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Abstract
A total dominating set of a graphGwith no isolated vertices is a subset S of the vertex set such that
every vertex of G is adjacent to a vertex in S. The total domination number of G is the minimum
cardinality of a total dominating set of G. In this paper, we study the total domination number of
middle graphs. Indeed, we obtain tight bounds for this number in terms of the order of the graph
G. We also compute the total domination number of the middle graph of some known families
of graphs explicitly. Moreover, some Nordhaus-Gaddum-like relations are presented for the total
domination number of middle graphs.
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1. Introduction

The concept of total domination in graph theory was first introduced by Cockayne, Dawes and
Hedetniemi in [3] and it has been studied extensively by many researchers in the last years, see for
example [5], [6], [7], [13], [8], [10], [12] and [14]. The literature on this subject has been surveyed
and detailed in the recent book [7]. We refer to [2] as a general reference on graph theory.
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Let G be a graph with vertex set V (G) of order n and edge set E(G) of size m. The open
neighborhood and the closed neighborhood of a vertex v ∈ V (G) are NG(v) = {u ∈ V (G) | uv ∈
E(G)} and NG[v] = NG(v) ∪ {v}, respectively. For a connected graph G, the degree of a vertex
v is dG(v) = |NG(v)|. The distance dG(v, w) in G of two vertices v, w ∈ V (G) is the length of
the shortest path connecting the two vertices. The diameter diam(G) of G is the shortest distance
between any two vertices in G.

A dominating set of a graph G is a set S ⊆ V (G) such that NG[v] ∩ S 6= ∅, for any vertex
v ∈ V (G). The domination number of G is the minimum cardinality of a dominating set of G and
is denoted by γ(G).

Definition 1.1. Let G be a graph with no isolated vertices. A total dominating set of G is a set
S ⊆ V (G) such that NG(v)∩ S 6= ∅, for any vertex v ∈ V (G). The total domination number of G
is the minimum cardinality of a total dominating set of G and is denoted by γt(G).

Example 1.2. Consider the path P3 with vertex set {v1, v2, v3} and edge set {v1v2, v2v3}. Then
the set S = {v1, v2} is a total dominating set of P3.

For any non-empty S ⊆ V (G), we denote by G[S] the subgraph of G induced on S. For any
v ∈ V (G), we denote by G \ v the subgraph of G induced on V (G) \ {v}.

The complement G of G is a graph with vertex set V (G) such that for every two vertices v and
w, vw ∈ E(G) if and only if vw 6∈ E(G).

The line graph of G, denoted by L(G), is the graph with vertex set E(G), where vertices x and
y are adjacent in L(G) if and only if edges x and y share a common vertex in G.

In [4], the authors introduced the notion of the middle graph M(G) of G as an intersection
graph on V (G).

Definition 1.3. The middle graph M(G) of a graph G = (V,E) is the graph whose vertex set is
V (G) ∪ E(G) and two vertices x, y in the vertex set of M(G) are adjacent in M(G) in case one
the following holds:

1. x, y are in E(G) and x, y are adjacent in G.

2. x is in V (G), y is in E(G), and x, y are incident in G.

Example 1.4. Consider the graph P3, then the middle graph M(P3) is the one in Figure 1.

Figure 1. The middle graph M(P3).

It is easy to see that M(G) contains the line graph L(G) as induced subgraph, and that if G
is a graph of order n and size m, then M(G) has order n + m and size 2m + |E(L(G))|, and it
is obtained by subdividing each edge of G exactly once and joining all the adjacent edges of G in
M(G).
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In order to avoid confusion, we fix a “standard” notation for V (M(G)) and E(M(G)). Fix
V (G) = {v1, v2, . . . , vn}, then V (M(G)) = V (G) ∪M, whereM = {mij | vivj ∈ E(G)} and
E(M(G)) = {vimij, vjmij | vivj ∈ E(G)} ∪ E(L(G)).

In this article, we continue our study from [9] on domination of middle graphs. The paper
proceeds as follows. In Section 2, we describe explicitly the total domination number of the middle
graph of several known families of graphs and some upper and lower bounds for γt(M(G)) in terms
of the order of G. In Section 3, we describe bounds for the total domination number of the middle
graph of trees. In Section 4, we obtain the same type of results for γt(M(G ◦K1)), γt(M(G ◦P2))
and γt(M(G+Kp)). We conclude the paper discussing some Nordhaus-Gaddum like relations for
the total domination number of middle graphs.

2. Middle graph of known graphs and their total domination number

We start our study on total domination with two easy Lemmas.

Lemma 2.1. Let G be a connected graph of order n ≥ 3 and S a total dominating set of M(G).
Then there exists S ′ ⊆ E(G) a total dominating set of M(G) with |S ′| ≤ |S|.

Proof. If S ⊆ E(G), then take S ′ = S. We can then assume that there exists v ∈ S ∩ V (G). If
all edges adjacent to v are already in S, then take S1 = S \ {v}. Otherwise, let e ∈ E(G) \ S be
an edge adjacent to v, and consider S1 = (S ∪ {e}) \ {v}. Since S is a finite set, then this process
must terminate after a finite number of steps, and hence we obtain the described S ′.

Lemma 2.2. Let G be a connected graph of order n ≥ 2 and v ∈ V (G) a vertex not adjacent to
any vertex of degree 1. Then

γt(M(G \ v)) ≤ γt(M(G)) ≤ γt(M(G \ v)) + 1.

Proof. Let S be a total dominating set of M(G\v). This implies that for every w ∈ NG(v), w ∈ S
or there exists an edge of the formww0 ∈ E(G\v) such thatww0 ∈ S. As a consequence, S∪{vw}
is a total dominating set of M(G), for any w ∈ NG(v), and hence γt(M(G)) ≤ γt(M(G \ v)) + 1.

On the other hand, let S be a minimal total dominating set of M(G). By Lemma 2.1, we can
assume that S ⊆ E(G). Consider Sv = NM(G)(v) ∩ S. Since S is a minimal total dominating set,
|Sv| ≥ 1. Assume Sv = {e1, . . . , ek}. For any 1 ≤ i ≤ k, ei is an edge of G of the form wiv. By
the assumption on v, NM(G)(w1) = {e1, e11, . . . , e1p} with p ≥ 1, for some e1j ∈ E(G \ v). If
S ∩ {e11, . . . , e1p} 6= ∅, then consider S1 = (S \ e1) ∪ {w1}, otherwise S1 = (S \ e1) ∪ {e11}. By
applying the same construction for each ei, we obtain Sk a total dominating set of M(G \ v) with
|Sk| = |S|, and hence γt(M(G \ v)) ≤ γt(M(G)).

We are now ready to describe explicitly the total dominating number of the middle graph of
several known families of graphs.

Proposition 2.3. For any star graph K1,n on n+ 1 vertices, with n ≥ 2, we have

γt(M(K1,n)) = n.
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Proof. Fix V (K1,n) = {v0, v1, . . . , vn} andE(K1,n) = {v0v1, v0v2, . . . , v0vn}. Then, V (M(K1,n))
= V (K1,n) ∪M, whereM = {mi | 1 ≤ i ≤ n}.

If S =M, then S is a total dominating set ofM(K1,n) with |S| = n, and hence γt(M(K1,n)) ≤
n. On the other hand, using [9, Proposition 3.1], n = γ(M(K1,n)) ≤ γt(M(K1,n)).

Proposition 2.4. For any double star graph S1,n,n on 2n+ 1 vertices, with n ≥ 1, we have

γt(M(S1,n,n)) = 2n.

Proof. Fix V (S1,n,n) = {v0, v1, . . . , v2n} and E(S1,n,n) = {v0vi, vivn+i | 1 ≤ i ≤ n}. Then
V (M(S1,n,n)) = V (S1,n,n) ∪M, whereM = {mi,mi(n+i) | 1 ≤ i ≤ n}.

Since S =M is a total dominating set of M(S1,n,n) with |S| = 2n, then γt(M(S1,n,n)) ≤ 2n.
On the other hand, let S be a total dominating set M(S1,n,n). By Lemma 2.1, we can assume

that S ⊆ M. Since, for every 1 ≤ i ≤ n, NM(S1,n,n)(vn+i) = {mi(n+i)}, then mi(n+i) ∈ S for
every 1 ≤ i ≤ n. Similarly, for every 1 ≤ i ≤ n, NM(S1,n,n)(mi(n+i)) = {mi, vi, vn+i} implies that
mi ∈ S for every 1 ≤ i ≤ n, and henceM⊆ S. This implies that γt(M(S1,n,n)) ≥ 2n.

Proposition 2.5. For any path Pn of order n ≥ 3,

γt(M(Pn)) = d
2n

3
e.

Proof. Fix V (Pn) = {v1, . . . , vn} and E(Pn) = {vivi+1 | 1 ≤ i ≤ n − 1}. Then V (M(Pn)) =
V ∪M where V = V (Pn) andM = {mi(i+1) | 1 ≤ i ≤ n− 1}.

If n ≡ 0 mod 3, then consider

S = {m12,m23,m45,m56, . . . ,m(n−2)(n−1),m(n−1)n}.

We have that S is a total dominating set of M(Pn) with |S| = 2n
3

. If n ≡ 1 mod 3, then consider

S = {m12,m23,m45,m56, . . . ,m(n−3)(n−2),m(n−2)(n−1)} ∪ {m(n−1)n}.

We have that S is a total dominating set of M(Pn) with |S| = d2n
3
e. If n ≡ 2 mod 3, then

consider

S = {m12,m23,m45,m56, . . . ,m(n−4)(n−3),m(n−3)(n−2)} ∪ {m(n−2)(n−1),m(n−1)n}.

We have that S is a total dominating set of M(Pn) with |S| = d2n
3
e. This implies γt(M(Pn)) ≤

d2n
3
e.
On the other hand, let S be a total dominating set for M(Pn). For every i = 1, . . . , n − 2, let

Gi = Pn[vi, vi+1, vi+2]. Since S dominates all vertices of the graph M(Gi), |S ∩ V (M(Gi))| ≥ 2.
This implies that |S| ≥ d2n

3
e.

Since if we delete a vertex from a complete graph Kn+1 we obtain a graph isomorphic to Kn,
Lemma 2.2 gives us the following result.
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Lemma 2.6. For any n ≥ 3, we have

γt(M(Kn)) ≤ γt(M(Kn+1)) ≤ γt(M(Kn)) + 1.

Proposition 2.7. Let Kn be the complete graph on n ≥ 2 vertices. Then

γt(M(Kn)) = d
2n

3
e

Proof. If 2 ≤ n ≤ 4, a direct computation shows that γt(M(Kn)) = d2n3 e. Assume now n ≥ 5.
The graph Kn has several subgraphs isomorphic to Pn, and hence M(Kn) has subgraphs isomor-
phic to M(Pn). Fix one of those and consider S a total dominating set of M(Pn). Since S is also
a total dominating set for M(Kn), we have γt(M(Kn)) ≤ d2n3 e.

We will prove the opposite inequality by induction. Assume that we have equality for γt(M(Kn))
and we want to prove it for γt(M(Kn+1)). If n ≡ 2 mod 3, then n + 1 ≡ 0 mod 3, and
hence, γt(M(Kn)) = d2n

3
e = d2(n+1)

3
e. On the other hand, by Lemma 2.6, γt(M(Kn)) ≤

γt(M(Kn+1)). This fact, together with the first part of the proof, implies that γt(M(Kn+1)) =

d2(n+1)
3
e. If n ≡ 0, 1 mod 3, by Lemma 2.6 and the first part of the proof, it is enough to show

that γt(M(Kn)) < γt(M(Kn+1)). As a contradiction, assume that γt(M(Kn)) = γt(M(Kn+1)).
If n ≡ 0 mod 3, then n − 1 ≡ 2 mod 3, and hence this would implies γt(M(Kn−1)) =
γt(M(Kn)) = γt(M(Kn+1)). Similarly, if n ≡ 1 mod 3, then n + 1 ≡ 2 mod 3, and hence
γt(M(Kn)) = γt(M(Kn+1)) = γt(M(Kn+2)). Hence we need to show that γt(M(Kn)) <
γt(M(Kn+2)), when n ≥ 4. Let S be a total dominating set of M(Kn+2). To fix the notation,
assume V (Kn+2) = {v1, . . . , vn+2} and V (M(Kn+2)) = V (Kn+2) ∪M, whereM = {mij | 1 ≤
i < j ≤ n+ 2}. By Lemma 2.1, we can assume that S ⊆M. After possibly relabeling V (Kn+2),
we can assume that m(n+1)(n+2) ∈ S. Since S is a total dominating set of M(Kn+2), then it
contains at least one element of the form mi(n+1) or mi(n+2), for some i = 1, . . . , n. By construc-
tion, M(Kn) is isomorphic to M(Kn+2[v1, . . . , vn]), this implies that, similarly to the proof of
Lemma 2.6, we can construct S ′ a total dominating set of M(Kn) by exchanging a vertex of the
form mi(n+1) or mi(n+2) with one of the form mij and just discarding m(n+1)(n+2). This implies
that |S ′| < |S|, and hence γt(M(Kn)) < γt(M(Kn+2)).

Theorem 2.8. Let G be any graph of order n. Then

d2n
3
e ≤ γt(M(G)) ≤ n− 1

Proof. From G we can obtain graph isomorphic to Kn by adding all the necessary edges. This
implies that we can see G as a subgraph of Kn, and hence M(G) as a subgraph of M(Kn). Since
any total dominating set of M(G) is also a total dominating set for M(Kn), this implies that
γt(M(G)) ≥ γt(M(Kn)). We obtain the left inequality by Proposition 2.7.

Consider T a spanning tree ofG and S a minimal total dominating set ofM(T ). By Lemma 2.1,
we can assume that S ⊆ E(T ). This implies that |S| ≤ |E(T )| = n − 1. Since S is also a total
dominating set of M(G), then γt(M(G)) ≤ n− 1.

Remark 2.9. By Propositions 2.3 and 2.5, the inequalities of Theorem 2.8 are all sharp.
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Theorem 2.10. If G is a graph with order n and there exists a subgraph of G isomorphic to Pn,
then

γt(M(G)) = d2n
3
e.

Proof. SinceG has a subgraph isomorphic to Pn, thenM(G) has a subgraph isomorphic toM(Pn).
Moreover, any total dominating set of M(Pn) is also a total dominating set for M(G). By Propo-
sition 2.5, this implies that γt(M(Kn)) ≤ d2n3 e. We conclude by Theorem 2.8.

Directly from Theorem 2.10, we obtain the following result.

Corollary 2.11. For any n ≥ 3,

γt(M(Pn)) = γt(M(Cn)) = γt(M(Wn)) = γt(M(Kn)) = d
2n

3
e.

Proposition 2.12. Let Fn be the friendship graph with n ≥ 2. Then

γt(M(Fn)) = 2n.

Proof. Fix V (Fn) = {v0, v1, . . . , v2n} and E(Fn) = {v0v1, v0v2, . . . , v0v2n} ∪ {v1v2, v3v4, . . . ,
v2n−1v2n}. Then V (M(Fn)) = V (Fn) ∪M, whereM = {mi | 1 ≤ i ≤ 2n} ∪ {mi(i+1) | 1 ≤ i ≤
2n− 1 and i is odd}.

Since S = {mi(i+1) | 1 ≤ i ≤ 2n − 1 and i is odd} ∪ {vi | i is odd} is a total dominating set
for M(Fn) with |S| = 2n, then γt(M(Fn)) ≤ 2n.

On the other hand, since Fn is obtained by joining n copies of C3 at v0, any total dominating set
S of M(Fn) induces a total dominating set of M(C3) as subgraph of M(Fn). By Corollary 2.11,
γt(M(C3)) = 2. This fact together with the fact that any two distinct copies of M(C3) in M(Fn)
share only v0 implies that |S| ≥ 2n. As a consequence, γt(M(Fn)) ≥ 2n.

Using Theorem 2.8, we can describe the total domination number of the middle graph of a
complete bipartite graph.

Proposition 2.13. Let Kn1,n2 be the complete bipartite graph with n2 ≥ n1 ≥ 2. Then

γt(M(Kn1,n2)) =

{
n2 + d2n1−n2

3
e, if n1 ≤ n2 ≤ 2n1 − 1,

n2, if n2 ≥ 2n1.

Proof. Fix V (Kn1,n2) = {v1, . . . , vn1 , u1, . . . , un2} and E(Kn1,n2) = {viuj | 1 ≤ i ≤ n1, 1 ≤ j ≤
n2}. Then we have V (M(Kn1,n2)) = V (Kn1,n2) ∪M, whereM = {mij | 1 ≤ i ≤ n1, 1 ≤ j ≤
n2}.

Assume first n1 = n2. If n1 ≡ 0 mod 3, then consider

S = {m11,m12,m23,m33, . . . ,m(n1−1)n1 ,mn1n1}.

By construction, S is a total dominating set of M(Kn1,n2) and |S| = n1 + n1

3
= n2 + n1

3
=

n2 + d2n1−n2

3
e. If n1 ≡ 1 mod 3, then consider

S = {m11,m12,m23,m33, . . . ,m(n1−2)(n1−1),m(n1−1)(n1−1)} ∪ {mn1(n1−1),mn1n1}.
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By construction, S is a total dominating set of M(Kn1,n2) and |S| = n1 + dn1

3
e = n2 + dn1

3
e =

n2 + d2n1−n2

3
e. If n1 ≡ 2 mod 3, then consider

S = {m11,m12,m23,m33, . . . ,m(n1−1)(n1−1),m(n1−1)n1} ∪ {mn1n1}.

By construction, S is a total dominating set of M(Kn1,n2) and |S| = n1 + dn1

3
e = n2 + dn1

3
e =

n2 + d2n1−n2

3
e.

Assume that n1 + 1 ≤ n2 ≤ 2n1 − 1. Consider

S ′ = {m11,m1n1+1, . . . ,m(n2−n1)(n2−n1),m(n2−n1)n2}.

Let G = Kn1,n2 [un2−n1+1, . . . , un1 , vn2−n1+1, . . . , vn1 ]. Then G is isomorphic to a graph of the
form Kn,n, where n = 2n1 − n2. This implies that by the first part of the proof, we can construct
S ′′ a total dominating set ofM(G) with |S ′′| = 2n1−n2+d2n1−n2

3
e. Consider S = S ′∪S ′′. Then S

is a total dominating set ofM(Kn1,n2) and |S| = 2(n2−n1)+2n1−n2+d2n1−n2

3
e = n2+d2n1−n2

3
e.

This implies that if n1 ≤ n2 ≤ 2n1 − 1, then γt(M(Kn1,n2)) ≤ n2 + d2n1−n2

3
e.

Assume now that n2 ≥ 2n1. Consider

S = {m11,m1n1+1, . . . ,mn1n1 ,mn12n1} ∪ {mn12n1+1, . . . ,mn1n2},

then S is a total dominating set of M(Kn1,n2) with |S| = n2, and hence, γt(M(Kn1,n2)) ≤ n2.
On the other hand, assume first n1 = n2. By Theorem 2.8, we have γt(M(Kn1,n2)) ≥

d2(n1+n2)
3
e = n2 + d2n1−n2

3
e.

Assume that n1 + 1 ≤ n2 ≤ 2n1 − 1. Let S be a total dominating set of M(Kn1,n2). By
Lemma 2.1, we can assume that S ⊆M. The construction of the first part of the proof is optimal
since S ′ and S ′′ have the smallest possible size by the argument discussed when n1 = n2 and
n2 ≥ 2n1.

This implies that if n1 ≤ n2 ≤ 2n1 − 1, then γt(M(Kn1,n2)) = n2 + d2n1−n2

3
e.

Assume that n2 ≥ 2n1, then by [9, Proposition 3.13], we have n2 = γ(M(Kn1,n2)) ≤
γt(M(Kn1,n2)) ≤ n2. This implies that γt(M(Kn1,n2)) = n2.

3. The middle graph of a tree

Similarly to [9, Proposition 2.4], if we consider T a tree and we denote by leaf(T ) = {v ∈
V (T ) | dT (v) = 1} the set of leaves of T , then we have the following result.

Proposition 3.1. Let T be a tree with n ≥ 2 vertices. Then

γt(M(T )) ≥ | leaf(T )|.

Proof. Fix leaf(T ) = {v1, . . . , vk}, for some k ≤ n. If n = 2, then T is isomorphic to P2 and
hence γt(M(T )) = 2 = | leaf(T )|. Assume that n ≥ 3 and let S be a total dominating set ofM(T ).
Then, for each i = 1, . . . , k, S ∩NM(T )[vi] 6= ∅. Since, if i 6= j, then NM(T )[vj] ∩NM(T )[vi] = ∅,
we have that |S| ≥ k. As a consequence, γt(M(T )) ≥ k = | leaf(T )|.

281



www.ejgta.org

Total domination number of middle graphs | F. Kazemnejad et al.

Remark 3.2. Notice that by Proposition 2.3, the inequality described in Proposition 3.1 is sharp.

It is sufficient to add some assumptions on the diameter of a tree T , to compute γt(M(T ))
explicitly.

Theorem 3.3. Let T be a tree of order n ≥ 4 with diam(T ) = 3. Then

γt(M(T )) =

{
n− 2, if there are two vertices with dT (v) ≥ 3,

n− 1, otherwise.

Proof. The assumption that diam(T ) = 3 implies that T is a tree which is obtained by joining
central vertex v of K1,p and the central vertex w of K1,q where p + q = n − 2. Let leaf(T ) =
{vi | 1 ≤ i ≤ n − 2} be the set of leaves of T . Obviously V (T ) = leaf(T ) ∪ {v, w} and
| leaf(T )| = n− 2. Define vn−1 = v and vn = w.

Assume first that p, q ≥ 2, i.e. there are two vertices with dT (u) ≥ 3. Since S = {mi(n−1) | 1 ≤
i ≤ p} ∪ {min | p + 1 ≤ i ≤ n − 2} is a total dominating set of M(T ) with |S| = n − 2, then
γt(M(T )) ≤ n− 2. On the other hand, by Proposition 3.1, we have γt(M(T )) ≥ n− 2.

Assume that p ≥ 2 and q = 1, i.e. there is only one vertex with dT (u) ≥ 3. Let S be a total
dominating set of M(T ). By Lemma 2.1, we can assume that S ⊆ E(T ). Since NM(T )(vi) =
{mi(n−1)} for all 1 ≤ i ≤ p = n − 3 and NM(T )(vn−2) = {m(n−2)n}, then {mi(n−1) | 1 ≤ i ≤
p}∪{m(n−2)n} ⊆ S. Moreover,NM(T )(m(n−2)n) = {m(n−1)n, vn, vn−2} implies thatm(n−1)n ∈ S.
This implies that |S| ≥ n− 1, and hence γt(M(T )) ≥ n− 1. On the other hand, by Theorem 2.8,
γt(M(T )) ≤ n− 1.

Assume that p, q = 1, i.e. there are no vertices with dT (u) ≥ 3. This implies that T is
isomorphic to P4 and n = 4, and hence by Proposition 2.5, γt(M(T )) = 3 = n− 1.

In general, the opposite implication of Theorem 3.3 does not hold as the next example shows.

Example 3.4. Let T be the tree in Figure 2. Then a direct computation shows that diam(T ) = 4
and γt(M(T )) = 5 = n− 2.

Figure 2. A tree on 7 vertices.

Proposition 3.5. Let T be a tree of order n ≥ 3 with diam(T ) = 2. Then

γt(M(T )) = n− 1.

Proof. The assumption that diam(T ) = 2 implies that T is isomorphic to K1,n−1. As a conse-
quence, by Proposition 2.3, that γt(M(T )) = n− 1.

Remark 3.6. By the proof of Theorem 3.3, differently from the case of domination (see [9, Theorem
3.2]), γt(M(G)) = n− 1 does not implies that G is isomorphic to K1,n−1.
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4. Operations on graphs

In this section, similarly to [9], we study the total domination number of the middle graph of
the corona, 2-corona and join with Kp of a graph.

Definition 4.1. The corona G ◦ K1 of a graph G is the graph of order 2|V (G)| obtained from G
by adding a pendant edge to each vertex of G.

Example 4.2. Consider the graph P3, then the graph P3 ◦K1 is the one in Figure 3.

Figure 3. The graph P3 ◦K1.

Theorem 4.3. For any connected graph G of order n ≥ 2,

γt(M(G ◦K1)) = n+ γ(M(G)).

Proof. Fix V (G) = {v1, . . . , vn}. Then V (G◦K1) = {v1, . . . , v2n} andE(G◦K1) = {v1vn+1, . . . ,
vnv2n} ∪ E(G). Then V (M(G ◦ K1)) = V (G ◦ K1) ∪ M, where M = {mi(n+i) | 1 ≤ i ≤
n} ∪ {mij | vivj ∈ E(G)}.

Let S ′ be a minimal dominating set of M(G). By construction, S = S ′ ∪ {mi(n+i) | 1 ≤
i ≤ n} is a total dominating set of M(G ◦ K1) with |S| = n + γ(M(G)). This implies that
γt(M(G ◦K1)) ≤ n+ γ(M(G)).

On the other hand, let S be a total dominating set of M(G ◦ K1). By Lemma 2.1, we can
assume that S ⊆M. Since NM(G◦K1)(vn+i) = {mi(n+i)}, for all 1 ≤ i ≤ n, then mi(n+i) ∈ S, for
all 1 ≤ i ≤ n. In addition, NM(G◦K1)(mi(n+i)) = {vi, vn+i} ∪ NM(G)(vi), for all 1 ≤ i ≤ n, then
NM(G)(vi) ∩ S 6= ∅, for all 1 ≤ i ≤ n. As a consequence, S ∩ E(G) is a dominating set of M(G)
and hence |S| ≥ n+ γ(M(G)). As a consequence, γt(M(G ◦K1)) ≥ n+ γ(M(G)).

Definition 4.4. The 2-corona G ◦ P2 of a graph G is the graph of order 3|V (G)| obtained from G
by attaching a path of length 2 to each vertex of G so that the resulting paths are vertex-disjoint.

Example 4.5. Consider the graph P3, then the graph P3 ◦ P2 is the one in Figure 4.

Figure 4. The graph P3 ◦ P2
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Theorem 4.6. For any connected graph G of order n ≥ 2,

γt(M(G ◦ P2)) = 2n.

Proof. Fix V (G) = {v1, . . . , vn}. Then V (G ◦ P2) = {v1, . . . , v3n} and E(G ◦ P2) = {vivn+i,
vn+iv2n+i | 1 ≤ i ≤ n} ∪ E(G). Then V (M(G ◦ P2)) = V (G ◦ P2) ∪ M, where M =
{mi(n+i),m(n+i)(2n+i) | 1 ≤ i ≤ n} ∪ {mij | vivj ∈ E(G)}.

Let S be a total dominating set of M(G ◦ P2). By Lemma 2.1, we can assume that S ⊆ M.
Since NM(G◦P2)(v2n+i) = {m(n+i)(2n+i)}, for every 1 ≤ i ≤ n, we have m(n+i)(2n+i) ∈ S for
every 1 ≤ i ≤ n. In addition, NM(G◦P2)(m(n+i)(2n+i)) = {mi(n+i), v2n+i, vn+i}, for every 1 ≤
i ≤ n, implies that mi(n+i) ∈ S, for every 1 ≤ i ≤ n. This implies that |S| ≥ 2n, and hence
γt(M(G ◦ P2)) ≥ 2n.

On the other hand, S = {mi(n+i),m(n+i)(2n+i) | 1 ≤ i ≤ n} is a total dominating set of
M(G ◦ P2) with |S| = 2n. This implies that γt(M(G ◦ P2)) ≤ 2n.

Definition 4.7. The join G+H of two graphs G and H is the graph with vertex set V (G+H) =
V (G) ∪ V (H) and edge set E(G+H) = E(G) ∪ E(H) ∪ {vw | v ∈ V (G), w ∈ V (H)}.

Example 4.8. Consider the graphsG = K3 andH = P2, then graphG+H is the one in Figure 5.

Figure 5. The graph K3 + P2.

Theorem 4.9. For any connected graph G of order n ≥ 2,

γt(M(G+Kp)) =

{
p, if p ≥ 2n,

d2(n+p)
3
e, if n

2
≤ p ≤ 2n− 1.

Proof. Fix V (G) = {v1, . . . , vn} and V (Kp) = {vn+1, . . . , vn+p}. Then V (M(G+Kp)) = V (G+
Kp)∪M1∪M2 whereM1 = {mij | vivj ∈ E(G)} andM2 = {mi(n+j) | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.

Case p ≥ 2n. Let S be a total dominating set of M(G + Kp). By Lemma 2.1, we can
assume S ⊆M1 ∪M2. Since, if j 6= k, NM(G+Kp)

(vn+j) ∩NM(G+Kp)
(vn+k) = ∅, then for every

1 ≤ j ≤ p there exists 1 ≤ i ≤ n such that mi(n+j) ∈ S, and hence |S| ≥ p. As a consequence,
γt(M(G+Kp)) ≥ p. On the other hand, S = {mi(n+i),mi(2n+i) | 1 ≤ i ≤ n}∪{m1(3n+i) | 1 ≤ i ≤
p−2n} is a total dominating set ofM(G+Kp) with |S| = p. This implies that γt(M(G+Kp)) ≤ p.

Case p = 2n − 1. Since S = {mi(n+i),mi(2n+i) | 1 ≤ i ≤ n− 1} ∪ {mn(2n),mn(2n−1)} is a
total dominating set ofM(G+K2n−1) with |S| = 2n, then γt(M(G+K2n−1)) ≤ 2n. On the other
hand, by Theorem 2.8, γt(M(G + K2n−1)) ≥ d2(3n−1)3

e = 2n, and hence γt(M(G + K2n−1)) =

2n = d2(n+p)
3
e.

Case n+3 ≤ p ≤ 2n−2. Assume that p = n+k with 3 ≤ k ≤ n−2. The graphG+Kp has
k subgraphs isomorphic to P3 and one subgraph isomorphic to P2(n−k) that are all disjoint. In fact,
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the k subgraphs (G+Kp)[v1, vn+1, v2n+1], . . . , (G+Kp)[vk, vn+k, v2n+k] are all isomorphic to P3

and the subgraph (G + Kp)[vk+1, . . . , vn, vn+k+1, . . . , v2n] has a subgraph isomorphic to P2(n−k).
By Proposition 2.5, γt(M(G +Kp)) ≤ 2k + d2(2(n−k))

3
e = d2(n+p)

3
e. By Theorem 2.8, we obtain

the desired equality.
Case p = n + 2. If n ≡ 0 mod 3, consider

S = {m1(n+1),m1(n+2),m2(n+3),m3(n+3), . . . ,m(n−1)(2n),mn(2n),mn(2n+1),mn(2n+2)}.

Then S is a total dominating set of M(G+Kp) with |S| = d2(n+p)
3
e. If n ≡ 1 mod 3, consider

S = {m1(n+1),m1(n+2),m2(n+3),m3(n+3), . . . ,mn(2n),mn(2n+1),mn(2n+2)}.

Then S is a total dominating set of M(G+Kp) with |S| = d2(n+p)
3
e. If n ≡ 2 mod 3, consider

S = {m1(n+1),m1(n+2),m2(n+3),m3(n+3), . . . ,mn(2n+1),mn(2n+2)}.

Then S is a total dominating set of M(G+Kp) with |S| = d2(n+p)
3
e. This implies that γt(M(G+

Kp)) ≤ d2(n+p)
3
e. By Theorem 2.8, we then obtain that γt(M(G+Kp)) = d2(n+p)

3
e.

Case n − 1 ≤ p ≤ n + 1. If p = n − 1, then the graph G + Kp contains the path
P : v1vn+1v2vn+2 · · · vn+pvn. If p = n, then G + Kp contains the path P ′ : v1vn+1v2vn+2 · · ·
vn+p−1vnvn+p. If p = n+1, thenG+Kp contains the path P ′′ : vn+1v1vn+2v2vn+3 · · · vn+p−1vnvn+p.
Since the paths P, P ′ and P ′′ are all isomorphic to Pn+p, we can apply Theorem 2.10, and obtain
that γt(M(G+Kp)) = d2(n+p)

3
e.

Case n
2
≤ p ≤ n − 2. Assume that p = n − k with 2 ≤ k ≤ n

2
. If n is even and p = n

2
(or

equivalently k = n
2
), then the set S = {mi(n+i),m(i+n

2
)(n+i) | 1 ≤ i ≤ n

2
} is a total dominating set

of M(G +Kp) with |S| = n = d2(n+p)
3
e. As a consequence, γt(M(G +Kp)) ≤ d2(n+p)

3
e, and by

Theorem 2.8, we obtain the desired equality.
Assume that 2 ≤ k ≤ n

2
− 1. The graph G + Kp has k subgraphs isomorphic to P3 and

one subgraph isomorphic to P2(n−2k) that are all disjoint. In fact, the k induced subgraphs (G +
Kp)[v1, vn+1, vk+1], . . . , (G+Kp)[vk, vn+k, v2k] are all isomorphic to P3 and the induced subgraph
(G + Kp)[v2k+1, . . . , vn, vn+k+1, . . . , v2n−k] has a subgraph isomorphic to P2(n−2k). By Proposi-
tion 2.5, this implies that γt(M(G +Kp)) ≤ 2k + d2(2(n−2k))

3
e = d2(n+p)

3
e. By Theorem 2.8, we

obtain the desired equality.

Similarly to [9], when p is small relatively to n, γt(M(G+Kp)) is strongly related to γt(M(G)).

Theorem 4.10. For any connected graph G of order n ≥ 2 and any integer 1 ≤ p ≤ n
2
− 1,

d2(n+ p)

3
e ≤ γt(M(G+Kp)) ≤

2p+min{γt(M(G[A])) | A ⊆ V (G),

|A| = n− 2p,G[A] has no isolated vertices}.
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Proof. Fix V (G) = {v1, . . . , vn} and V (Kp) = {vn+1, . . . , vn+p}. Then V (M(G+Kp)) = V (G+
Kp)∪M1∪M2 whereM1 = {mij | vivj ∈ E(G)} andM2 = {mi(n+j) | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.

By Theorem 2.8, we obtain the first inequality. Let now A ⊆ V (G) be a subset with |A| =
n − 2p and suppose G[A] has no isolated vertices. Without loss of generalities, we can suppose
that A = {v2p+1, . . . , vn}. Consider S ′ be a minimal total dominating set of M(G[A]), then
S = S ′ ∪ {mi(n+i),m(p+i)(n+i) | 1 ≤ i ≤ p} is a total dominating set of M(G + Kp). Since this
arguments works for every A ⊆ V (G) such that |A| = n − 2p and G[A] has no isolated vertices,
we obtain the second inequality.

If we apply Lemma 2.2 to the graph G+K1, we obtain the following result.

Lemma 4.11. Let G be a graph of order n ≥ 2 with no isolated vertices. Then

γt(M(G)) ≤ γt(M(G+K1)) ≤ γt(M(G)) + 1.

Notice that both inequalities described in Lemma 4.11 are sharp as we can see form the fol-
lowing examples.

Example 4.12. Consider the graph G = C5. Then G+K1 is isomorphic to W6. This implies that
by Corollary 2.11, γt(M(G)) = 4 = γt(M(G+K1)).

Figure 6. The graph P3 +K1.

Example 4.13. Consider the graph G = P3. Then G +K1 is the graph in Figure 6. By Proposi-
tion 2.5 and Theorem 2.10, we have that γt(M(P3)) = 2 and γt(M(P3 +K1)) = 3.

Proposition 4.14. For any star graph K1,n on n+ 1 vertices, with n ≥ 4, we have

γt(M(K1,n +K1)) = n.

Proof. Fix V (K1,n) = {v0, v1, . . . , vn}, V (K1) = {vn+1} and E(K1,n) = {v0v1, v0v2, . . . , v0vn}.
Then V (M(K1,n+K1)) = V (K1,n)∪M, whereM = {mi | 1 ≤ i ≤ n}∪{mi(n+1) | 0 ≤ i ≤ n}.

By Proposition 2.3 and Lemma 4.11, γt(M(K1,n + K1)) ≥ n. On the other hand, since
S = {mi | 1 ≤ i ≤ n − 2} ∪ {m(n−1)(n+1),mn(n+1)} is a total dominating set of M(K1,n +K1)
with |S| = n, then γt(M(K1,n +K1)) ≤ n.

Remark 4.15. Proposition 4.14 shows that the upper bound of Theorem 4.10 is sharp. In fact, if
A ⊆ V (K1,n) with |A| = n − 2 and G[A] has no isolated vertices, then G[A] is isomorphic to
K1,n−2, and hence by Proposition 2.3, γt(M(G[A])) = n− 2.
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Proposition 4.16. Let G be a graph of order n ≥ 2 and 1 ≤ p ≤ n
2
− 1. If G has a subgraph

isomorphic to a path graph Pn, then

γt(M(G+Kp)) = d
2(n+ p)

3
e.

Proof. By hypothesis, the graphG+Kp contains a subgraph isomorphic to Pn+p. By Theorem 2.10
we obtain the desired equality.

As a direct consequence of Proposition 4.16, we obtain the following result.

Corollary 4.17. Let G be a graph of order n ≥ 2 and 1 ≤ p ≤ n
2
− 1. If G is isomorphic to a path

graph Pn, or a cycle graph Cn, or a wheel graph Wn, or a complete graph Kn, then

γt(M(G+Kp)) = d
2(n+ p)

3
e.

5. Nordhaus-Gaddum relations

Since the work [11] appeared, several other authors studied Nordhaus-Gaddum type relations
for many graph invariants. We refer to [1] for a survey on the subject.

Theorem 5.1. Consider a graph G on n ≥ 2 vertices such that G and G have no isolated vertices
and no components isomorphic to K2. Then

2(n− 1) ≥ γt(M(G)) + γt(M(G)) ≥ 2d2n
3
e

and
(n− 1)2 ≥ γt(M(G)) · γt(M(G)) ≥ (d2n

3
e)2.

Proof. By applying Theorem 2.8 to each component ofG andG, we obtain that n−1 ≥ γt(M(G)) ≥
d2n

3
e and n− 1 ≥ γt(M(G)) ≥ d2n

3
e.

Remark 5.2. If in Theorem 5.1 we allow G or G to have components isomorphic to K2, then the
described upper bounds might not work. To see this it is enough to consider the graph C4. In fact,
C4 consists of two copies of K2, and then γt(M(C4)) = 3 and γt(M(C4)) = 4.

As the next example shows, all the inequalities of Theorem 5.1 are sharp.

Example 5.3. Consider the graph P4, then by Proposition 2.5, we have γt(M(P4)) = 3. On the
other hand, P4 is isomorphic to P4, and hence γt(M(P4)) = 3. Since n = 4, then 6 = γt(M(P4))+
γt(M(P4)) = 2(n− 1) = 2d2n

3
e, and 9 = γt(M(P4)) · γt(M(P4)) = (n− 1)2 = (d2n

3
e)2.
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