yi ∼ xi ∼ xi+1 ∼ xi+2 ∼ yi+2 ∼ zi+1 ∼ yi. Then φ(C) : xj ∼ yj ∼
zj+1 ∼ zj+1+m ∼ φ(yi+2) ∼ φ(zi+1) ∼ xj . As there exists unique path xj ∼ yj ∼ zj+1 ∼ zj+1+m

of length 3 between xj and zj+1+m for m ̸= 3, we get φ(C) is not a cycle, which is a contradiction.
Therefore φ(xi+2) = yj+2.

Now as φ(yi+2) ∼ φ(xi+2) = yj+2 and φ(xi+1) = zj+1, we have φ(yi+2) = zj+3 or xj+2. We
claim that φ(yi+2) = xj+2. If possible let φ(yi+2) = zj+3. Consider the cycle C : yi ∼ xi ∼
xi+1 ∼ xi+2 ∼ yi+2 ∼ zi+1 ∼ yi, then φ(C) : xj ∼ yj ∼ zj+1 ∼ yj+2 ∼ zj+3 ∼ φ(zi+1) ∼ xj .
As there does not exist any path of length 2 between xj and zj+3, φ(C) is not a cycle, which is a
contradiction. Therefore φ(yi+2) = xj+2. Therefore φ([xi, yi]) = [yj, xj] implies φ([xi+2, yi+2]) =
[yj+2, xj+2] ∈ Σ.

Similarly we can proof this if φ(xi+1) = zj−1 and φ(xi−1) = zj+1. This completes the proof.
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From Theorem 2.1, we have if φ /∈ H , then either ∅ ≠ φ(Σ) ∩ Σ ⊊ Σ or φ(Σ) ∩ Σ = ∅. We
will show in Theorem 2.2 that ∅ ≠ φ(Σ) ∩ Σ ⊊ Σ is possible only if m is odd. If φ /∈ H and
m ̸= 3, then from Lemma 2.4, we have φ([xi, yi]) = [yj, xj] ⇒ φ([xi+2k, yi+2k]) = [yj+2k, xj+2k]
for all k. At first for m ̸= 3 we consider the case when any one even spoke is mapped to an odd
spoke, then by Lemma 2.4 we have all even spokes are mapped to all odd spokes and we will show
that case appears only if m is odd.

Lemma 2.5. Let φ ∈ Aut(Γ(m)) \H and m ̸= 3. If set of all even spokes are mapped to set of all
odd spokes via φ, then m is odd.

Proof. Let [xe, ye] be an even spoke and [xod, yod] be an odd spoke such that φ([xe, ye]) = [xod, yod].
If φ(xe) = xod and φ(ye) = yod then by Lemma 2.2 we have φ ∈ H , which is a contradiction. So
φ(xe) = yod and φ(ye) = xod. Then φ(xe+1), φ(xe−1) ∈ {zod+1, zod−1}.

Case 1. Let φ(xe+1) = zod+1 and φ(xe−1) = zod−1. As [xe+2, ye+2] is an even spoke, let
φ(xe+2) = yod2, where od2 is an odd index. As xe ∼ xe+1 ∼ xe+2, applying φ we have yod ∼
zod+1 ∼ yod2, and hence yod2 = yod+2. Again, as [xe+4, ye+4] is an even spoke, let φ(xe+2) = yod3.
Since the distance between xe+2 and xe+4 is 2, the distance between yod+2 and yod3 is also 2, and
hence φ(xe+4) = yod+4 and so φ(ye+4) = xod+4. Proceeding this way, we have φ(xe+2k) = yod+2k

and φ(ye+2k) = xod+2k for k = 0, . . . ,m − 1. Now as xe+2k ∼ xe+2k+1 ∼ xe+2k+2, applying φ,
we have yod+2k ∼ φ(xe+2k+1) ∼ yod+2k+2. Hence φ(xe+2k+1) = zod+2k+1 for k = 0, · · · ,m − 1.
Again as φ(ye+2k+1) ∼ φ(xe+2k+1) = zod+2k+1 and φ(xe+2k) = yod+2k, we have φ(ye+2k+1) =
zod+(2k+1)+m. Now as ye+2k−1 ∼ ze+2k ∼ ye+2k+1, applying φ we have zod+(2k−1)+m ∼ φ(ze+2k) ∼
zod+(2k+1)+m. Thus φ(ze+2k) = yod+2k+m for k = 0, · · · ,m − 1. Note that if m is even then
od + 2k + m is an odd integer and so φ(ze+2k) ̸= yod+2k+m as all even spokes are mapped to all
odd spokes. Hence φ is not a graph automorphism when m is even and so m must be odd.

Case 2. Let φ(xe+1) = zod−1 and φ(xe−1) = zod+1. Proceeding as in the previous case, it can
be shown that φ(xe+2k) = yod−2k, φ(ye+2k) = xod−2k and φ(xe−2k) = yod+2k, φ(ye−2k) = xod+2k

for k = 0, · · · ,m − 1. Now as xe+2k ∼ xe+2k+1 ∼ xe+2k+2, applying φ we have, yod−2k ∼
φ(xe+2k+1) ∼ yod−2k−2, hence φ(xe+2k+1) = zod−(2k+1) and similarly φ(xe−(2k+1)) = zod+(2k+1)

for k = 0, · · · ,m − 1. As φ(ye+2k+1) ∼ φ(xe+2k+1) = zod−(2k+1) and φ(xe+2k) = yod−2k, we get
φ(ye+2k+1) = zod−(2k+1)+m. Similarly φ(ye−(2k+1)) = zod+(2k+1)+m. Again, as ye+2k−1 ∼ ze+2k ∼
ye+2k+1, applying φ we have zod−(2k−1)+m ∼ φ(ze+2k) ∼ zod−(2k+1)+m, and hence φ(ze+2k) =
yod−2k+m for k = 0, · · · ,m − 1. Note that if m is even then od − 2k + m is an odd integer, and
so φ(ze+2k) ̸= yod−2k+m as all even spokes are mapped to all odd spokes. Hence φ is not a graph
automorphism when m is even and so m must be odd.

Similarly, it can be proved that:

Lemma 2.6. Let φ ∈ Aut(Γ(m)) \H and m ̸= 3.

• If set of all even spokes are mapped to set of all even spokes via φ, then m is odd.

• If set of all odd spokes are mapped to set of all odd spokes via φ, then m is odd.

• If set of all odd spokes are mapped to set of all even spokes via φ, then m is odd.
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Theorem 2.2. Let φ ∈ Aut(Γ(m)) \H . If ∅ ≠ φ(Σ) ∩ Σ ⊊ Σ, then m is odd.

Proof. If m = 3, then there is nothing to prove. So, we assume that m ̸= 3. As φ(Σ) ∩ Σ ̸= ∅,
there exists some i such that φ([xi, yi]) ∈ Σ. Then, by Lemma 2.4, we have φ([xi+2k, yi+2k]) ∈ Σ
for all k. Now, depending on whether i is odd or even and depending on whether φ([xi, yi]) is an
even spoke or an odd spoke, we can apply Lemma 2.5 or Lemma 2.6, to prove that m is odd.

Corollary 2.2. If m is even and φ ∈ Aut(Γ(m)) \H , then φ(Σ) ∩ Σ = ∅.

Proof. This is the contrapositive form of Theorem 2.2.

Lemma 2.7. If φ ∈ Aut(Γ(m)) \H , then φ(Σ) ⊈ M.

Proof. If possible, let φ(Σ) ⊆ M. Then φ([x0, y0]) ∈ M. Now, two cases may arise. Either
φ([x0, y0]) = [yi, zi+1] or φ([x0, y0]) = [yi, zi−1] for some i.

Case 1. Let φ([x0, y0]) = [yi, zi+1]. If φ(x0) = yi, φ(y0) = zi+1, then as φ(x1), φ(x−1)
are adjacent to φ(x0), we have φ(x1), φ(x−1) ∈ {xi, zi−1}. Let φ(x1) = xi and φ(x−1) = zi−1.
Then φ(y1) = xi+1 or xi−1, hence φ(x1, y1) ∈ Ω, which is a contradiction. Hence φ(x1) ̸= xi or
φ(x−1) ̸= zi−1. Similarly we get a contradiction for φ(x−1) = xi and φ(x1) = zi−1. Thus we have
φ(x0) ̸= yi or φ(y0) ̸= zi+1.

If φ(x0) = zi+1 and φ(y0) = yi, then as φ(x1), φ(x−1) are adjacent to φ(x0), we have
φ(x1), φ(x−1) ∈ {yi+2, zi+1+m}. Let φ(x1) = yi+2 and φ(x−1) = zi+1+m. Then φ(x2), φ(y1) ∈
{zi+3, xi+2}. As φ(Σ) ⊂ M, we have φ(y1) = zi+3 and φ(x2) = xi+2. Then φ(y2) ∈ {xi+1, xi+3}
and hence φ([x2, y2]) ∈ Ω, which is a contradiction. Hence φ(x1) ̸= yi+2 or φ(x−1) ̸= zi+1+m.
Similarly we arrive at a contradiction for φ(x−1) = yi+2 and φ(x1) = zi+1+m and then we have
φ(x0) ̸= zi+1 or φ(y0) ̸= yi. Therefore φ([x0, y0]) ̸= [yi, zi+1].

Case 2. Let φ([x0, y0]) = [yi, zi−1]. The proof is similar to that in the previous case.
Combining two cases, we get the lemma.

Lemma 2.8. If m is even and φ ∈ Aut(Γ(m)) \H , then φ(Σ) ∩ Ω = ∅.

Proof. If possible let φ(Σ) ∩ Ω ̸= ∅ and let φ([xa, ya]) ∈ Ω. Without loss of generality, we can
assume that φ([xa, ya]) = [x0, x1] such that φ(xa) = x0 and φ(ya) = x1.

Let us first explain the rationale behind such an assumption. As φ([xa, ya]) ∈ Ω, we have
φ([xa, ya]) = [xj, xj+1] for some j. Then ρ−jφ([xa, ya]) = [x0, x1]. Now, ρ−jφ(Σ) ∩ Ω = ∅ if
and only if φ(Σ) ∩ ρj(Ω) = φ(Σ) ∩ Ω = ∅ . Thus, without loss of generality, we can assume
that φ([xa, ya]) = [x0, x1]. Now, if φ(xa) = x1 and φ(ya) = x0, we can work with ρτ in the
same manner as ρτ(Ω) = Ω. Thus, the assumption is justified and we start with φ(xa) = x0 and
φ(ya) = x1. Then φ(xa+1), φ(xa−1) ∈ {x−1, y0}.

Case 1. Let φ(xa+1) = y0 and φ(xa−1) = x−1. As xa−1 ∼ ya−1, we have φ(ya−1) = x−2

or y−1. If φ(ya−1) = y−1, then we have φ([xa−1, ya−1]) = [x−1, y−1] ∈ Σ. But this contradicts
Corollary 2.2. Thus φ(ya−1) = x−2.

Consider the cycle C0 : ya−1 ∼ xa−1 ∼ xa ∼ xa+1 ∼ ya+1 ∼ za ∼ ya−1. Then φ(C0) : x−2 ∼
x−1 ∼ x0 ∼ y0 ∼ φ(ya+1) ∼ φ(za) ∼ x−2. As φ(C0) is a cycle, we have φ(ya+1) = z−1 and
φ(za) = y−2.
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Again, consider the cycle C1 : ya ∼ xa ∼ xa+1 ∼ xa+2 ∼ ya+2 ∼ za+1 ∼ ya. Then
φ(C1) : x1 ∼ x0 ∼ y0 ∼ φ(xa+2) ∼ φ(ya+2) ∼ φ(za+1) ∼ x1. As φ(C1) is a cycle, we have
φ(xa+2) = z1, φ(ya+2) = y2 and φ(za+1) = x2.

Proceeding in this way and considering the cycles Ci : ya+i−1 ∼ xa+i−1 ∼ xa+i ∼ xa+i+1 ∼
ya+i+1 ∼ za+i ∼ ya+i−1, for i = 2, · · · , n−1, we get φ(Ci) : φ(ya+i−1) ∼ φ(xa+i−1) ∼ φ(xa+i) ∼
φ(xa+i+1) ∼ φ(ya+i+1) ∼ φ(za+i) ∼ φ(ya+i−1). Hence, we have

φ(xa+12k) = x6k φ(ya+12k) = x6k+1 φ(za+12k) = y6k−2

φ(xa+12k+1) = y6k φ(ya+12k+1) = z6k−1 φ(za+12k+1) = x6k+2

φ(xa+12k+2) = z6k+1 φ(ya+12k+2) = y6k+2 φ(za+12k+2) = z6k−1+m

φ(xa+12k+3) = z6k+1+m φ(ya+12k+3) = y6k+m φ(za+12k+3) = z6k+3

φ(xa+12k+4) = y6k+2+m φ(ya+12k+4) = z6k+3+m φ(za+12k+4) = x6k+m

φ(xa+12k+5) = x6k+2+m φ(ya+12k+5) = x6k+1+m φ(za+12k+5) = y6k+4+m

φ(xa+12k+6) = x6k+3+m φ(ya+12k+6) = x6k+4+m φ(za+12k+6) = y6k+1+m

φ(xa+12k+7) = y6k+3+m φ(ya+12k+7) = z6k+2+m φ(za+12k+7) = x6k+5+m

φ(xa+12k+8) = z6k+4+m φ(ya+12k+8) = y6k+5+m φ(za+12k+8) = z6k+2

φ(xa+12k+9) = z6k+4 φ(ya+12k+9) = y6k+3 φ(za+12k+9) = z6k+6+m

φ(xa+12k+10) = y6k+5 φ(ya+12k+10) = z6k+6 φ(za+12k+10) = x6k+3

φ(xa+12k+11) = x6k+5 φ(ya+12k+11) = x6k+4 φ(za+12k+11) = y6k+7

As m is even, m is either 6k or 6k + 2 or 6k + 4. Hence n = 12k or 12k + 4 or 12k + 8.
Let m = 6k and k = 2i. Then φ(za+1+m) = φ(za+1+12i) = x6i+2. As φ(za+1) ∼ φ(za+1+m),

we have x2 ∼ x6i+2, i.e., 6i + 2 = 3, i.e., 3k = 1, i.e., m = 2. However, we considered m ≥ 3.
Hence, a contradiction. Again, let m = 6k and k = 2i + 1, then φ(za+1+m) = φ(za+7+12i) =
x6i+5+m. As φ(za+1) ∼ φ(za+1+m), we have x2 ∼ x6i+5+m, i.e., hence 6i + 5 + m = 3, i.e.,
3m = 2, i.e., m = 2. a contradiction. So m ̸= 6k.

Similarly, it can be shown that m ̸= 6k + 2, 6k + 4. Then φ(xa+1) ̸= y0 or φ(xa−1) ̸= x−1.
Case 2. Let φ(xa+1) = x−1 and φ(xa−1) = y0. A similar technique as that in the previous case

leads to a contradiction and hence we have φ([xa, ya]) ̸= [x0, x1].
Therefore, the lemma holds.

Lemma 2.9. If m is even and φ ∈ Aut(Γ(m)) \H , then φ(Σ) ∩ I = ∅.

Proof. As m is even, by Theorem 2.2, we have φ(Σ) ∩ Σ = ∅. If possible, let φ(Σ) ∩ I ̸= ∅
and let [xi, yi] be a spoke edge which is mapped into I by φ. Without loss of generality, we can
assume that φ([xi, yi]) = [z0, zm] with φ(xi) = z0 and φ(yi) = zm. (We can do so, because if
φ([xi, yi]) = [zj, zj+m], then ρ−jφ([xi, yi]) = [z0, zm]. Now, if ρ−jφ(Σ) ∩ I = ∅, then we also
have φ(Σ) ∩ ρj(I) = φ(Σ) ∩ I = ∅. Similarly, if φ([xi, yi]) = [zj+m, zj], then we need to work
with τρ−j instead of ρ−j .) Therefore φ(xi+1), φ(xi−1) ∈ {y1, y−1}.

Let φ(xi+1) = y1 and φ(xi−1) = y−1. Then φ(yi+1) ∈ {z2, x1} and φ(yi−1) ∈ {z−2, x−1}.
As φ(Σ) ∩ Σ = ∅ then φ(yi+1) = z2 and φ(yi−1) = z−2. Now consider the cycle C : yi−1 ∼
xi−1 ∼ xi ∼ xi+1 ∼ yi+1 ∼ zi ∼ yi−1. Then φ(C) : z−2 ∼ y−1 ∼ z0 ∼ y1 ∼ z2 ∼ φ(zi) ∼ z−2.
As φ(zi) is the common neighbour of z2 and z−2, then φ(z0) = yj , for some j. This implies
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j ≡ 2+ 1 ≡ −2− 1 (mod 2m), i.e, m = 3, which is a contradiction as m is even. Hence, we have
φ(xi+1) ̸= y1 or φ(xi−1) ̸= y−1.

Similarly we can also prove that φ(xi+1) = y−1 and φ(xi−1) = y1 does not hold. Hence, the
lemma holds.

Theorem 2.3. If m is even, then Aut(Γ(m)) = H = ⟨ρ, τ⟩.

Proof. It is known that H is a subgroup of Aut(Γ(m)). If possible, let Aut(Γ(m)) \ H ̸= ∅ and
φ ∈ Aut(Γ(m)) \H . Then by Corollary 2.2, Lemma 2.8 and Lemma 2.9, we have φ(Σ) ∩ (Σ ∪
Ω ∪ I) = ∅. However, as the edge set of Γ(m) is the union of Σ,Ω,M and I, it follows that
φ(Σ) ⊆ M. But this contradicts Lemma 2.7. Thus Aut(Γ(m)) = H = ⟨ρ, τ⟩.

Lemma 2.10. If m is odd and m ̸= 3, 9, then |Stab(x0) ∩ Stab(x1)| = 1.

Proof. Let φ ∈ Stab(x0) ∩ Stab(x1). Then φ(x0) = x0 and φ(x1) = x1. As φ(y0), φ(x−1) are
adjacent to φ(x0); and φ(y1), φ(x2) are adjacent to φ(x1), we have φ(y0), φ(x−1) ∈ {y0, x−1}
and φ(y1), φ(x2) ∈ {y1, x2}.

Case 1. Let φ(y0) = x−1 and φ(y1) = x2, and hence φ(x−1) = y0 and φ(x2) = y1.
Consider the cycle C0 : y−1 ∼ x−1 ∼ x0 ∼ x1 ∼ y1 ∼ z0 ∼ y−1. Then φ(C0) : φ(y−1) ∼

φ(x−1) ∼ x0 ∼ x1 ∼ x2 ∼ φ(z0) ∼ φ(y−1). As φ(C0) is a cycle, we have φ(x−1) = y0,
φ(y−1) = z1 and φ(z0) = y2.

Now consider the cycle C1 : y0 ∼ x0 ∼ x1 ∼ x2 ∼ y2 ∼ z1 ∼ y0. Then φ(C1) : x−1 ∼ x0 ∼
x1 ∼ φ(x2) ∼ φ(y2) ∼ φ(z1) ∼ x−1. As φ(C1) is a cycle, we have φ(x2) = y1, φ(y2) = z0 and
φ(z1) = y−1.

Proceeding in this way and considering the cycles Ci : yi−1 ∼ xi−1 ∼ xi ∼ xi+1 ∼ yi+1 ∼
zi ∼ yi−1, for i = 2, · · · , n − 1, we get φ(Ci) : φ(yi−1) ∼ φ(xi−1) ∼ φ(xi) ∼ φ(xi+1) ∼
φ(yi+1) ∼ φ(zi) ∼ φ(yi−1). Thus, we have

φ(x12k) = x6k φ(y12k) = x6k−1 φ(z12k) = y6k+2

φ(x12k+1) = x6k+1 φ(y12k+1) = x6k+2 φ(z12k+1) = y6k−1

φ(x12k+2) = y6k+1 φ(y12k+2) = z6k φ(z12k+2) = x6k+3

φ(x12k+3) = z6k+2 φ(y12k+3) = y6k+3 φ(z12k+3) = z6k+m

φ(x12k+4) = z6k+2+m φ(y12k+4) = y6k+1+m φ(z12k+4) = z6k+4

φ(x12k+5) = y6k+3+m φ(y12k+5) = z6k+4+m φ(z12k+5) = x6k+1+m

φ(x12k+6) = x6k+3+m φ(y12k+6) = x6k+2+m φ(z12k+6) = y6k+5+m

φ(x12k+7) = x6k+4+m φ(y12k+7) = x6k+5+m φ(z12k+7) = y6k+2+m

φ(x12k+8) = y6k+4+m φ(y12k+8) = z6k+3+m φ(z12k+8) = x6k+6+m

φ(x12k+9) = z6k+5+m φ(y12k+9) = y6k+6+m φ(z12k+9) = z6k+3

φ(x12k+10) = z6k+5 φ(y12k+10) = y6k+4 φ(z12k+10) = z6k+7+m

φ(x12k+11) = y6k+6 φ(y12k+11) = z6k+7 φ(z12k+11) = x6k+4

As m is odd, m is either 6k+1 or 6k+3 or 6k+5. Hence n = 12k+2 or 12k+6 or 12k+10.
If m = 6k + 1 then φ(x12k+2) = φ(x0), i.e., y6k+1 = x0, which is a contradiction. Thus

φ(y0) ̸= x−1 or φ(y1) ̸= x2.
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If m = 6k + 5 then φ(x12k+10) = φ(x0), i.e., z6k+5 = x0, which is a contradiction. Thus
φ(y0) ̸= x−1 or φ(y1) ̸= x2.

Now let m = 6k + 3, consider y2 ∼ z1 ∼ z1+m then φ(y2) = z0 ∼ φ(z1) = y−1 ∼ φ(z1+m).
If k = 2i is even, then z1+m = z6k+4 = z12i+4 and hence φ(z1+m) = z6i+4. Therefore when k is
even, we get 6i+ 4 ≡ −2 (mod n), i.e., 6i+ 6 ≡ 0 (mod n), i.e, 3k+ 6 ≡ 0 (mod 12k+ 6). This
happens only when k = 0, i.e., m = 3.

On the other hand, if k = 2i + 1 is odd, then z1+m = z12i+10 = z6i+7+m, hence φ(z1+m) =
z6i+7+m. Thus when k is odd, we have 6i+7+m ≡ −2 (mod n), i.e, 9(k+1) ≡ 0 (mod 12k+6).
This happens only when k = 1, i.e., m = 9.

Therefore we have if m is odd and m ̸= 3, 9, then there does not exists φ ∈ Stab(x0)∩Stab(x1)
such that Case 1 holds.

Case 2. Let φ(y0) = y0 and φ(y1) = x2. As φ([x0, y0]) = [x0, y0], by Lemma 2.2, we have for
m ̸= 3, φ ∈ H , i.e., φ = id.

Case 3. Let φ(y0) = x−1 and φ(y1) = y1. As φ([x1, y1]) = [x1, y1], by Lemma 2.2, we have
for m ̸= 3, φ ∈ H , i.e., φ = id.

Case 4. Let φ(y0) = y0 and φ(y1) = y1. Then φ maps consecutive spokes [x0, y0], [x1, y1] into
Σ. Then by Lemma 2.3, we have φ ∈ H , i.e., φ = id.

Therefore combining all the 4 cases, we have the lemma.

Lemma 2.11. Let m is odd and m ̸= 3, 9, then

|{φ ∈ Aut(Γ(m)) : φ(x0) = x0, φ(x1) = x−1}| = 1.

Proof. The proof is similar to that of Lemma 2.10.

Lemma 2.12. Let m is odd and m ̸= 3, 9, then there does not exist any φ ∈ Aut(Γ(m)) such that
φ(x0) = x0 and φ(x1) = y0.

Proof. Let φ(x0) = x0 and φ(x1) = y0. As φ(y0), φ(x−1) are adjacent to φ(x0); and φ(y1), φ(x2)
are adjacent to φ(x1), then we have φ(y0), φ(x−1) ∈ {x1, x−1} and φ(y1), φ(x2) ∈ {z1, z−1}.

Case 1. Let φ(y0) = x1 and φ(y1) = z1, then φ(x2) = z−1. Now consider the cycle C : y0 ∼
x0 ∼ x1 ∼ x2 ∼ y2 ∼ z1 ∼ y0. Then φ(C) : x1 ∼ x0 ∼ y0 ∼ z−1 ∼ φ(y2) ∼ φ(z1) ∼ x1. As
φ(C) is a cycle, for m = 3 we have φ(y2) = z2 and φ(z1) = y1, but for m ̸= 3, φ(C) is not a
cycle, which is a contradiction.

Case 2. Let φ(y0) = x−1 and φ(y1) = z−1, then φ(x2) = z1. This leads to a contradiction, as
in previous case.

Case 3. Let φ(y0) = x1 and φ(y1) = z−1. Then φ(x2) = z1. Consider the cycle C0 : y−1 ∼
x−1 ∼ x0 ∼ x1 ∼ y1 ∼ z0 ∼ y−1. Then φ(C0) : φ(y−1) ∼ φ(x−1) ∼ x0 ∼ y0 ∼ z−1 ∼ φ(z0) ∼
φ(y−1). As φ(C0) is a cycle, we have φ(x−1) = x−1, φ(y−1) = x−2 and φ(z0) = y−2.

Again consider the cycle C1 : y0 ∼ x0 ∼ x1 ∼ x2 ∼ y2 ∼ z1 ∼ y0. Then φ(C1) : x1 ∼ x0 ∼
y0 ∼ z1 ∼ φ(y2) ∼ φ(z1) ∼ x1. As φ(C1) is a cycle, we have φ(y2) = y2 and φ(z1) = x2.

Proceeding in this way and considering the cycles Ci : yi−1 ∼ xi−1 ∼ xi ∼ xi+1 ∼ yi+1 ∼
zi ∼ yi−1, for i = 2, · · · , n − 1, we have φ(Ci) : φ(yi−1) ∼ φ(xi−1) ∼ φ(xi) ∼ φ(xi+1) ∼
φ(yi+1) ∼ φ(zi) ∼ φ(yi−1). Hence we get
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φ(x12k) = x6k φ(y12k) = x6k+1 φ(z12k) = y6k−2

φ(x12k+1) = y6k φ(y12k+1) = z6k−1 φ(z12k+1) = x6k+2

φ(x12k+2) = z6k+1 φ(y12k+2) = y6k+2 φ(z12k+2) = z6k+m−1

φ(x12k+3) = z6k+1+m φ(y12k+3) = y6k+m φ(z12k+3) = z6k+3

φ(x12k+4) = y6k+2+m φ(y12k+4) = z6k+3+m φ(z12k+4) = x6k+m

φ(x12k+5) = x6k+2+m φ(y12k+5) = x6k+1+m φ(z12k+5) = y6k+4+m

φ(x12k+6) = x6k+3+m φ(y12k+6) = x6k+4+m φ(z12k+6) = y6k+1+m

φ(x12k+7) = y6k+3+m φ(y12k+7) = z6k+2+m φ(z12k+7) = x6k+5+m

φ(x12k+8) = z6k+4+m φ(y12k+8) = y6k+5+m φ(z12k+8) = z6k+2

φ(x12k+9) = z6k+4 φ(y12k+9) = y6k+3 φ(z12k+9) = z6k+6+m

φ(x12k+10) = y6k+5 φ(y12k+10) = z6k+6 φ(z12k+10) = x6k+3

φ(x12k+11) = x6k+5 φ(y12k+11) = x6k+4 φ(z12k+11) = y6k+7

As m is odd, m is either 6k + 1 or 6k + 3 or 6k + 5 and hence n = 12k + 2 or 12k + 6 or
12k + 10. If m = 6k + 1 then φ(x12k+2) = φ(x0), i.e., z6k+1 = x0, which is a contradiction. If
m = 6k + 5 then φ(x12k+10) = φ(x0), i.e., y6k+5 = x0, which is a contradiction.

Now let m = 6k + 3. Consider z1 ∼ z1+m ∼ y2+m. Then applying φ, we get x2 ∼ φ(z1+m) ∼
φ(y2+m).

If k = 2i is even, then y2+m = y6k+5 = y12i+5 and z1+m = z6k+4 = z12i+4. Hence φ(y2+m) =
x6i+1+m and φ(z1+m) = x6i+m. Therefore when k is even, x2 ∼ x6i+m ∼ x6i+1+m. Hence we
have 6i+m ≡ 3 (mod n), i.e, 3k+6k+3 ≡ 3 (mod n), i.e., 9k ≡ 0 (mod 12k+6). This happens
only when k = 0, i.e., m = 3.

On the other hand, if k = 2i + 1 is odd, then y2+m = y12i+11 and z1+m = z12i+10. Hence
φ(y2+m) = x6i+4 and φ(z1+m) = x6i+3. Thus when k is odd, we have x2 ∼ x6i+3 ∼ x6i+4. This
implies 6i + 3 ≡ 3 (mod n), i.e, 6i = 3(k − 1) ≡ 0 (mod 12k + 6). This happens only when
k = 1, i.e., m = 9.

Therefore we have if m is odd and m ̸= 3, 9, then φ as in Case 3 does not exist.
Case 4. Let φ(y0) = x−1 and φ(y1) = z1. In this case also, it can be shown, similarly as in

Case 3, that such a φ does not exist.
Therefore combining all 4 cases, the lemma follows.

Theorem 2.4. If m is odd and m ̸= 3, 9, then Aut(Γ(m)) = ⟨ρ, τ, σ⟩.

Proof. It was already noted that ⟨ρ, τ, σ⟩ is a subgroup of Aut(Γ(m)) of order 6n. Moreover,
as m is odd by the Lemma 2.1, we have Γ(m) is Cayley and hence vertex-transitive. Thus, by
orbit-stabilizer theorem, we have

|Aut(Γ(m))|
|Stab(x0)|

= |Γ(m)| = 3n, i.e., |Aut(Γ(m))| = 3n · |Stab(x0)|.

Thus, to prove the theorem, it suffices to show that |Stab(x0)| = 2.
It is clear that id, τ ∈ Stab(x0). Let φ ∈ Stab(x0). As x0 ∼ x1, therefore φ(x1) = x1 or x−1

or y0. If φ(x1) = x1, by Lemma 2.10, φ = id. If φ(x1) = x−1, then by Lemma 2.11, φ = τ . And
finally, Lemma 2.12 shows that no φ exists such that φ(x1) = y0. Hence, Stab(x0) = {id, τ} and
the theorem follows.
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We now note a few automorphisms which occurs only when m = 3 or 9. Define

η = (x4, y5)(z1, z5)(x2, y1)(y3, z3)(y4, z4)(x3, z0)(y2, z2) and

εi = (x6i+3, z6i+4, z6i−4)(x6i+2, y6i−1, z6i−1)(x6i−2, y6i+1, z6i+1)(x6i+1, x6i−1, y6i)(y6i+2, y6i−2, z6i).

It can be shown that η, ε0 ∈ Aut(Γ(3)) and ζ = ε0ε1ε2 · (z3, z9, z15) · (y3, y9, y15) ∈ Aut(Γ(9)).
Moreover, it was checked using SageMath [6] that

Aut(Γ(3)) = ⟨ρ, τ, σ, η, ε0⟩ and Aut(Γ(3)) = ⟨ρ, τ, σ, ζ⟩.

Thus, summarizing all the cases, i.e., Theorem 2.3, Theorem 2.4 and the above discussion, we get
the following theorem.

Theorem 2.5. Let m ≥ 3 and Γ(m) be the Generalized Pappus graph. Then

Aut(Γ(m)) =


⟨ρ, τ⟩, if m is even,
⟨ρ, τ, σ⟩, if m is odd and m ̸= 3, 9,
⟨ρ, τ, σ, ζ⟩, if m = 9,
⟨ρ, τ, σ, η, ε0⟩, if m = 3.

Corollary 2.3. The following are true:

1. Γ(3) and Γ(9) are arc-transitive.
2. For m ̸= 3, 9, Γ(m) is not edge-transitive.
3. Γ(m) is Cayley if and only if m is odd.

Proof. The arc-transitivity of Γ(3) and Γ(9) can be easily checked in SageMath [6]. As Γ(m) has
9m edges, in order that Γ(m) is edge-transitive, the order of Aut(Γ(m)) must be a multiple of 9m.
However, if m ̸= 3, 9, the order of Aut(Γ(m)) is either 4m or 12m depending upon whether m is
even or odd. Thus the second statement holds.

For the last statement, the sufficiency is proved in Theorem 2.1. For the necessity, the order
of a vertex-transitive graph should divide the order of its automorphism group. However, if m is
even, then |Γ(m)| = 6m < 4m = |Aut(Γ(m))|.

3. Open Issues

Another thing which is very much related to graphs with large symmetry groups, is its hamil-
tonicity, viz, Lovasz’ conjecture. Our observation based on first few values of m, made us to
strongly believe that Γ(m) is Hamiltonian for all value of m ≥ 3. This can be an interesting topic
for further research.
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