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Abstract

A Hamiltonian graph G = (V,E) is called hyper-Hamiltonian if G − v is Hamiltonian for any
v ∈ V (G). G is called a circulant if its automorphism group contains a |V (G)|-cycle. First,
we give the necessary and sufficient conditions for any undirected connected circulant to be hyper-
Hamiltonian. Second, we give necessary and sufficient conditions for a connected circulant digraph
with two jumps to be hyper-Hamiltonian. In addition, we specify some sufficient conditions for a
circulant digraph with arbitrary number of jumps to be hyper-Hamiltonian.
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1. Introduction

A Hamilton cycle in an undirected graph G = (V,E) is a cycle that passes through every ver-
tex v ∈ V (G) exactly once. A graph G is called Hamiltonian if it contains such a cycle, and
a Hamiltonian graph G is hyper-Hamiltonian if G − v is Hamiltonian for any v ∈ V (G). It is
well known that the problem of determining whether or not an arbitrary graph contains a Hamil-
ton cycle is NP-complete. This implies that the problem of determining if an arbitrary graph is
hyper-Hamiltonian is at least as hard as NP-complete problems. For special families of graphs,
however, a Hamilton cycle can be computed efficiently. In particular, it is known that a class of
undirected vertex-symmetric graphs called circulants, considered in the third section of this paper,
always contains a Hamilton cycle [7]. Furthermore, since all circulants (undirected and directed)
are vertex-transitive then the condition for hyper-Hamiltonicity in these graphs has to be checked
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for only one vertex. Hence, circulants represent a family of graphs for which it is natural to consider
if they are hyper-Hamiltonian. Other families of graphs with respect to hyper-Hamiltonian cycles
have been also investigated in the literature, as this problem seems to be relevant to network surviv-
ability with respect to a single node failure [9]. For example, Araki examined hyper-Hamiltonian
laceability of Cayley graphs, taking into consideration networks for parallel and distributed sys-
tems [1]. Mai et al. considered sufficient conditions for a hyper-Hamiltonian cycle in generalized
Petersen graphs [8]. Del-Vecchio et al. also focused on some sufficient conditions for a graph to be
hyper-Hamiltonian by providing spectral and non-spectral conditions for the hyper-Hamiltonian
cycle [6]. In this paper, we give both necessary and sufficient conditions for circulants to be hyper-
Hamiltonian.

Let (a1, a2, . . . , ak) be a sequence of k pairwise distinct positive integers. The undirected
circulant graph Gn(a1, a2, . . . , ak) has vertices i±a1, i±a2, . . . , i±ak (mod n) adjacent to each
vertex i, where aj < n+1

2
for 1 ≤ j ≤ k. Similarly, the circulant digraph Gn(a1, a2, . . . , ak) has

vertices i+ a1, i+ a2, . . . , i+ ak (mod n) adjacent to each vertex i, where aj < n for 1 ≤ j ≤ k.
The sequence {aj} is called the jump sequence, and the ajs are called the jumps [2]. Hence, a
circulant digraph Gn(a1, a2, . . . , ak) contains an edge (i.e., two opposite arcs) if it contains ai such
that ai = n− aj for some aj . In particular, a circulant digraph Gn(a1, a2, . . . , ak) is equivalent to
an undirected circulant Hn if for every ai there exists aj such that ai = n − aj . Consequently, a
Hamilton cycle in Gn(a1, a2, . . . , ak) needs to adhere to the directions of arcs.

Figure 1. Example of a circulant digraph Gn(a1, a2) = G15(1, 4) ' G15(4, 1).

This paper is organized as follows. In the next Section 2, we cover prior published results
that we will leverage in the proofs of our theorems in the following sections. In Section 3, we give
necessary and sufficient conditions in Theorem 3.1 for an arbitrary undirected circulant to be hyper-
Hamiltonian. Section 4 covers directed circulants. First, in Theorem 4.1 we give the necessary and
sufficient conditions for a circulant digraph with 2 jumps to be hyper-Hamiltonian. In the second
part of Section 4 we focus and give some sufficient conditions for hyper-Hamiltonicity in circulant
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digraph with arbitrary number of jumps.

2. Preliminary Results

There are five results that will be useful in proving our main theorem in the next section for
undirected circulants, and one result (i.e., Theorem 2.4) pertaining to circulant digraphs that we
will leverage in the last section of this paper. First, the following result was proved by Lovász.

Theorem 2.1 ([7]). Every connected circulant is Hamiltonian.

Second, we examined pancyclic and edge-bipancyclic properties in undirected circulants [5].
G(V,E) is edge-bipancyclic if every edge e, e ∈ E(G), is included in a cycle of length 2k for
every value of 2k, where |V (G)| ≥ 2k ≥ 4. Furthermore, G(V,E) is pancyclic if it contains
cycles of length k for every value of k, where |V (G)| ≥ k ≥ 3. We obtained the following two
results:

Theorem 2.2 ([5]). Let G be a connected circulant of order n with at least two jumps. Then, G is
edge-bipancyclic.

Theorem 2.3 ([5]). Let G be a connected circulant of order n and girth 3. Then, G is pancyclic.

Both results are related to hyper-Hamiltonicity of undirected circulants, which will be exploited in
the proof of our main theorem of Section 3.

We also need the following result due to Boesch and Tindell that pertains to undirected as well
as directed circulants.

Theorem 2.4 ([2]). Circulant Gn(a1, a2, . . . , ak) is connected if and only if

gcd(n, a1, a2, . . . , ak) = 1.

Furthermore, we extended Theorem 2.4 as follows.

Theorem 2.5 ([3]). Circulant Gn(a1, a2, . . . , ak) consists of r connected components if and only if

gcd(n, a1, a2, . . . , ak) = r.

Since each connected component of any circulant is of identical size, having r from Theorem
2.5 establishes their size equal n

r
, which will be useful in the proofs in Sections 3-4.

3. Hyper-Hamiltonian Undirected Circulants

We now prove necessary and sufficient conditions for an arbitrary undirected and connected
circulant to be hyper-Hamiltonian.

Theorem 3.1. A connected circulant Gn(a1, a2, . . . , ak) for k ≥ 2 is hyper-Hamiltonian if and
only if either n is odd or at least one ai is even.
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Proof. Recall that G = Gn(a1, a2, . . . , ak) has vertices v0, v1, . . . , vn−1. As G is vertex transitive
and Hamiltonian by Theorem 2.1, it suffices to show that H = G− v0 has a Hamilton cycle.

We first assume that n is even and a1, a2, . . . , ak are odd, and we show that G = Gn(a1, a2, . . . , ak)
is not hyper-Hamiltonian. Suppose G is hyper-Hamiltonian, so there exists a cycle C of length
n − 1. Without loss of generality assume we walk along W starting at v0. Since every jump ai is
odd then the following two conditions are satisfied in W : (1) if a current vertex v in W is even
then the next vertex w = v± ai (mod n) in W is odd, and (2) if a current vertex w is odd then the
next vertex v = w ± ai (mod n) in W is even. Since n is even then there does not exist a closed
walk W that ends with vj = v0, which results in a simple cycle C of odd length – a contradiction,
which proves our necessary condition of hypothesis.

For a sufficient condition of hyper-Hamiltonicity of G we consider the following two cases.

Case 1. n odd.
By Theorem 2.1 G contains a Hamilton cycle, and by Theorem 2.2 G is edge-bipancyclic. So,

G also contains a Hamilton cycle in H = G − vi for any vertex vi in G. Hence, G is hyper-
Hamiltonian in this case.

Case 2. n even and at least one of the jumps ai is even.
Since n is even then according to Theorem 2.4 also at least one of the jumps aj is odd. Without

loss of generality assume a1 odd and ak even. Let gcd(n, a1, a2, . . . , ak−1) = r1 and gcd(n, ak) =
r2. Let vji denote ith vertex in jth cycle formed by ak in G. So, according to Theorem 2.5
vj1v

j
2 · · · v

j
n
r2

denotes jth cycle formed by ak in G, where r2 ≥ j ≥ 1.

Let H be the subgraph of G consisting of all the edges (i, i + ak (mod n)). Since n, ak are
even, H must be the union of at least two pairwise disjoint cycles Cj . Let G′ be obtain from G
by contracting each cycle Cj of H into a vertex. If j is the smallest number such that some cycle
in H contains vertices 1 and 1 + j (mod n), then the cycles of H containing vertices 1, 2, . . . , j
are pairwise distinct and constitute all the cycles of H . Then the isomorphism i→ i + 1 (mod n)
of G induces an isomorphism of G′, which proves that G′ is a connected circulant. By Theorem
2.1, G′ has a Hamilton cycle. This implies existence of a simple path P = v11v

2
1 · · · v

r2
1 v1q in G.

Consequently, according to Theorem 2.5 there are gcd(n, a1, a2, . . . , ak−1), which is odd, cycles
Ci corresponding to a Hamilton cycle of G′ formed by jumps a1, . . . , ak−1 in G as follows:

C1 = v11v
2
1 · · · v

r2
1 v1q1v

2
q1
· · · vr2q1 · · · v

1
z1
v2z1 · · · v

r2
z1
v11,

C2 = v12v
2
2 · · · v

r2
2 v1q2v

2
q2
· · · vr2q2 · · · v

1
z2
v2z2 · · · v

r2
z2
v12,

· · ·

Cr1 = v1r1v
2
r1
· · · vr2r1 v

1
qr1

v2qr1 · · · v
r2
qr1
· · · v1zr1v

2
zr1
· · · vr2zr1v

1
r1
,

where q1 = q. Hence,

q = b · gcd(n, a1, a2, . . . , ak−1) (mod
n

gcd(n, ak)
) + 1

188



www.ejgta.org

Hyper-Hamiltonian circulants | Zbigniew R. Bogdanowicz

for some positive odd integer b. Furthermore, since r1 is odd then q is either 1 or can be assumed
even. In particular, if n

gcd(n,ak)
is odd and q greater than 1 then q is even based on a convenient

orientation of cycles formed by ak (i.e., if q is odd in one orientation then it is even in opposite
orientation). On the other hand, if n

gcd(n,ak)
is even then q has to be even as well.

If n
gcd(n,ak)

= 3 then ak forms triangles in G and by Theorem 2.3 G is pancyclic. This in
turn implies that G is hyper-Hamiltonian and we are done. Otherwise, without loss of generality
consider a walk W in G from vertex v11 .

Subcase 2.1. q = 1.
We start walk W with

W2 = v11v
2
1 · · · v

r2
1 vr22 ,

which is followed by walks:

W3 = v12v
1
3 v

2
3v

2
2 · · · v

r2−2
3 vr2−22 vr2−12 vr2−13 vr23 vr24 ,

W4 = v14v
1
5 v

2
5v

2
4 · · · v

r2−2
5 vr2−24 vr2−14 vr2−15 vr25 vr24 ,

· · ·

Wt = v12t−4v
1
2t−3 v

2
2t−3v

2
2t−4 · · · v

r2−2
2t−3v

r2−2
2t−4 vr2−12t−4v

r2−1
2t−3 vr22t−3v

r2
2t−2,

where 2t− 1 = n
r2

, and followed by walk,

Wt+1 = vr22t−1v
1
2t−1v

1
1.

Hence, W = W2W3 · · ·WtWt+1 is a closed walk representing a simple cycle of length n− 1 in G
that skips the vertex v12t−2. So, in this subcase G is hyper-Hamiltonian.

Subcase 2.2. q even.
If either q = 2 or q = n

gcd(n,a2)
then a2 forms a Hamilton cycle in G – a contradiction. So, we

may assume n
gcd(n,a2)

> q > 2. Let t1 = n
r1

be the size of a cycle induced by a1. We start walk W
with

W1 = v11v
2
1 · · · v

r2
1 v1q ,

followed by walks:
W2 = v1q+1v

1
q+2 · · · v1t1 v

2
t1
v2t1−1 · · · v

2
q+1v

2
q ,

W3 = v2q+1v
2
q+2 · · · v2t1 v

3
t1
v3t1−1 · · · v

3
q+1v

3
q ,

· · ·

Wr2 = vr2−1q+1 vr2−1q+2 · · · vr2−1t1 vr2t1 v
r2
t1−1 · · · v

r2
q+1v

r2
q ,

and if r2 ≥ 4 then subsequently followed by walks:

Wr2+1 = vr2q−1v
r2
q−2 · · · vr22 vr2−12 vr2−13 · · · vr2−1q−1 ,

Wr2+2 = vr2−2q−1 vr2−2q−2 · · · vr2−22 vr2−32 vr2−33 · · · vr2−3q−1 ,
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· · ·
W

r2+
r2−2

2
= v4q−1v

4
q−2 · · · v42 v32v33 · · · v3q−1.

If q − 1 > 3 then W1W2 · · ·Wr2+
r2−2

2
is followed by walk:

W
r2+

r2−2
2

+1
= v2q−1v

1
q−1v

1
q−2v

2
q−2 v

2
q−3v

1
q−3v

1
q−4v

2
q−4 · · · v25v15v14v24.

Otherwise, W
r2+

r2−2
2

+1
is skiped. We end walk W1W2 · · ·Wr2+

r2−2
2

(W
r2+

r2−2
2

+1
) with

W
r2+

r2−2
2

+2
= v23v

1
3v

1
2v

1
1.

So, in this subcase W is a closed walk representing a simple cycle of length n − 1 in G that
skips the vertex v22 . Hence, in this case G is hyper-Hamiltonian. Consequently, Cases 1-2 prove a
sufficient condition for hyper-Hamiltonicity of G.

4. Hyper-Hamiltonian Circulant Digraphs

In this section, we first prove the necessary and sufficient conditions for a connected circulant
digraphs with two jumps to be hyper-Hamiltonian. For convenience and better clarity in this section
let vi±j denote vertex i± j taken modulo n.

Theorem 4.1. A connected circulant digraph Gn(a1, a2) is hyper-Hamiltonian if and only if either
a1 ≡ 2a2 (mod n) or a2 ≡ 2a1 (mod n).

Proof. Without loss of generality, we first assume a2 ≡ 2a1 (mod n) for a sufficient condition.
If gcd(n, a1) > 1 then gcd(n, a1, a2) > 1 and by Theorem 2.4 G is disconnected. So, assume
gcd(n, a1) = 1. Then the isomorphism i → i + a1 (mod n) of G induces circulant digraph
G′n(1, 2) ' Gn(a1, a2). Let CG′ , CG′−v1 denote the Hamilton cycles in G′ and G′−v1, respectively.
Consequently, CG′ = v0v1v2 · · · vn−1v0 and CG′−v1 = v0v2 · · · vn−1v0, which proves our sufficient
condition.

For a necessary condition, assume a1 6= 2a2 (mod n), a2 6= 2a1 (mod n), and G is hyper-
Hamiltonian. Without loss of generality assume H = G− va1 to have a Hamilton cycle CH . Such
a cycle CH must be induced by both jumps. Then, H contains either path Q1 = v0va2va2+a1va2+2a1

or path Q2 = va1−a2v2a1−a2v2a1v2a1+a2 .

Case 1. H contains Q1.
If CH is of the form v0va2va2+a1va2+2a1 · · · va2+z1a1 where a2 + z1a1 ≡ 0 (mod n) then z1 =

n− 2, which implies a2 ≡ 2a1 (mod n) – a contradiction. Otherwise, let z1 be the largest positive
integer for which CH contains path P0 = v0va2va2+a1va2+2a1 · · · va2+z1a1 . Then P0 implies

P1 = va2−a1v(a2−a1)+a2v(a2−a1)+a2+a1v(a2−a1)+a2+2a1 · · · v(a2−a1)+a2+z1a1

in CH , since otherwise the vertices va1 , va2−a1 would not be visited in CH . No successive path Pi

in CH can start with va1 because it would imply all (i.e., at least 3) vertices in Pi to be unvisited.
Hence, by induction every path Pi in CH must be of the following form

Pi = vi(a2−a1)vi(a2−a1)+a2vi(a2−a1)+a2+a1vi(a2−a1)+a2+2a1 · · · vi(a2−a1)+a2+z1a1 ,
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consisting of exactly z1 arcs of the form (j, j + a1 (mod n)). On the other hand, the unvisited
vertex va1 and P0 imply a path Px = v2a1v2a1+a1v2a1+2a1 · · · v2a1+(z1−1)a1 , with z1 − 1 arcs of the
form (j, j + a1 (mod n)) in CH – a contradiction.

Case 2. H contains Q2.
If CH is of the form va1−a2v2a1−a2v2a1v2a1+a2 · · · v2a1+z2a2 where 2a1+z2a2 ≡ a1−a2 (mod n)

then z2 = n−2, which implies 2(a1−a2) ≡ a1−a2 (mod n) – a contradiction. Otherwise, let z2 be
the largest positive integer for which CH contains path P0 = va1−a2v2a1−a2v2a1v2a1+a2 · · · v2a1+z2a2 .
Then P0 implies

P1 = v(a1−a2)+a1−a2v(a1−a2)+2a1−a2v(a1−a2)+2a1v(a1−a2)+2a1+a2 · · · v(a1−a2)+2a1+z2a2

in CH , since otherwise the vertices va1 , v2(a1−a2) would not be visited in CH . No successive path
Pi in CH can start with va1 because it would imply all vertices in Pi to be unvisited. Consequently
by induction every Pi in CH has to be of the following form

Pi = vi(a1−a2)+a1−a2vi(a1−a2)+2a1−a2vi(a1−a2)+2a1vi(a1−a2)+2a1+a2 · · · vi(a1−a2)+2a1+z2a2

consisting of exactly z2 + 1 arcs of the form (j, j + a2 (mod n)). On the other hand, the unvisited
va1 and P0 imply a path Py = va1+a2va1+2a2va1+3a2 · · · va1+(z2+1)a2 , with z2 arcs of the form (j, j +
a2 (mod n)) in CH – a contradiction.
Consequently, the contradictions of Cases 1-2 prove a necessary condition.

For the general case of a circulant digraph G = Gn(a1, a2, . . . , ak) the problem of deciding
whether or not G is hyper-Hamiltonian is more challenging since it is an open problem in respect
to which circulant digraphs are Hamiltonian in general. Hence, in the rest of this section we focus
on some sufficient conditions for hyper-Hamiltonicity of G.

For given integers s1, s2, . . . , sk define Pi as follows:

Pi = vi+a1vi+2a1 · · · vi+s1a1

vi+s1a1+a2vi+s1a1+2a2 · · · vi+s1a1+s2a2

· · ·
vi+s1a1+s2a2+···+sk−1ak−1+akvi+s1a1+s2a2+···+sk−1ak−1+2ak · · · vi+s1a1+s2a2+···+sk−1ak−1+skak .

Let CG(s1, s2, . . . , sk) denote a Hamilton cycle in G of the form P0PcP2c · · ·Pm (mod n) for
some positive integers c,m, where m + s1a1 + s2a2 + · · · + skak ≡ 0 (mod n). The following
theorem from [4] will be useful in obtaining some sufficient conditions for hyper-Hamiltonicity in
circulant digraphs.

Theorem 4.2 ([4]). Let Grs(a1, a2, . . . , ak) be a connected circulant digraph. Let si be integers
such that rs

ai
> si ≥ 1 and s = s1 + s2 + · · ·+ sk. Let t be a positive integer and ts = rs

gcd(rs,aj)
for

some aj . If gcd(rs, s1a1 + s2a2 + · · · + skak) = s and ai ≡ aj (mod s) then Grs(a1, a2, . . . , ak)
has a Hamilton cycle CG(s1, s2, . . . , sk).
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Since a Hamilton cycle is explicitly identified in Theorem 4.2, we can leverage that in determining
sufficient conditions for hyper-Hamiltonicity in circulant digraphs as follows.

Theorem 4.3. Let Grs(a1, a2, . . . , ak) be a connected circulant digraph. Let si be integers such
that rs

ai
> si ≥ 1 and s = s1 + s2 + · · ·+ sk. Let t be a positive integer such that ts = rs

gcd(rs,aj)
for

some aj . Grs(a1, a2, . . . , ak) is hyper-Hamiltonian if the following conditions are satisfied:
(1) gcd(rs, s1a1 + s2a2 + · · ·+ skak) = s,
(2) ai ≡ aj (mod s),
(3) ai + aj ≡ at (mod rs) for at least one combination of i, j, t,

or ai ≡ 2aq (mod rs) and sq ≥ 2 for some i, q.

Proof. If (1) and (2) are satisfied then by Theorem 4.2 G = Grs(a1, a2, . . . , ak) has a Hamilton
cycle of form CG(s1, s2, . . . , sk). Hence, it suffices to show that G − v also has a Hamilton cycle
for some arbitrary v ∈ V (G) since G is vertex transitive. If sq ≥ 2 for some q, k ≥ q ≥
1, then by definition corresponding CG = CG(s1, s2, . . . , sk) contains two consecutive arcs aq,
i.e., CG = · · · aqaq · · · . So, if there exists ai in G such that ai ≡ 2aq (mod rs) then aqaq in
CG can be substituted with ai resulting in a Hamilton cycle in G − v. Otherwise, assume ai +
aj ≡ at (mod rs) for some combination of i, j, t. Let (a′1, a

′
2, . . . , a

′
k) be any permutation of

(a1, a2, . . . , ak). If (1) and (2) are satisfied then gcd(rs, s′1a
′
1 + s′2a

′
2 + · · ·+ s′ka

′
k) = s and a′i ≡ a′j

(mod s) are satisfied for some permutation (s′1, s
′
2, . . . , s

′
k) of (s1, s2, . . . , sk) too. Furthermore,

according to Theorem 4.2 CG(s1, s2, . . . , sk) exists, which implies that CG′(s
′
1, s
′
2, . . . , s

′
k) also

exists in G′ = Grs(a
′
1, a
′
2, . . . , a

′
k). Hence, for ai + aj ≡ at (mod rs) we conveniently choose

(a′1, a
′
2, . . . , a

′
k), so a′1 = ai, a′2 = aj , and a′k = at. Consequently, CG′(s

′
1, s
′
2, . . . , s

′
k) induces a

Hamilton cycle in G′ − v by substituting one occurrence of two arcs a′1a
′
2 with a single arc a′k,

which completes this proof.

Finally, the sufficient condition for the hyper-Hamiltonicity of an arbitrary circulant digraph can
be extended from circulant digraph with 2 jumps based on Theorem 4.1, as follows.

Theorem 4.4. A connected circulant digraph Gn(a1, a2, . . . , ak) is hyper-Hamiltonian if it con-
tains two jumps ai, aj such that ai ≡ 2aj (mod n) and gcd(n, aj) = 1.

Proof. If G = Gn(a1, a2, . . . , ak) contains aj such that gcd(n, aj) = 1 then according to Theorem
2.4 our G contains a spanning connected circulant digraph G′n(ai, aj) for any ai in G. Furthermore,
if ai ≡ 2aj (mod n) then ai 6= aj and by Theorem 4.1 G is hyper-Hamiltonian.

In closing, we note that ai ≡ 2aj (mod n) imply hyper-Hamiltonicity of Gn(a1, a2, . . . , ak) in
Theorems 4.3-4.4 under different additional conditions. In particular, Theorem 4.4 also requires
gcd(n, aj) = 1 while Theorem 4.3 does not require gcd(n, aj) = 1, but other conditions.
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