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Abstract

For the Ramsey number r(Tn, Bm), where Tn denotes a tree of order n andBm denotes them-page
book K2 + Km, it is known that r(Tn, Bm) = 2n − 1 if n ≥ 3m − 3. In case of n < 3m − 3,
r(Tn, Bm) has not been completely evaluated except for m ≤ 3. Here we determine the missing
values of r(Tn, B4). Our results close one gap in the table of the Ramsey numbers r(Tn, G) for all
trees Tn and all connected graphs G of order six.
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1. Introduction

For any connected graph G of order n and any graph H the Ramsey number r(G,H) satisfies

r(G,H) ≥ (n− 1)(χ(H)− 1) + 1,

where χ(H) denotes the chromatic number of H . By applying this lower bound, due to Chvátal
and Harary [1], to a tree Tn of order n and the m-page book Bm = K2 +Km, we obtain that

r(Tn, Bm) ≥ 2n− 1. (1)
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Erdős, Faudree, Rousseau and Schelp [3] showed that equality holds in (1) for a certain range
of n and m, namely

r(Tn, Bm) = 2n− 1 if n ≥ 3m− 3. (2)

The case Tn = Sn, the star of order n, had already been considered earlier by Rousseau and
Sheehan [8] who also proved that, for n ≥ 2,

r(Tn, Bm) ≥ max

{
(k + 2)(n− 1) + 1,m+ 2

⌊
m− 1

k + 1

⌋}
with k =

⌊
m− 1

n− 1

⌋
, (3)

and that equality holds for Tn = Pn, the path of order n. For Tn 6= Pn, which implies n ≥ 4,
r(Tn, Bm) is not completely known if n < 3m − 3. In [8] it was shown that in case of n ≤ m
the lower bound (3) also matches the exact value if n − 1 divides m − 1, in particular if n = m.
Recently, further results concerning the case n ≤ m have been obtained by Zhang, Chen and Zhu
[9]. For m ≤ 3 and n ≥ 4, r(Tn, Bm) is completely determined by (2) except for m = 3 where
4 ≤ n ≤ 5. The missing values of r(Tn, B3) can be found in [2] and [5]. In this paper we focus
on the case m = 4. By the above mentioned results, the values of r(Tn, B4) are still missing for
5 ≤ n ≤ 8 if Tn 6= Pn. Moreover, it is already known that r(S5, B4) = 11 and r(S8, B4) = 16 (see
[4, 6, 8]). All remaining cases will be settled in this paper. Our results close one gap in the table
of the Ramsey numbers r(Tn, G) for all trees Tn and all connected graphs G of order six obtained
in [6] and [7].

Some specialized notation will be used. The vertex set of a graph G is denoted by V (G).
We write G′ ⊆ G if G′ is a subgraph of G. For U ⊆ V (Kn), [U ] is the subgraph induced by
U . A coloring of a graph always means a 2-coloring of its edges with colors red and green. An
(F1, F2)-coloring is a coloring containing neither a red copy of F1 nor a green copy of F2. Given a
coloring ofKn, we define the r-degree dr(v) to be the number of red edges incident to v ∈ V (Kn).
Moreover, ∆r = maxv∈V (Kn) dr(v). The set of vertices joined red to v is denoted byNr(v). If U =
{v1, v2, . . . , vs} ⊆ V (Kn), then we writeNr(U) orNr(v1, v2, . . . , vs) instead ofNr(v1)∩Nr(v2)∩
. . . ∩ Nr(vs). Similarly we define dg(v), ∆g, Ng(v), Ng(U) and Ng(v1, v2, . . . , vs). Furthermore,
[U ]r and [U ]g are the red and the green subgraphs induced by U . For disjoint subsets U1, U2 ⊆
V (Kn), qr(U1, U2) denotes the number of red edges between U1 and U2 and qg(U1, U2) is defined
similarly. If U1 consists of a single vertex v, then we use qr(v, U2) and qg(v, U2) instead. Moreover,
in case of v ∈ U , qr(v, U) and qg(v, U) mean qr(v, U \ {v}) and qg(v, U \ {v}), respectively.
We write Pk = v1v2 . . . vk for the path Pk with vertices v1, v2, . . . , vk and edges vivi+1 for i =
1, . . . , k − 1. Moreover, (v1v2 . . . vk) denotes the cycle Ck obtained from Pk = v1v2 . . . vk by
adding the edge v1vk. For k ≥ 2 and n ≥ k + 2, the broom Bn−k,k is defined as a tree of order n
obtained by identifying the vertex of degree n−k of a star Sn−k+1 with an end-vertex of a path Pk.

2. The missing values of r(Tn, B4)

It follows from (2) that, for any tree Tn,

r(Tn, B4) = 2n− 1 if n ≥ 9.
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Moreover, as mentioned above, the lower bound (3) matches the exact value of r(Tn, Bm) for
Tn = Pn and, if n = m, for any Tn. Using that Tn = Pn if n ≤ 3 we obtain

r(T2, B4) = 6, r(T3, B4) = 7, r(T4, B4) = 10, (4)

r(P5, B4) = 10 and r(Pn, B4) = 2n− 1 if n ≥ 6. (5)

In the remaining case 5 ≤ n ≤ 8 and Tn 6= Pn the exact values of r(Tn, B4) apart from r(S5, B4)
and r(S8, B4) are still missing and will be determined here. By (3) and (1) it is already known that

r(T5, B4) ≥ 10 and r(Tn, B4) ≥ 2n− 1 if n ≥ 6. (6)

First we consider Tn = Sn. The following theorem, where r(S5, B4) and r(S8, B4) are contained
for the sake of completeness, shows that the values of r(Sn, B4) with 5 ≤ n ≤ 8 differ from the
lower bounds in (6) except for n = 7.

Theorem 1. Let 5 ≤ n ≤ 8. Then

n 5 6 7 8
r(Sn, B4) 11 12 13 16

.

Proof. It remains to prove r(S6, B4) = 12 and r(S7, B4) = 13. The coloring of K11 where
[V ]r = K3 ∪H and H is obtained from a cycle (v1v2 . . . v8) by adding the edges viv(i+2) mod 8 for
i = 1, . . . , 8 yields r(S6, B4) ≥ 12, and (6) implies r(S7, B4) ≥ 13. To establish equality, assume
that we have an (Sn, B4)-coloring χ of Kt with 6 ≤ n ≤ 7, where t = 12 if n = 6 and t = 13
if n = 7. First we derive some properties of χ useful in order to deduce a contradiction from our
assumption. Let V denote the vertex set of Kt.

Claim 1. Let v ∈ V with U = Nr(v) and W = Ng(v), and let w ∈ W. Then

(i) qg(w,W ) ≤ 3, (ii) 7 ≤ dg(v) ≤ n+ 1, (iii) qg(w,U) ≥ 3, (iv) qg(w,W ) ≥ 1.

Proof of Claim 1. (i): If qg(w,W ) > 3, then a green B4 with spine vw occurs, a contradiction.

(ii): Sn 6⊆ [V ]r forces ∆r ≤ n − 2. Thus, dg(v) ≥ |V | − 1 − ∆r ≥ 7 for every v ∈ V . To
prove that dg(v) ≤ n + 1 consider a vertex v∗ ∈ V with dg(v∗) = ∆g. Let U∗ = Nr(v

∗) and
W ∗ = Ng(v

∗). Clearly, qg(w,W ∗) + qr(w,W
∗) = |W ∗| − 1 = ∆g − 1 for every w ∈ W ∗. Using

qr(w,W
∗) ≤ ∆r ≤ n − 2 and (i) we obtain ∆g − n + 1 ≤ qg(w,W

∗) ≤ 3. Hence ∆g ≤ n + 2.
Assume that ∆g = n + 2, i.e. |W ∗| = n + 2. Then qg(w,W ∗) = 3 for every w ∈ W ∗. In case
of n = 7 this implies [W ∗]g to be a 3-regular graph of order 9, a contradiction. In case of n = 6,
|V | = 12 and |W ∗| = n+2 yield |U∗| = 3. Take w1, w2 ∈ W ∗ with w1w2 green. Since dg(wi) ≥ 7
and qg(wi,W

∗) = 3, all edges between {w1, w2} and U∗ have to be green, i.e. U∗ ⊆ Ng(w1, w2).
Moreover, v∗ ∈ Ng(w1, w2). But this gives a green B4 with spine w1w2, a contradiction. Thus,
∆g ≤ n+ 1, and the proof of (ii) is complete.

(iii) and (iv): By (ii), dg(w) ≥ 7. Furthermore, dg(w) = qg(w,W ) + qg(w,U) + 1. Hence, (iii)
is an immediate consequence of (i), and qg(w,U) ≤ |U | ≤ ∆r ≤ n− 2 yields (iv).
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Claim 2. If v ∈ V exists with dr(v) = 4 where U = Nr(v) and W = Ng(v), then
(i) Ng(w1, w2) ∩W = Nr(w1, w2) ∩ U = ∅ for any w1, w2 ∈ W with w1w2 green,
(ii) qg(w,U) = 3 for every w ∈ W, (iii) [W ]g is 3-regular.

Proof of Claim 2. (i) and (ii): Consider w1, w2 ∈ W joined green. B4 6⊆ [V ]g forces
|Ng(w1, w2)| ≤ 3, and Claim 1(iii) implies |Ng(w1, w2) ∩ U | ≥ 2. Since v ∈ Ng(w1, w2), only
Ng(w1, w2) ∩W = ∅ and |Ng(w1, w2) ∩ U | = 2 is left. Consequently, qg(w1, U) = qg(w2, U) = 3
and Nr(w1, w2) ∩ U = ∅. Additionally we obtain (ii), as every w ∈ W is incident to at least one
green edge in [W ] by Claim 1(iv).

(iii): By Claim 1(ii), dg(w) ≥ 7 for any w ∈ W . Thus, (ii) and Claim 1(i) yield (iii).

Using Claims 1 and 2 now we deduce a contradiction from our above assumption.

Case 1. n = 6. Consider some v ∈ V . Let W = Ng(v). Claim 1(ii) implies dg(v) = 7, i.e.
|W | = 7, and we obtain dr(v) = 4 from |V | = 12. Thus, Claim 2(iii) forces [W ]g to be a 3-regular
graph of order 7, a contradiction.

Case 2. n = 7. By Claim 1(ii), 7 ≤ dg(v) ≤ 8 for every v ∈ V . Since |V | = 13, [V ]g
cannot be 7-regular. Consequently, a vertex v∗ ∈ V with dg(v

∗) = 8 and dr(v
∗) = 4 must

occur. Let U = Nr(v
∗) and W = Ng(v

∗). If qr(u,W ) = 2 for every u ∈ U , then dg(u) ≥ 7
implies qg(u, U) ≥ 1, and we find u1, u2 ∈ U with u1u2 green. But this yields a green B4 since
|Ng(u1, u2) ∩W | ≥ 4, a contradiction. As qr(U,W ) = 8 by Claim 2(ii), it remains that a vertex
u∗ ∈ U with qr(u∗,W ) ≥ 3 exists. Let W ′ ⊆ Nr(u

∗) ∩W with |W ′| = 3 and let W ′′ = W \W ′.
Claim 2(i) forces [W ′] to be a red K3. One of the following two subcases must occur.

Case 2.1. qg(w
∗,W ′) = 3 for some w∗ ∈ W ′′. By Claim 2(i), u∗w∗ has to be green and

Claim 2(ii) yields two further vertices u′, u′′ ∈ U joined green to w∗. Since qg(u∗,W ) ≤ 5 and
dg(u

∗) ≥ 7, at least one of the vertices u′ and u′′, say u′, is joined green to u∗. Moreover, Claim
2(ii) implies that u′w is green for every w ∈ W ′. But then W ′ ∪{u∗} ⊆ Ng(u

′, w∗) and we obtain
a green B4 with spine u′w∗, a contradiction.

Case 2.2. qg(w,W
′) ≤ 2 for every w ∈ W ′′. By Claim 2(iii), [W ]g has to be 3-regular

yielding qg(W ′,W ′′) = 9. Consequently, since |W ′′| = 5, qg(w∗,W ′) = 1 for some w∗ ∈ W ′′ and
qg(w,W

′) = 2 for everyw ∈ W ′′\{w∗}. Moreover, the 3-regularity of [W ]g implies qg(w∗,W ′′) =
2 and qg(w,W ′′) = 1 for every w ∈ W ′′ \ {w∗}. Thus, the two red neighbors of w∗ in W ′′ have
to be joined green. Furthermore, they must have at least one common green neighbor in W ′. This
contradicts Claim 2(i), and we are done.

It remains to consider the non-star trees Tn 6= Pn with 5 ≤ n ≤ 8. The following theorem
shows that r(Tn, B4) matches the bounds given in (6) for all these trees.

Theorem 2. Let 5 ≤ n ≤ 8 and let Tn /∈ {Pn, Sn}. Then

r(Tn, B4) = 10 if n = 5 and r(Tn, B4) = 2n− 1 if n ≥ 6.
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Proof. Considering (6) it remains to prove r(T5, B4) ≤ 10 for T5 /∈ {P5, S5}, i.e. T5 = B2,3, and
r(Tn, B4) ≤ 2n− 1 for every Tn /∈ {Pn, Sn} with 6 ≤ n ≤ 8. Assume that we have a (B2,3, B4)-
coloring χ of K10 or a (Tn, B4)-coloring χ of K2n−1 for some Tn /∈ {Pn, Sn} with 6 ≤ n ≤ 8. To
deduce a contradiction from this assumption first we derive some properties of χ. Let V denote
the vertex set of the complete graphs K10 and K2n−1. B4 6⊆ [V ]g yields

Claim 3. If V ′ ⊆ V with |V ′| ≥ 2 and |Ng(V
′)| ≥ 4, then [V ′] is a red complete graph.

Tn 6⊆ [V ]r forces Kn 6⊆ [V ]r. Consequently, Claim 3 immediately implies

Claim 4. If V ′ ⊆ V and |V ′| ≥ n, then |Ng(V
′)| ≤ 3.

In case of n ≥ 6 the restriction Kn 6⊆ [V ]r can be improved.

Claim 5. If n ≥ 6, then Kn−2 6⊆ [V ]r.

Proof of Claim 5. Assume to the contrary that Kn−2 ⊆ [V ]r. Let U be the vertex set of a red Kn−2
and let W = V \U . Since |U | ≥ 4 and |W | = n+1, Claim 4 implies qr(U,W ) ≥ 1. Consider two
vertices u ∈ U and w ∈ W where uw is red. Let W ′ = W \ {w}. Again using Claim 4 we obtain
that qr(U,W ′) ≥ 1. A red edge u′w′ with u′ ∈ U \ {u} and w′ ∈ W ′ cannot occur: otherwise,
since any non-star tree contains two different vertices adjacent to vertices of degree 1, the red
Kn−2 together with the red edges uw and u′w′ would give every Tn 6= Sn in red, a contradiction. It
remains that uw′ is red for some w′ ∈ W ′ and that U \ {u} ⊆ Ng(W

′). But this contradicts Claim
4 if n ≥ 7, and in case of n = 6, U \ {u} = Ng(W

′) is left. Thus, qr(w,W ′) ≥ 1. But then we
find any T6 in red, since every T6 contains a vertex adjacent to two vertices of degree 1 or a vertex
of degree 1 adjacent to a vertex of degree 2. This contradiction completes the proof of Claim 5.

Applying Claims 3 and 5 we obtain an improvement of Claim 4 for n ≥ 6.

Claim 6. If n ≥ 6 and if V ′ ⊆ V with |V ′| ≥ n− 2, then |Ng(V
′)| ≤ 3.

Using Claims 3 to 6 now we deduce a contradiction from the above assumption. Since Tn /∈
{Pn, Sn}, the maximum degree ∆(Tn) satisfies 3 ≤ ∆(Tn) ≤ n− 2. We distinguish the following
four cases depending on ∆(Tn) and use Tn,k to denote a tree Tn with ∆(Tn) = k.

Case 1. ∆(Tn) = n− 2 where 5 ≤ n ≤ 8. There is exactly one tree Tn,n−2, namely the broom
Bn−3,3. By Theorem 1 and (4), Sn−1 ⊆ [V ]r. Consider a red Sn−1 in χ with vertex set U and u∗ as
vertex of degree n−2. LetW = V \U . Since |W | ≥ n and |U | ≥ 4, Claim 4 yields qr(U,W ) ≥ 1.
If uw is red for some u ∈ U \ {u∗} and some w ∈ W , then a red Bn−3,3 occurs, a contradiction.
Otherwise, u∗w is red for some w ∈ W and Ng(U \ {u∗}) = W . Using Claim 3 we obtain that
[U \ {u∗}] is a red Kn−2 contradicting Claim 5 for n ≥ 6. If n = 5, then [U ] is a red K4 yielding a
red B2,3 together with u∗w, a contradiction, and we are done.

Case 2. ∆(Tn) = n − 3 where 6 ≤ n ≤ 8. There are three trees Tn,n−3, namely Tn,n−3(1)

and Tn,n−3(2) obtained from Sn−2 by adding two vertices of degree 1 joined to the same vertex
of degree 1 or to two different vertices of degree 1 of Sn−2, respectively, and Tn,n−3(3) = Bn−4,4
(for n = 7 these three trees Tn,n−3 are shown in Figure 1). Now we consider a red Sn−2 in
χ with vertex set U and u∗ as vertex of degree n − 3. Let U \ {u∗} = {u1, . . . , un−3} and
W = V \ U = {w1, . . . , wn+1}. By Claim 5, a green edge, say u1u2, must occur in [U ]. Since
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T7,4
(1) T7,4

(2) T7,4
(3)

Figure 1. The trees T7,4 with vertex labeling.

B4 6⊆ [V ]g, there are at most three common green neighbors of u1 and u2 inW , and we may assume
that any w ∈ W \ {wn−1, wn, wn+1} is joined red to u1 or to u2. This implies that, without loss
of generality, u1w1 and u1w2 are red. Thus, Tn,n−3(1) is unavoidable in [V ]r. If Tn,n−3(2) 6⊆ [V ]r,
then there are only green edges between {u2, . . . , un−3} and W . Consequently, all edges from u1
to {w1, . . . , wn−2} have to be red. If there are only green edges in [{w1, . . . , wn−2}], then four
vertices from {w1, . . . , wn−2} and two vertices from {u2, . . . , un−3} yield a green K6 − e ⊇ B4, a
contradiction. Hence we may assume that w1w2 is red. But this yields a red Tn,n−3(2) with u1 as
vertex of degree n− 3, a contradiction. Finally, if Tn,n−3(3) 6⊆ [V ]r, then in [W ] all edges incident
to w1 or to w2 have to be green yielding a green B4, a contradiction.
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Figure 2. The trees Tn,n−3 with 7 ≤ n ≤ 8.

Case 3. ∆(Tn) = n − 4 where 7 ≤ n ≤ 8. The five trees T7,3 and the seven trees T8,4 are
shown in Figure 2. We may use that T6,3(1), every T7,4 and also P7 must occur in [V ]r (see Case 2
and (5)). If a red T7,4 in χ with U = V (T7,4) is considered, then the vertices in U shall be denoted
by u1, u2, . . . , u7 as in Figure 1 and W means V \ U .

• T7 ∈ {T7,3(1), T7,3(2)}. Consider a red P7 = u1u2 . . . u7 in χ. Let W = V \ {u1, . . . , u7}. If
T7,3

(1) 6⊆ [V ]r, then {u2, u3, u5, u6} ⊆ Ng(W ) contradicting Claim 6. If T7,3(2) 6⊆ [V ]r, then u3u5
and all edges between {u3, u5} and W have to be green contradicting B4 6⊆ [V ]g.
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• T7 = T7,3
(3). Consider a red T6,3(1) in χ. Let U be the set of the four vertices of degree 1 of

T6,3
(1) and W = V \ V (T6,3

(1)). T7,3(3) 6⊆ [V ]r forces U ⊆ Ng(W ) contradicting Claim 6.

• T7 ∈ {T7,3(4), T7,3(5)}. Consider a red T7,4
(2) in χ. If T7,3(4) 6⊆ [V ]r, then qr(u1,W ∪

{u3, u6}) ≤ 1 and qr(u3,W ∪ {u1, u5}) ≤ 1. Thus, u1 and u3 have at least four common green
neighbors in W , and B4 6⊆ [V ]g forces u1u3 to be red. Consequently, u3u5, u1u6 and all edges
between {u1, u3} and W have to be green. But then B4 6⊆ [V ]g implies qr(ui,W ) ≥ 3 for i = 5, 6
yielding a red T7,3(4), a contradiction. If T7,3(5) 6⊆ [V ]r, then u2u4 and all edges between {u2, u4}
and W have to be green contradicting B4 6⊆ [V ]g.

• T8 ∈ {T8,4(1), T8,4(2)}. Consider a red T7,4
(2) in χ. If T8,4(1) 6⊆ [V ]r, then all edges be-

tween {u1, u3} and W have to be green. Since B4 6⊆ [V ]g, u1u3 has to be red, and Claim 6
demands at least one red edge from W to {u2, u4}. But this gives a red T8,4(1), a contradiction. If
T8,4

(2) 6⊆ [V ]r, then all edges between {u2, u4} and W have to be green, and this forces u2u4 to
be red. Consequently, all edges from u7 to W have to be green, and Claim 6 yields three vertices
w1, w2, w3 ∈ W joined red to u3. Moreover, B4 6⊆ [V ]g implies qr(wi,W \ {w1, w2, w3}) ≥ 2 for
1 ≤ i ≤ 3. But then we obtain a red T8,4(2) with u3 as vertex of degree 4, a contradiction.

• T8 = T8,4
(3). Consider a red T7,4(3) in χ. If T8,4(3) 6⊆ [V ]r, then all edges from u3 to W are

green and qr(ui,W ) ≤ 2 for i ∈ {1, 2, 4}. Hence, since B4 6⊆ [V ]g, [{u1, u2, u3, u4}] has to be a
red K4, and T8,4(3) 6⊆ [V ]r forces {u5, u6, u7} ⊆ Ng(W ). But then the eight vertices in W have
four common green neighbors, a contradiction to Claim 6.
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Figure 3. Two trees T8 with vertex labeling.

• T8 = T8,4
(4). From above we already know that T8,4(2) ⊆ [V ]r. Consider a red T8,4(2) in χ

where the vertices are denoted as in Figure 3. Let W = V \ {u1, . . . , u8}. If T8,4(4) 6⊆ [V ]r, then
{u5, u6, u7} ⊆ Ng(W ) and qr(u4,W ) ≤ 1. Thus, we find six vertices in W with four common
green neighbors in U , a contradiction to Claim 6.

• T8 ∈ {T8,4(5), T8,4(6), T8,4(7)}. Consider a red T7,4(1) in χ. If T8,4(5) 6⊆ [V ]r, then qr({u3, u4},
W ) = 0, and B4 6⊆ [V ]g forces u3u4 to be red. Consequently, qr(u6,W ) = 0 and qr(u1,W ) ≤
2. But then we find six vertices in W with four common green neighbors in U , a contradiction
to Claim 6. If T8,4(6) 6⊆ [V ]r, then qr(ui,W ) ≤ 1 for i = 3, 4 and qr(ui,W ) ≤ 2 for i =
1, 2, 5. Since B4 6⊆ [V ]g, [{u1, u2, u3, u4, u5}] has to be a red K5. Moreover, T8,4(6) 6⊆ [V ]r forces
qr({u6, u7},W ) = 0, and there are six vertices in W with four common green neighbors in U
contradicting Claim 6. Finally, if T8,4(7) 6⊆ [V ]r, then qr(u6,W ) = 0 and qr(ui,W ) ≤ 2 for
i = 1, 2, 5. Hence B4 6⊆ [V ]g forces [{u1, u2, u5, u6, u7}] to be a red K5. Moreover, T8,4(7) 6⊆ [V ]r
implies qr(ui,W ) = 0 for i = 1, 2, 5, 6, 7 and we find eight vertices in W with five common green
neighbors in U , another contradiction to Claim 6.
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Figure 4. The trees T8,3.

Case 4: ∆(Tn) = n − 5 where n = 8. The ten trees T8,3 are shown in Figure 4. We may use
that P8 and T7,3(i) for i ∈ {3, 4, 5} occur in [V ]r (see (5) and Case 3). If a red T7,3(i) in χ with
U = V (T7,3

(i)) is considered, then the vertices in U shall be denoted as in Figure 5 and W means
V \ U .

• T8 ∈ {T8,3(1), T8,3(2), T8,3(3)}. Consider a red P8 = u1u2 . . . u8 in χ. Let W = V \
{u1, . . . , u8}. If T8,3(1) 6⊆ [V ]r, then {u2, u3, u6, u7} ⊆ Ng(W ), and T8,3(2) 6⊆ [V ]r forces that
{u3, u4, u5, u6} ⊆ Ng(W ), both cases contradicting Claim 6. If T8,3(3) 6⊆ [V ]r, then u3u5, u4u6
and all edges between W and {u4, u5} are green. Hence, by Claim 6, qr({u1, u8},W ) ≥ 1, and we
may assume that u1w∗ for some w∗ ∈ W is red. But this forces all edges from u3 to W \ {w∗}to
be green yielding a green B4, a contradiction.
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Figure 5. Some trees T7,3 with vertex labeling.

• T8 ∈ {T8,3(4), T8,3(5)}. Consider a red T7,3
(4) in χ. If T8,3(4) 6⊆ [V ]r, then qr(ui,W ) ≤

1 for i = 1, 2, 6, 7, and B4 6⊆ [V ]g implies that [{u1, u2, u6, u7}] is a red K4. By Claim 6,
qr({u1, u2, u6, u7},W ) ≥ 1, and we may assume that u1w∗ for some w∗ ∈ W is red. But this
yields a red T8,3(4), a contradiction. If T8,3(5) 6⊆ [V ]r, then {u1, u2, u6, u7} ⊆ Ng(W ) contradicting
Claim 6.

• T8 = T8,3
(6). Consider a red T7,3(5) in χ. If T8,3(6) 6⊆ [V ]r, then {u1, u5, u7} ⊆ Ng(W ). Since

B4 6⊆ [V ]g, [{u1, u5, u7}] is a red K3, and Claim 6 forces qr(u2,W ) ≥ 1. But then we find a red
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T8,3
(6) with u5 as vertex of degree 3, a contradiction.

• T8 = T8,3
(7). Consider a red T7,3(3) in χ. If T8,3(7) 6⊆ [V ]r, then qr(u7,W ) = 0. Moreover,

B4 6⊆ [V ]g implies that qr(w,W ) ≥ 4 for every w ∈ W . Hence, as T8,3(7) 6⊆ [V ]r, qr(u4,W ) = 0
and qr(u3,W ) ≤ 1. But then Claim 6 forces qr(ui,W ) ≥ 2 for i = 1, 2, and this yields a red
T8,3

(7), a contradiction.

• T8 ∈ {T8,3(8), T8,3(9), T8,3(10)}. From above we already know that T8,3(7) ⊆ [V ]r. Consider
a red T8,3(7) in χ where the vertices are denoted as in Figure 3. Let W = V \ {u1, . . . , u8}. If
T8,3

(8) 6⊆ [V ]r, then u6u8 and all edges between {u6, u8} and W have to be green. But this yields a
green B4, a contradiction. If T8,3(9) 6⊆ [V ]r, then qr({u1, u2},W ) = 0, and B4 6⊆ [V ]g implies that
u1u2 is red. Hence qr(u3,W ) = 0, and, by Claim 6, a red edge u4w∗ with w∗ ∈ W must occur.
Moreover, B4 6⊆ [V ]g implies qr(w,W ) ≥ 3 for every w ∈ W . But then we find a red T8,3(9) in
[{u4, u5, u6, u7, w∗, w1, w2, w3}] where w1 and w2 are red neighbors of w∗ in W and w3 is a red
neighbor of w2 in W different from w∗ and w1, a contradiction. Finally, if T8,3(10) 6⊆ [V ]r, then
qr({u5, u7},W ) = 0. Hence B4 6⊆ [V ]g implies that u5u7 is red. Consequently, qr(u4,W ) = 0,
and, by Claim 6, qr(u1,W ) ≥ 2. But this yields a red T8,3(10) in [{u1, u2, u3, u4, u5, u7, w1, w2}]
where w1 and w2 are red neighbors of u1 in W , a contradiction, and the proof of Theorem 2 is
complete.
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