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Abstract

Let A be a nontrivial abelian group. A connected simple graph G = (V,E) is A-antimagic, if
there exists an edge labeling f : E(G) → A\{0A} such that the induced vertex labeling f+(v) =∑
{u,v}∈E(G) f({u, v}) is a one-to-one map. The integer-antimagic spectrum of a graphG is the set

IAM(G) = {k : G is Zk-antimagic and k ≥ 2}. In this paper, we determine the integer-antimagic
spectra for all Hamiltonian graphs.
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1. Introduction

A labeling of a graph is defined to be an assignment of values to the vertices and/or edges of the
graph. Graph labeling is a very diverse and active field of study. A dynamic survey [2] maintained
by Gallian contains 2922 references to research papers and books on the topic.

Let G be a connected simple graph. For any nontrivial abelian group A (written additively),
let A∗ = A\{0A}, where 0A is the additive identity of A. Let function f : E(G) → A∗ be
an edge labeling of G. Any such labeling induces a vertex labeling f+ : V (G) → A, defined
by f+(v) =

∑
{u,v}∈E(G) f({u, v}). We denote the range of f+ by Rf (G). If there exists an
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edge labeling f whose induced map f+ on V (G) is one-to-one, we say that f is an A-antimagic
labeling and that G is an A-antimagic graph. The integer-antimagic spectrum of a graph G is the
set IAM(G) = {k : G is Zk-antimagic and k ≥ 2}.

The concept of theA-antimagicness property for a graphG (introduced independently in [1, 3])
naturally arises as a variation of the A-magic labeling problem (where the induced vertex labeling
is a constant map). There is a large body of research on A-magic graphs within the mathematical
literature. As for A-antimagic graphs (which is the focus of our paper), cycles, paths, various
classes of trees, dumbbells, graphs with a chord, multi-cyclic graphs, Km,n, Km,n − {e}, tadpoles
and lollipop graphs were investigated in [1, 3, 4, 5, 7, 8, 9].

First, we include some known results which will be used in the rest of the paper. In particular,
the results from the theorems in this section are used in the constructions of new Zk-antimagic
labelings in this paper.

A trivial lower bound for the least element of IAM(G) is the order of G. However, this is not
always achieved, as seen in the following result.

Lemma 1.1 ([1]). For all m ∈ Z+, a graph of order 4m+ 2 is not Z4m+2-antimagic.

Motivation for our current work is found in the following conjecture.

Conjecture 1 ([5]). Let G be a connected simple graph. If t is the least positive integer such that
G is Zt-antimagic, then IAM(G) = {k : k ≥ t}.

A result of Jones and Zhang [3] finds the minimum element of IAM(G) for all connected
graphs on 3 or more vertices. In their paper, a Zn-antimagic labeling of a graph on n vertices is
referred to as a nowhere-zero modular edge-graceful labeling. This is a variation of a graceful
labeling (originally called a β-valuation) which was introduced by Rosa [6] in 1967. The result is
as follows, where the terminology has been adapted to better suit this paper.

Theorem 1.1 ([3]). IfG is a connected simple graph of order n ≥ 3, thenmin{t : t ∈ IAM(G)} ∈
{n, n+ 1, n+ 2}. Furthermore,

• min{t : t ∈ IAM(G)} = n if and only if n 6≡ 2 (mod 4), G 6= K3, and G is not a star of
even order;

• min{t : t ∈ IAM(G)} = n+1 if and only if G = K3 or n ≡ 2 (mod 4) and G is not a star
of even order; and

• min{t : t ∈ IAM(G)} = n+ 2 if and only if G is a star of even order.

Conjecture 1 was shown to be true for all of the classes of graphs which were analyzed in
[1, 4, 5, 7, 8, 9]. The purpose of this paper is to provide additional evidence for Conjecture 1 by
verifying it for a large family of graphs including all Hamiltonian graphs. We use constructive
methods to determine the integer-antimagic spectra of the graph classes in question.

If a and b are integers with a ≤ b, let [a, b] denote the set {a, a+1, . . . , b}. Let (v0, v1, . . . , vm−1)
denote the m-cycle with edges {vi, vi+1}, for i ∈ [0,m − 2] and {v0, vm−1}. Consider the cycle
Cm = (v0, v1, . . . , vm−1). Define the x-alternating cycle labeling of Cm, starting with the edge
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{vi, vi+1}, to be the function gx : E(Cm)→ {x,−x} such that gx({vi, vi+1}) = x and gx alternates
between −x and x, where x ∈ A for some additive group A.

We will make use of the following result in our main construction.

Theorem 1.2 ([1]). If m ≡ 0, 1, 3 (mod 4), then IAM(Cm) = {k : k ≥ m}. If m ≡ 2 (mod 4),
then IAM(Cm) = {k : k ≥ m+ 1}.

2. Graphs with an even cycle

The following technical lemma is important and will be used throughout this paper.

Lemma 2.1. Let f be a Zk-antimagic labeling of a graph G and let G′ = G ∪ {{u, v}}, where
u, v ∈ V (G) and {u, v} /∈ E(G). Suppose {u, v} lies on a non-Hamiltonian even cycle Cm in G′.
Then, there is a Zk-antimagic labeling h of G′ such thatRf (G) = Rh(G

′).

Proof. Let f : E(G)→ Zk\{0} be a Zk-antimagic labeling of G and Cm = (v0, v1, . . . , vm−1) be
an even cycle in G′, where u = v0 and v = vm−1. Since m ≤ |V (G)|−1 and |V (G)| ≤ k, we have
m−1 ≤ k−2 if k is odd, andm−1 ≤ k−3 if k is even. Thus by the Pigeonhole Principle, we may
assume that there exists x ∈ Zk\{0} with the following properties: (i) x 6= −x, (ii) at most one of
the edges {vi, vi+1} (where 0 ≤ i ≤ m− 2) is labeled with x, and (iii) none of the edges {vi, vi+1}
(where 0 ≤ i ≤ m− 2) are labeled with −x. Otherwise, the multiset ∪m−1i=1 {f({vi−1, vi})} would
contain every integer x in {1, 2, . . . , k − 1} and its additive inverse at least once. In this case, we
would have k − 1 ≤ m− 1. We define h : E(G′)→ Zk\{0} by

h(e) = f(e) + w(e),

where addition is in Zk and

w(e) =

{
gx(e), if e ∈ E(Cm),
0, otherwise.

Here, gx is the x-alternating cycle labeling of the cycle Cm starting with the only edge e∗, for
which f(e∗) = x; otherwise, if f(e) 6= x for all e ∈ E(Cm)\{u, v}, then gx can start at any edge
in the cycle. Clearly, w+(v) = 0 for all v ∈ V (G) so h+(v) = f+(v). Moreover, all the edges
of Cm are labeled with a non-zero integer in Zk since f({vi, vi+1}) does not take value −x for
i ∈ [0,m− 2]. Thus, h is the desired Zk-antimagic labeling of G′.

Example 1. This example demonstrates how the overlaying of an alternating cycle labeling works
(see f , h, and x found in the proof of Lemma 2.1). Let f : E(C12) → Zk\{0} be a Zk-antimagic
labeling of C12 as shown in Figure 1(a), and h : E(C12)→ Zk\{0} be the labeling of C12 defined
by h(e) = f(e) + g(e) as shown in Figure 1(b) where g is the x-alternating cycle labeling of the
cycle C12. It is clear that, for x ∈ {1, 3, 8, 10}, h is also a Zk-antimagic labeling of C12, for k ≥ 12.
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Figure 1. Two different Zk-antimagic labelings of C12, for k ≥ 12.

3. Chorded cycles

LetCm be the cycle (v0, v1, ..., vm−1). A chord ofCm is an edge not inE(Cm) whose endpoints
lie in the vertex set V (Cm). If Cm has at least one chord, then it is called a chorded cycle. We
define Cm(l) to be the graph obtained from Cm by adding the chord {vi, vj}, where l = min{|i−
j|,m−|i− j|} which is called the length of the chord. Note that the length of any chord in a cycle
Cm is at least 2 and at most bm

2
c.

An m-cycle with a chord of length l is denoted by Cm(l). Note that Cm(l) is the union of two
cycles which share exactly one edge – the chord. We call the shorter of the two cycles the minor
subcycle ofCm(l), denoted by C−m(l), and the longer of the two cycles the major subcycle of Cm(l),
denoted by C+

m(l).
In [4], the integer-antimagic spectrum for cycles with a chord was determined completely.

Theorem 3.1 ([4]). Let m be an integer and let l ∈ [2, bm
2
c] be an integer. Then, IAM(Cm(l)) =

{k : k ≥ m} if m ≡ 0, 1, 3 (mod 4) and IAM(Cm(l)) = {k : k ≥ m+ 1} if m ≡ 2 (mod 4).

In Lemma 2.1, it was shown that Zk-antimagicness can be preserved when an edge is added,
provided that edge lies on an even cycle. However, if the added edge lies on only odd cycles, we
will make use of Lemmas 3.1 and 3.2. Also by Lemma 3.1, we can obtain an integer-antimagic
labeling of a cycle with more than one chord and we will use this result in our main construction.

We will need the following technical lemma for the proof of Lemma 3.2.

Lemma 3.1. Let m, l1, and l2 be even with l1, l2 ∈ [2, m
2
]. Let f be a Zk-antimagic labeling of the

cycle Cm and let C ′m = Cm∪{c1, c2}, where c1 and c2 are two different chords of lengths l1 and l2,
respectively, in Cm. Then, there is a Zk-antimagic labeling h of C ′m such thatRf (Cm) = Rh(C

′
m).

Proof. Let f : E(Cm)→ Zk\{0} be a Zk-antimagic labeling ofCm = (v0, v1, . . . , vm−1). Without
loss of generality, assume c1 and c2 are chords of lengths l1 and l2 in Cm with end points {v0, vl1}
and {vs, vt}, respectively. Also, we may assume s < t where s, t ∈ Zm. It is easy to check that
l2 = min{t − s,m − t + s} and since l2 is even, s and t have the same parity. Here, we separate
the problem into four cases.

Case 1. First, assume s = 0. We define the cycle C = (u0, u1, . . . , u|l1−t|+1) in C ′m, where
u0 = v0 and ui = vt+sgn(l1−t)(i−1), for i ∈ [1, sgn(l1 − t)(l1 − t) + 1]. Here, sgn(·) denotes
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the signum function. It is obvious that C contains both c1 = {v0, vl1} and c2 = {v0, vt} and
|V (C)| = |l1 − t|+ 2; that is, C is an even cycle in C ′m satisfying |V (C)| < m− 1.

Case 2. Let 0 < s < l1 and define the cycle C = (u0, u1, . . . , u|l1−t|+s+1), where ui = vi for
i ∈ [0, s] and us+i = vt+sgn(l1−t)(i−1) for i ∈ [1, |l1− t|+1]. Here, if s = l1−1 and t = m−1, then
C will be a cycle of length m. In this case, we will take the C as the 4-cycle (v0, vt, vs, vl1). It is
easy to check that C contains both c1 = {v0, vl1} and c2 = {vs, vt} and |V (C)| = |l1 − t|+ s+ 2;
that is, C is an even cycle in C ′m satisfying |V (C)| < m− 1.

Case 3. Assume s = l1 and define the cycle C = (u0, u1, . . . , um−t+1), where um−t+1 = vl1
and vi = v−i for i ∈ [0,m − t]. Then, C contains both c1 = {v0, vl1} and c2 = {vs, vt} and
|V (C)| = m− t+ 2; that is, C is an even cycle in C ′m satisfying |V (C)| < m− 1.

Case 4. Assume l1 < s ≤ m − 1 and define the cycle C = (u0, u1, . . . , um−t+s−l1+1), where
ui = v−i for i ∈ [0,m − t] and um−t+i = vs−i−1 for i ∈ [1, s − l1 + 1]. It can be checked that C
contains both c1 = {v0, vl1} and c2 = {vs, vt} and |V (C)| = m − t + s − l1 + 2; that is, C is an
even cycle in C ′m satisfying |V (C)| < m− 1.

In all cases, we are able to find an even cycle C in C ′m containing both edges c1 and c2 which
satisfies |V (C)| < m− 1. Since m ≤ k and |V (C)| < m− 1, we have |V (C)| < k − 1. Thus by
the Pigeonhole Principle, we may assume that there exists x ∈ Zk\{0} for which x 6= −x such that
at most one of the edges of C\{c1, c2} is labeled with x while none of which is labeled with −x.
Otherwise, the multiset {f(E(C)\{c1, c2})} would contain every integer x in {1, 2, . . . , k − 1}
and its additive inverse at least once, hence, we would have k − 1 ≤ |V (C)| − 2. We define
h : E(C ′m)→ Zk\{0} by

h(e) = f(e) + w(e),

where addition is in Zk and

w(e) =

{
gx(e), if e ∈ E(C),
0, otherwise.

Here, gx is the x-alternating cycle labeling of the cycle C starting with the only edge e∗, for
which f(e∗) = x; otherwise, if f(e) 6= x for all e ∈ E(C), then gx can start at any edge in the
cycle. Clearly, w+(v) = 0 for all v ∈ V (Cm), so h+(v) = f+(v). Moreover, all the edges of C are
labeled with a non-zero integer in Zk since f(e) does not take value −x, for all e ∈ E(C). Thus,
h is the desired Zk-antimagic labeling of C ′m.

Lemma 3.2. Let m be an integer and let l1, l2 ∈ [2, bm
2
c], where l1 and l2 have the same parity

when m is even. Also let f be a Zk-antimagic labeling of a graph G and let G′ = G ∪ {c1, c2}. If
the edges c1 and c2 are two different chords of lengths l1 and l2, respectively, of a cycle Cm in G′,
then there is a Zk-antimagic labeling h of G′ such thatRf (G) = Rh(G

′).

Proof. Let f : E(G) → Zk\{0} be a Zk-antimagic labeling of G. If the length li of a chord ci in
Cm is odd, then the minor subcycle C−m(li) is an even cycle in G′ with |V (C−m(li))| < |V (G)| − 1.
So applying Lemma 2.1 gives the result for odd length chords l1 and l2. Similarly, if m is odd, then
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|V (C+
m(li))| and |V (C−m(li))| have different parities; that is, there exists at least one even cycle in

G′ which includes the chord ci for i = 1, 2. Thus by Lemma 2.1, we have the desired labeling of
G′.

Let m, l1, and l2 be even and let c1 and c2 be two different chords of Cm. We can apply Lemma
3.1 to the restriction of f to Cm to obtain a Zk-antimagic labeling of C ′m = Cm ∪ {c1, c2} that
preserves the vertex labels of f . Combining this new labeling with the original f labeling on the
edges in G\E(Cm) gives us the desired Zk-antimagic labeling of G′.

Example 2. In Figure 2(a), the 14-cycle C14 = (v0, v1, v2, . . . , v13) and a Zk-antimagic labeling of
it is shown, for k ≥ 15. Figures (b), (c), and (d) show three possible cases for adding two chords
to C14. The overlayed x-alternating cycles were each constructed via the method described in the
proof of Lemma 3.1.
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Figure 2. Figures (b), (c), and (d) show possible overlaying processes which maintain the Zk-antimagic property of
C14, for k ≥ 15.

4. Hamiltonian graphs of odd order

A Hamiltonian cycle in a graph G is a cycle that contains all vertices of G, and a graph is said
to be Hamiltonian if it contains a Hamiltonian cycle. In this section, we determine the integer-
antimagic spectra for all Hamiltonian graphs of odd order.

Theorem 4.1. Every Hamiltonian graph G of odd order is Zk-antimagic, for k ≥ |V (G)| and
G 6= K3.

Proof. Let m be a positive odd integer and G be a graph of order m possessing the cycle Cm =
(v0, v1, . . . , vm−1). By Theorem 1.2, Cm is Zk-antimagic for k ≥ m.
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When two vertices vi and vj (i 6= j) of the cycle Cm are joined by a chord, the resulting graph,
say C∗m, is always the union of an even cycle and an odd cycle which share one edge {vi, vj}. Thus
by Lemma 2.1, C∗m is Zk-antimagic for k ≥ m, since the edge {vi, vj} lies on an even cycle in C∗m.
Whenever an edge is added to the new resulting graph, the added edge belongs to an even cycle.
Applying the same construction as in Lemma 2.1 gives a Zk-antimagic graph for k ≥ m.

5. Hamiltonian graphs of even order

In this section, we determine the integer-antimagic spectra of the Hamiltonian graphs of even
order. When we add an even-length chord to an even cycle, both the minor and major subcycles
have odd lengths. By applying Theorem 3.1 and Lemma 3.2, we will be able to obtain the desired
labelings of Hamiltonian graphs of even order.

Theorem 5.1. Let G be a Hamiltonian graph. If |V (G)| ≡ 0 (mod 4), then G is Zk-antimagic,
for k ≥ |V (G)|. If |V (G)| ≡ 2 (mod 4), then G is Zk-antimagic, for k ≥ |V (G)|+ 1.

Proof. Let Cm = (v0, v1, . . . , vm−1) be a Hamiltonian cycle in graph G and let C(G) be the subset
of E(G) defined as C(G) = E(G)\E(Cm). We can think of each element of C(G) as a chord of
Cm. We will construct G by adding chords to the Hamiltonian cycle Cm. If the length of a chord is
odd, then the corresponding minor subcycle is an even cycle. Thus by Lemma 2.1, regardless how
many odd length chords are added to Cm, the resulting graph is always Zk-antimagic. Similarly,
if the number of even length chords is even, then we can pair up these even length chords and
add them to Cm as pairs. Thus by Lemma 3.2, this edge addition does not change the group-
antimagicness. Lastly, if the number of even length chords is odd, then we first add a single odd
length chord to Cm, and denote as C∗m. By Theorem 3.1, C∗m is a Zk-antimagic graph as well.
Again, we can pair up the remaining even length chords and keep adding to C∗m as pairs until we
haveG as the resulting graph. By Lemma 3.2, adding a pair of even length chords to a Zk-antimagic
graph preserves the group-antimagicness.

6. Conclusion

Combining the results of Theorems 4.1 and 5.1, we obtain the following main result of this
paper.

Theorem 6.1. Suppose G is a Hamiltonian graph of order n. Then,

IAM(G) =


[4,∞), if G = K3,

[n,∞), if n ≡ 0, 1, 3 (mod 4) and G 6= K3,

[n+ 1,∞), n ≡ 2 (mod 4).

In addition to Hamiltonian graphs, note that our results in Lemmas 2.1, 3.1, and 3.2 are valid
for graphs that contain at least one even cycle as well. These lemmas can be used in analyzing the
integer-antimagic spectra of other classes of graphs.
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