## Electronic Journal of Graph Theory and Applications

# All missing Ramsey numbers for trees versus the four-page book 

Roland Lortz ${ }^{\text {a }}$, Ingrid Mengersen ${ }^{\text {b }}$<br>${ }^{a}$ Technische Universität Braunschweig, Institut für Analysis und Algebra, AG Algebra<br>38092 Braunschweig, Germany<br>${ }^{b}$ Moorhüttenweg 2d, 38104 Braunschweig, Germany<br>r.lortz@tu-braunschweig.de, ingrid.mengersen@t-online.de


#### Abstract

For the Ramsey number $r\left(T_{n}, B_{m}\right)$, where $T_{n}$ denotes a tree of order $n$ and $B_{m}$ denotes the $m$-page book $K_{2}+\overline{K_{m}}$, it is known that $r\left(T_{n}, B_{m}\right)=2 n-1$ if $n \geq 3 m-3$. In case of $n<3 m-3$, $r\left(T_{n}, B_{m}\right)$ has not been completely evaluated except for $m \leq 3$. Here we determine the missing values of $r\left(T_{n}, B_{4}\right)$. Our results close one gap in the table of the Ramsey numbers $r\left(T_{n}, G\right)$ for all trees $T_{n}$ and all connected graphs $G$ of order six.


Keywords: Ramsey number, tree, book, small graph
Mathematics Subject Classification: 05C55, 05D10
DOI: 10.5614/ejgta.2021.9.2.10

## 1. Introduction

For any connected graph $G$ of order $n$ and any graph $H$ the Ramsey number $r(G, H)$ satisfies

$$
r(G, H) \geq(n-1)(\chi(H)-1)+1,
$$

where $\chi(H)$ denotes the chromatic number of $H$. By applying this lower bound, due to Chvátal and Harary [1], to a tree $T_{n}$ of order $n$ and the $m$-page book $B_{m}=K_{2}+\overline{K_{m}}$, we obtain that

$$
\begin{equation*}
r\left(T_{n}, B_{m}\right) \geq 2 n-1 . \tag{1}
\end{equation*}
$$

Received: 15 May 2020, Revised: 23 March 2021, Accepted: 13 April 2021.

Erdős, Faudree, Rousseau and Schelp [3] showed that equality holds in (1) for a certain range of $n$ and $m$, namely

$$
\begin{equation*}
r\left(T_{n}, B_{m}\right)=2 n-1 \text { if } n \geq 3 m-3 \tag{2}
\end{equation*}
$$

The case $T_{n}=S_{n}$, the star of order $n$, had already been considered earlier by Rousseau and Sheehan [8] who also proved that, for $n \geq 2$,

$$
\begin{equation*}
r\left(T_{n}, B_{m}\right) \geq \max \left\{(k+2)(n-1)+1, m+2\left\lfloor\frac{m-1}{k+1}\right\rfloor\right\} \text { with } k=\left\lfloor\frac{m-1}{n-1}\right\rfloor, \tag{3}
\end{equation*}
$$

and that equality holds for $T_{n}=P_{n}$, the path of order $n$. For $T_{n} \neq P_{n}$, which implies $n \geq 4$, $r\left(T_{n}, B_{m}\right)$ is not completely known if $n<3 m-3$. In [8] it was shown that in case of $n \leq m$ the lower bound (3) also matches the exact value if $n-1$ divides $m-1$, in particular if $n=m$. Recently, further results concerning the case $n \leq m$ have been obtained by Zhang, Chen and Zhu [9]. For $m \leq 3$ and $n \geq 4, r\left(T_{n}, B_{m}\right)$ is completely determined by (2) except for $m=3$ where $4 \leq n \leq 5$. The missing values of $r\left(T_{n}, B_{3}\right)$ can be found in [2] and [5]. In this paper we focus on the case $m=4$. By the above mentioned results, the values of $r\left(T_{n}, B_{4}\right)$ are still missing for $5 \leq n \leq 8$ if $T_{n} \neq P_{n}$. Moreover, it is already known that $r\left(S_{5}, B_{4}\right)=11$ and $r\left(S_{8}, B_{4}\right)=16$ (see [4, 6, 8]). All remaining cases will be settled in this paper. Our results close one gap in the table of the Ramsey numbers $r\left(T_{n}, G\right)$ for all trees $T_{n}$ and all connected graphs $G$ of order six obtained in [6] and [7].

Some specialized notation will be used. The vertex set of a graph $G$ is denoted by $V(G)$. We write $G^{\prime} \subseteq G$ if $G^{\prime}$ is a subgraph of $G$. For $U \subseteq V\left(K_{n}\right),[U]$ is the subgraph induced by $U$. A coloring of a graph always means a 2-coloring of its edges with colors red and green. An $\left(F_{1}, F_{2}\right)$-coloring is a coloring containing neither a red copy of $F_{1}$ nor a green copy of $F_{2}$. Given a coloring of $K_{n}$, we define the $r$-degree $d_{r}(v)$ to be the number of red edges incident to $v \in V\left(K_{n}\right)$. Moreover, $\Delta_{r}=\max _{v \in V\left(K_{n}\right)} d_{r}(v)$. The set of vertices joined red to $v$ is denoted by $N_{r}(v)$. If $U=$ $\left\{v_{1}, v_{2}, \ldots, v_{s}\right\} \subseteq V\left(K_{n}\right)$, then we write $N_{r}(U)$ or $N_{r}\left(v_{1}, v_{2}, \ldots, v_{s}\right)$ instead of $N_{r}\left(v_{1}\right) \cap N_{r}\left(v_{2}\right) \cap$ $\ldots \cap N_{r}\left(v_{s}\right)$. Similarly we define $d_{g}(v), \Delta_{g}, N_{g}(v), N_{g}(U)$ and $N_{g}\left(v_{1}, v_{2}, \ldots, v_{s}\right)$. Furthermore, $[U]_{r}$ and $[U]_{g}$ are the red and the green subgraphs induced by $U$. For disjoint subsets $U_{1}, U_{2} \subseteq$ $V\left(K_{n}\right), q_{r}\left(U_{1}, U_{2}\right)$ denotes the number of red edges between $U_{1}$ and $U_{2}$ and $q_{g}\left(U_{1}, U_{2}\right)$ is defined similarly. If $U_{1}$ consists of a single vertex $v$, then we use $q_{r}\left(v, U_{2}\right)$ and $q_{g}\left(v, U_{2}\right)$ instead. Moreover, in case of $v \in U, q_{r}(v, U)$ and $q_{g}(v, U)$ mean $q_{r}(v, U \backslash\{v\})$ and $q_{g}(v, U \backslash\{v\})$, respectively. We write $P_{k}=v_{1} v_{2} \ldots v_{k}$ for the path $P_{k}$ with vertices $v_{1}, v_{2}, \ldots, v_{k}$ and edges $v_{i} v_{i+1}$ for $i=$ $1, \ldots, k-1$. Moreover, $\left(v_{1} v_{2} \ldots v_{k}\right)$ denotes the cycle $C_{k}$ obtained from $P_{k}=v_{1} v_{2} \ldots v_{k}$ by adding the edge $v_{1} v_{k}$. For $k \geq 2$ and $n \geq k+2$, the broom $B_{n-k, k}$ is defined as a tree of order $n$ obtained by identifying the vertex of degree $n-k$ of a star $S_{n-k+1}$ with an end-vertex of a path $P_{k}$.

## 2. The missing values of $r\left(T_{n}, B_{4}\right)$

It follows from (2) that, for any tree $T_{n}$,

$$
r\left(T_{n}, B_{4}\right)=2 n-1 \text { if } n \geq 9
$$

Moreover, as mentioned above, the lower bound (3) matches the exact value of $r\left(T_{n}, B_{m}\right)$ for $T_{n}=P_{n}$ and, if $n=m$, for any $T_{n}$. Using that $T_{n}=P_{n}$ if $n \leq 3$ we obtain

$$
\begin{align*}
& r\left(T_{2}, B_{4}\right)=6, \quad r\left(T_{3}, B_{4}\right)=7, \quad r\left(T_{4}, B_{4}\right)=10  \tag{4}\\
& r\left(P_{5}, B_{4}\right)=10 \text { and } r\left(P_{n}, B_{4}\right)=2 n-1 \text { if } n \geq 6 . \tag{5}
\end{align*}
$$

In the remaining case $5 \leq n \leq 8$ and $T_{n} \neq P_{n}$ the exact values of $r\left(T_{n}, B_{4}\right)$ apart from $r\left(S_{5}, B_{4}\right)$ and $r\left(S_{8}, B_{4}\right)$ are still missing and will be determined here. By (3) and (1) it is already known that

$$
\begin{equation*}
r\left(T_{5}, B_{4}\right) \geq 10 \text { and } r\left(T_{n}, B_{4}\right) \geq 2 n-1 \text { if } n \geq 6 \tag{6}
\end{equation*}
$$

First we consider $T_{n}=S_{n}$. The following theorem, where $r\left(S_{5}, B_{4}\right)$ and $r\left(S_{8}, B_{4}\right)$ are contained for the sake of completeness, shows that the values of $r\left(S_{n}, B_{4}\right)$ with $5 \leq n \leq 8$ differ from the lower bounds in (6) except for $n=7$.

Theorem 1. Let $5 \leq n \leq 8$. Then

$$
\begin{array}{c|cccc}
n & 5 & 6 & 7 & 8 \\
\hline r\left(S_{n}, B_{4}\right) & 11 & 12 & 13 & 16
\end{array} .
$$

Proof. It remains to prove $r\left(S_{6}, B_{4}\right)=12$ and $r\left(S_{7}, B_{4}\right)=13$. The coloring of $K_{11}$ where $[V]_{r}=K_{3} \cup H$ and $H$ is obtained from a cycle $\left(v_{1} v_{2} \ldots v_{8}\right)$ by adding the edges $v_{i} v_{(i+2) \bmod 8}$ for $i=1, \ldots, 8$ yields $r\left(S_{6}, B_{4}\right) \geq 12$, and (6) implies $r\left(S_{7}, B_{4}\right) \geq 13$. To establish equality, assume that we have an $\left(S_{n}, B_{4}\right)$-coloring $\chi$ of $K_{t}$ with $6 \leq n \leq 7$, where $t=12$ if $n=6$ and $t=13$ if $n=7$. First we derive some properties of $\chi$ useful in order to deduce a contradiction from our assumption. Let $V$ denote the vertex set of $K_{t}$.

Claim 1. Let $v \in V$ with $U=N_{r}(v)$ and $W=N_{g}(v)$, and let $w \in W$. Then

$$
\text { (i) } q_{g}(w, W) \leq 3, \quad \text { (ii) } 7 \leq d_{g}(v) \leq n+1, \quad \text { (iii) } q_{g}(w, U) \geq 3, \quad \text { (iv) } q_{g}(w, W) \geq 1
$$

Proof of Claim 1. (i): If $q_{g}(w, W)>3$, then a green $B_{4}$ with spine $v w$ occurs, a contradiction.
(ii): $S_{n} \nsubseteq[V]_{r}$ forces $\Delta_{r} \leq n-2$. Thus, $d_{g}(v) \geq|V|-1-\Delta_{r} \geq 7$ for every $v \in V$. To prove that $d_{g}(v) \leq n+1$ consider a vertex $v^{*} \in V$ with $d_{g}\left(v^{*}\right)=\Delta_{g}$. Let $U^{*}=N_{r}\left(v^{*}\right)$ and $W^{*}=N_{g}\left(v^{*}\right)$. Clearly, $q_{g}\left(w, W^{*}\right)+q_{r}\left(w, W^{*}\right)=\left|W^{*}\right|-1=\Delta_{g}-1$ for every $w \in W^{*}$. Using $q_{r}\left(w, W^{*}\right) \leq \Delta_{r} \leq n-2$ and $(i)$ we obtain $\Delta_{g}-n+1 \leq q_{g}\left(w, W^{*}\right) \leq 3$. Hence $\Delta_{g} \leq n+2$. Assume that $\Delta_{g}=n+2$, i.e. $\left|W^{*}\right|=n+2$. Then $q_{g}\left(w, W^{*}\right)=3$ for every $w \in W^{*}$. In case of $n=7$ this implies $\left[W^{*}\right]_{g}$ to be a 3-regular graph of order 9 , a contradiction. In case of $n=6$, $|V|=12$ and $\left|W^{*}\right|=n+2$ yield $\left|U^{*}\right|=3$. Take $w_{1}, w_{2} \in W^{*}$ with $w_{1} w_{2}$ green. Since $d_{g}\left(w_{i}\right) \geq 7$ and $q_{g}\left(w_{i}, W^{*}\right)=3$, all edges between $\left\{w_{1}, w_{2}\right\}$ and $U^{*}$ have to be green, i.e. $U^{*} \subseteq N_{g}\left(w_{1}, w_{2}\right)$. Moreover, $v^{*} \in N_{g}\left(w_{1}, w_{2}\right)$. But this gives a green $B_{4}$ with spine $w_{1} w_{2}$, a contradiction. Thus, $\Delta_{g} \leq n+1$, and the proof of $(i i)$ is complete.
(iii) and (iv): By $(i i), d_{g}(w) \geq 7$. Furthermore, $d_{g}(w)=q_{g}(w, W)+q_{g}(w, U)+1$. Hence, $(i i i)$ is an immediate consequence of $(i)$, and $q_{g}(w, U) \leq|U| \leq \Delta_{r} \leq n-2$ yields (iv).

Claim 2. If $v \in V$ exists with $d_{r}(v)=4$ where $U=N_{r}(v)$ and $W=N_{g}(v)$, then
(i) $N_{g}\left(w_{1}, w_{2}\right) \cap W=N_{r}\left(w_{1}, w_{2}\right) \cap U=\emptyset$ for any $w_{1}, w_{2} \in W$ with $w_{1} w_{2}$ green,
(ii) $q_{g}(w, U)=3$ for every $w \in W$, (iii) $[W]_{g}$ is 3-regular.

Proof of Claim 2. (i) and (ii): Consider $w_{1}, w_{2} \in W$ joined green. $B_{4} \nsubseteq[V]_{g}$ forces $\left|N_{g}\left(w_{1}, w_{2}\right)\right| \leq 3$, and Claim $1(i i i)$ implies $\left|N_{g}\left(w_{1}, w_{2}\right) \cap U\right| \geq 2$. Since $v \in N_{g}\left(w_{1}, w_{2}\right)$, only $N_{g}\left(w_{1}, w_{2}\right) \cap W=\emptyset$ and $\left|N_{g}\left(w_{1}, w_{2}\right) \cap U\right|=2$ is left. Consequently, $q_{g}\left(w_{1}, U\right)=q_{g}\left(w_{2}, U\right)=3$ and $N_{r}\left(w_{1}, w_{2}\right) \cap U=\emptyset$. Additionally we obtain (ii), as every $w \in W$ is incident to at least one green edge in $[W]$ by Claim $1(i v)$.
(iii): By Claim $1(i i), d_{g}(w) \geq 7$ for any $w \in W$. Thus, (ii) and Claim $1(i)$ yield (iii).

Using Claims 1 and 2 now we deduce a contradiction from our above assumption.
Case 1. $n=6$. Consider some $v \in V$. Let $W=N_{g}(v)$. Claim $1(i i)$ implies $d_{g}(v)=7$, i.e. $|W|=7$, and we obtain $d_{r}(v)=4$ from $|V|=12$. Thus, Claim 2(iii) forces $[W]_{g}$ to be a 3-regular graph of order 7, a contradiction.

Case 2. $n=7$. By Claim $1(i i), 7 \leq d_{g}(v) \leq 8$ for every $v \in V$. Since $|V|=13,[V]_{g}$ cannot be 7 -regular. Consequently, a vertex $v^{*} \in V$ with $d_{g}\left(v^{*}\right)=8$ and $d_{r}\left(v^{*}\right)=4$ must occur. Let $U=N_{r}\left(v^{*}\right)$ and $W=N_{g}\left(v^{*}\right)$. If $q_{r}(u, W)=2$ for every $u \in U$, then $d_{g}(u) \geq 7$ implies $q_{g}(u, U) \geq 1$, and we find $u_{1}, u_{2} \in U$ with $u_{1} u_{2}$ green. But this yields a green $B_{4}$ since $\left|N_{g}\left(u_{1}, u_{2}\right) \cap W\right| \geq 4$, a contradiction. As $q_{r}(U, W)=8$ by Claim 2(ii), it remains that a vertex $u^{*} \in U$ with $q_{r}\left(u^{*}, W\right) \geq 3$ exists. Let $W^{\prime} \subseteq N_{r}\left(u^{*}\right) \cap W$ with $\left|W^{\prime}\right|=3$ and let $W^{\prime \prime}=W \backslash W^{\prime}$. Claim 2(i) forces [ $W^{\prime}$ ] to be a red $K_{3}$. One of the following two subcases must occur.

Case 2.1. $q_{g}\left(w^{*}, W^{\prime}\right)=3$ for some $w^{*} \in W^{\prime \prime}$. By Claim $2(i), u^{*} w^{*}$ has to be green and Claim 2(ii) yields two further vertices $u^{\prime}, u^{\prime \prime} \in U$ joined green to $w^{*}$. Since $q_{g}\left(u^{*}, W\right) \leq 5$ and $d_{g}\left(u^{*}\right) \geq 7$, at least one of the vertices $u^{\prime}$ and $u^{\prime \prime}$, say $u^{\prime}$, is joined green to $u^{*}$. Moreover, Claim 2(ii) implies that $u^{\prime} w$ is green for every $w \in W^{\prime}$. But then $W^{\prime} \cup\left\{u^{*}\right\} \subseteq N_{g}\left(u^{\prime}, w^{*}\right)$ and we obtain a green $B_{4}$ with spine $u^{\prime} w^{*}$, a contradiction.

Case 2.2. $q_{g}\left(w, W^{\prime}\right) \leq 2$ for every $w \in W^{\prime \prime}$. By Claim 2(iii), $[W]_{g}$ has to be 3-regular yielding $q_{g}\left(W^{\prime}, W^{\prime \prime}\right)=9$. Consequently, since $\left|W^{\prime \prime}\right|=5, q_{g}\left(w^{*}, W^{\prime}\right)=1$ for some $w^{*} \in W^{\prime \prime}$ and $q_{g}\left(w, W^{\prime}\right)=2$ for every $w \in W^{\prime \prime} \backslash\left\{w^{*}\right\}$. Moreover, the 3-regularity of $[W]_{g}$ implies $q_{g}\left(w^{*}, W^{\prime \prime}\right)=$ 2 and $q_{g}\left(w, W^{\prime \prime}\right)=1$ for every $w \in W^{\prime \prime} \backslash\left\{w^{*}\right\}$. Thus, the two red neighbors of $w^{*}$ in $W^{\prime \prime}$ have to be joined green. Furthermore, they must have at least one common green neighbor in $W^{\prime}$. This contradicts Claim 2(i), and we are done.

It remains to consider the non-star trees $T_{n} \neq P_{n}$ with $5 \leq n \leq 8$. The following theorem shows that $r\left(T_{n}, B_{4}\right)$ matches the bounds given in (6) for all these trees.

Theorem 2. Let $5 \leq n \leq 8$ and let $T_{n} \notin\left\{P_{n}, S_{n}\right\}$. Then

$$
r\left(T_{n}, B_{4}\right)=10 \text { if } n=5 \text { and } r\left(T_{n}, B_{4}\right)=2 n-1 \text { if } n \geq 6 .
$$

Proof. Considering (6) it remains to prove $r\left(T_{5}, B_{4}\right) \leq 10$ for $T_{5} \notin\left\{P_{5}, S_{5}\right\}$, i.e. $T_{5}=B_{2,3}$, and $r\left(T_{n}, B_{4}\right) \leq 2 n-1$ for every $T_{n} \notin\left\{P_{n}, S_{n}\right\}$ with $6 \leq n \leq 8$. Assume that we have a $\left(B_{2,3}, B_{4}\right)$ coloring $\chi$ of $K_{10}$ or a $\left(T_{n}, B_{4}\right)$-coloring $\chi$ of $K_{2 n-1}$ for some $T_{n} \notin\left\{P_{n}, S_{n}\right\}$ with $6 \leq n \leq 8$. To deduce a contradiction from this assumption first we derive some properties of $\chi$. Let $V$ denote the vertex set of the complete graphs $K_{10}$ and $K_{2 n-1} . B_{4} \nsubseteq[V]_{g}$ yields
Claim 3. If $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \geq 2$ and $\left|N_{g}\left(V^{\prime}\right)\right| \geq 4$, then $\left[V^{\prime}\right]$ is a red complete graph.
$T_{n} \nsubseteq[V]_{r}$ forces $K_{n} \nsubseteq[V]_{r}$. Consequently, Claim 3 immediately implies
Claim 4. If $V^{\prime} \subseteq V$ and $\left|V^{\prime}\right| \geq n$, then $\left|N_{g}\left(V^{\prime}\right)\right| \leq 3$.
In case of $n \geq 6$ the restriction $K_{n} \nsubseteq[V]_{r}$ can be improved.
Claim 5. If $n \geq 6$, then $K_{n-2} \nsubseteq[V]_{r}$.
Proof of Claim 5. Assume to the contrary that $K_{n-2} \subseteq[V]_{r}$. Let $U$ be the vertex set of a red $K_{n-2}$ and let $W=V \backslash U$. Since $|U| \geq 4$ and $|W|=n+1$, Claim 4 implies $q_{r}(U, W) \geq 1$. Consider two vertices $u \in U$ and $w \in W$ where $u w$ is red. Let $W^{\prime}=W \backslash\{w\}$. Again using Claim 4 we obtain that $q_{r}\left(U, W^{\prime}\right) \geq 1$. A red edge $u^{\prime} w^{\prime}$ with $u^{\prime} \in U \backslash\{u\}$ and $w^{\prime} \in W^{\prime}$ cannot occur: otherwise, since any non-star tree contains two different vertices adjacent to vertices of degree 1 , the red $K_{n-2}$ together with the red edges $u w$ and $u^{\prime} w^{\prime}$ would give every $T_{n} \neq S_{n}$ in red, a contradiction. It remains that $u w^{\prime}$ is red for some $w^{\prime} \in W^{\prime}$ and that $U \backslash\{u\} \subseteq N_{g}\left(W^{\prime}\right)$. But this contradicts Claim 4 if $n \geq 7$, and in case of $n=6, U \backslash\{u\}=N_{g}\left(W^{\prime}\right)$ is left. Thus, $q_{r}\left(w, W^{\prime}\right) \geq 1$. But then we find any $T_{6}$ in red, since every $T_{6}$ contains a vertex adjacent to two vertices of degree 1 or a vertex of degree 1 adjacent to a vertex of degree 2 . This contradiction completes the proof of Claim 5.

Applying Claims 3 and 5 we obtain an improvement of Claim 4 for $n \geq 6$.
Claim 6. If $n \geq 6$ and if $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \geq n-2$, then $\left|N_{g}\left(V^{\prime}\right)\right| \leq 3$.
Using Claims 3 to 6 now we deduce a contradiction from the above assumption. Since $T_{n} \notin$ $\left\{P_{n}, S_{n}\right\}$, the maximum degree $\Delta\left(T_{n}\right)$ satisfies $3 \leq \Delta\left(T_{n}\right) \leq n-2$. We distinguish the following four cases depending on $\Delta\left(T_{n}\right)$ and use $T_{n, k}$ to denote a tree $T_{n}$ with $\Delta\left(T_{n}\right)=k$.

Case 1. $\Delta\left(T_{n}\right)=n-2$ where $5 \leq n \leq 8$. There is exactly one tree $T_{n, n-2}$, namely the broom $B_{n-3,3}$. By Theorem 1 and (4), $S_{n-1} \subseteq[V]_{r}$. Consider a red $S_{n-1}$ in $\chi$ with vertex set $U$ and $u^{*}$ as vertex of degree $n-2$. Let $W=V \backslash U$. Since $|W| \geq n$ and $|U| \geq 4$, Claim 4 yields $q_{r}(U, W) \geq 1$. If $u w$ is red for some $u \in U \backslash\left\{u^{*}\right\}$ and some $w \in W$, then a red $B_{n-3,3}$ occurs, a contradiction. Otherwise, $u^{*} w$ is red for some $w \in W$ and $N_{g}\left(U \backslash\left\{u^{*}\right\}\right)=W$. Using Claim 3 we obtain that [ $U \backslash\left\{u^{*}\right\}$ ] is a red $K_{n-2}$ contradicting Claim 5 for $n \geq 6$. If $n=5$, then [ $U$ ] is a red $K_{4}$ yielding a red $B_{2,3}$ together with $u^{*} w$, a contradiction, and we are done.

Case 2. $\Delta\left(T_{n}\right)=n-3$ where $6 \leq n \leq 8$. There are three trees $T_{n, n-3}$, namely $T_{n, n-3}{ }^{(1)}$ and $T_{n, n-3}{ }^{(2)}$ obtained from $S_{n-2}$ by adding two vertices of degree 1 joined to the same vertex of degree 1 or to two different vertices of degree 1 of $S_{n-2}$, respectively, and $T_{n, n-3}{ }^{(3)}=B_{n-4,4}$ (for $n=7$ these three trees $T_{n, n-3}$ are shown in Figure 1). Now we consider a red $S_{n-2}$ in $\chi$ with vertex set $U$ and $u^{*}$ as vertex of degree $n-3$. Let $U \backslash\left\{u^{*}\right\}=\left\{u_{1}, \ldots, u_{n-3}\right\}$ and $W=V \backslash U=\left\{w_{1}, \ldots, w_{n+1}\right\}$. By Claim 5, a green edge, say $u_{1} u_{2}$, must occur in [U]. Since


Figure 1. The trees $T_{7,4}$ with vertex labeling.
$B_{4} \nsubseteq[V]_{g}$, there are at most three common green neighbors of $u_{1}$ and $u_{2}$ in $W$, and we may assume that any $w \in W \backslash\left\{w_{n-1}, w_{n}, w_{n+1}\right\}$ is joined red to $u_{1}$ or to $u_{2}$. This implies that, without loss of generality, $u_{1} w_{1}$ and $u_{1} w_{2}$ are red. Thus, $T_{n, n-3}{ }^{(1)}$ is unavoidable in $[V]_{r}$. If $T_{n, n-3}{ }^{(2)} \nsubseteq[V]_{r}$, then there are only green edges between $\left\{u_{2}, \ldots, u_{n-3}\right\}$ and $W$. Consequently, all edges from $u_{1}$ to $\left\{w_{1}, \ldots, w_{n-2}\right\}$ have to be red. If there are only green edges in $\left[\left\{w_{1}, \ldots, w_{n-2}\right\}\right]$, then four vertices from $\left\{w_{1}, \ldots, w_{n-2}\right\}$ and two vertices from $\left\{u_{2}, \ldots, u_{n-3}\right\}$ yield a green $K_{6}-e \supseteq B_{4}$, a contradiction. Hence we may assume that $w_{1} w_{2}$ is red. But this yields a red $T_{n, n-3}{ }^{(2)}$ with $u_{1}$ as vertex of degree $n-3$, a contradiction. Finally, if $T_{n, n-3}{ }^{(3)} \nsubseteq[V]_{r}$, then in [W] all edges incident to $w_{1}$ or to $w_{2}$ have to be green yielding a green $B_{4}$, a contradiction.


Figure 2. The trees $T_{n, n-3}$ with $7 \leq n \leq 8$.
Case 3. $\Delta\left(T_{n}\right)=n-4$ where $7 \leq n \leq 8$. The five trees $T_{7,3}$ and the seven trees $T_{8,4}$ are shown in Figure 2. We may use that $T_{6,3}{ }^{(1)}$, every $T_{7,4}$ and also $P_{7}$ must occur in $[V]_{r}$ (see Case 2 and (5)). If a red $T_{7,4}$ in $\chi$ with $U=V\left(T_{7,4}\right)$ is considered, then the vertices in $U$ shall be denoted by $u_{1}, u_{2}, \ldots, u_{7}$ as in Figure 1 and $W$ means $V \backslash U$.

- $T_{7} \in\left\{T_{7,3}{ }^{(1)}, T_{7,3}{ }^{(2)}\right\}$. Consider a red $P_{7}=u_{1} u_{2} \ldots u_{7}$ in $\chi$. Let $W=V \backslash\left\{u_{1}, \ldots, u_{7}\right\}$. If $T_{7,3}{ }^{(1)} \nsubseteq[V]_{r}$, then $\left\{u_{2}, u_{3}, u_{5}, u_{6}\right\} \subseteq N_{g}(W)$ contradicting Claim 6. If $T_{7,3}{ }^{(2)} \nsubseteq[V]_{r}$, then $u_{3} u_{5}$ and all edges between $\left\{u_{3}, u_{5}\right\}$ and $W$ have to be green contradicting $B_{4} \nsubseteq[V]_{g}$.
- $T_{7}=T_{7,3}{ }^{(3)}$. Consider a red $T_{6,3}{ }^{(1)}$ in $\chi$. Let $U$ be the set of the four vertices of degree 1 of $T_{6,3}{ }^{(1)}$ and $W=V \backslash V\left(T_{6,3}{ }^{(1)}\right) . T_{7,3}{ }^{(3)} \nsubseteq[V]_{r}$ forces $U \subseteq N_{g}(W)$ contradicting Claim 6.
- $T_{7} \in\left\{T_{7,3}{ }^{(4)}, T_{7,3}{ }^{(5)}\right\}$. Consider a red $T_{7,4}{ }^{(2)}$ in $\chi$. If $T_{7,3}{ }^{(4)} \nsubseteq[V]_{r}$, then $q_{r}\left(u_{1}, W \cup\right.$ $\left.\left\{u_{3}, u_{6}\right\}\right) \leq 1$ and $q_{r}\left(u_{3}, W \cup\left\{u_{1}, u_{5}\right\}\right) \leq 1$. Thus, $u_{1}$ and $u_{3}$ have at least four common green neighbors in $W$, and $B_{4} \nsubseteq[V]_{g}$ forces $u_{1} u_{3}$ to be red. Consequently, $u_{3} u_{5}, u_{1} u_{6}$ and all edges between $\left\{u_{1}, u_{3}\right\}$ and $W$ have to be green. But then $B_{4} \nsubseteq[V]_{g}$ implies $q_{r}\left(u_{i}, W\right) \geq 3$ for $i=5,6$ yielding a red $T_{7,3}{ }^{(4)}$, a contradiction. If $T_{7,3}{ }^{(5)} \nsubseteq[V]_{r}$, then $u_{2} u_{4}$ and all edges between $\left\{u_{2}, u_{4}\right\}$ and $W$ have to be green contradicting $B_{4} \nsubseteq[V]_{g}$.
- $T_{8} \in\left\{T_{8,4}{ }^{(1)}, T_{8,4}{ }^{(2)}\right\}$. Consider a red $T_{7,4}{ }^{(2)}$ in $\chi$. If $T_{8,4}{ }^{(1)} \nsubseteq[V]_{r}$, then all edges between $\left\{u_{1}, u_{3}\right\}$ and $W$ have to be green. Since $B_{4} \nsubseteq[V]_{g}, u_{1} u_{3}$ has to be red, and Claim 6 demands at least one red edge from $W$ to $\left\{u_{2}, u_{4}\right\}$. But this gives a red $T_{8,4}{ }^{(1)}$, a contradiction. If $T_{8,4}{ }^{(2)} \nsubseteq[V]_{r}$, then all edges between $\left\{u_{2}, u_{4}\right\}$ and $W$ have to be green, and this forces $u_{2} u_{4}$ to be red. Consequently, all edges from $u_{7}$ to $W$ have to be green, and Claim 6 yields three vertices $w_{1}, w_{2}, w_{3} \in W$ joined red to $u_{3}$. Moreover, $B_{4} \nsubseteq[V]_{g}$ implies $q_{r}\left(w_{i}, W \backslash\left\{w_{1}, w_{2}, w_{3}\right\}\right) \geq 2$ for $1 \leq i \leq 3$. But then we obtain a red $T_{8,4}{ }^{(2)}$ with $u_{3}$ as vertex of degree 4 , a contradiction.
- $T_{8}=T_{8,4}{ }^{(3)}$. Consider a red $T_{7,4}{ }^{(3)}$ in $\chi$. If $T_{8,4}{ }^{(3)} \nsubseteq[V]_{r}$, then all edges from $u_{3}$ to $W$ are green and $q_{r}\left(u_{i}, W\right) \leq 2$ for $i \in\{1,2,4\}$. Hence, since $B_{4} \nsubseteq[V]_{g},\left[\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right]$ has to be a red $K_{4}$, and $T_{8,4}{ }^{(3)} \nsubseteq[V]_{r}$ forces $\left\{u_{5}, u_{6}, u_{7}\right\} \subseteq N_{g}(W)$. But then the eight vertices in $W$ have four common green neighbors, a contradiction to Claim 6.


Figure 3. Two trees $T_{8}$ with vertex labeling.

- $T_{8}=T_{8,4}{ }^{(4)}$. From above we already know that $T_{8,4}{ }^{(2)} \subseteq[V]_{r}$. Consider a red $T_{8,4}{ }^{(2)}$ in $\chi$ where the vertices are denoted as in Figure 3. Let $W=V \backslash\left\{u_{1}, \ldots, u_{8}\right\}$. If $T_{8,4}{ }^{(4)} \nsubseteq[V]_{r}$, then $\left\{u_{5}, u_{6}, u_{7}\right\} \subseteq N_{g}(W)$ and $q_{r}\left(u_{4}, W\right) \leq 1$. Thus, we find six vertices in $W$ with four common green neighbors in $U$, a contradiction to Claim 6.
- $T_{8} \in\left\{T_{8,4}{ }^{(5)}, T_{8,4}{ }^{(6)}, T_{8,4}{ }^{(7)}\right\}$. Consider a red $T_{7,4}{ }^{(1)}$ in $\chi$. If $T_{8,4}{ }^{(5)} \nsubseteq[V]_{r}$, then $q_{r}\left(\left\{u_{3}, u_{4}\right\}\right.$, $W)=0$, and $B_{4} \nsubseteq[V]_{g}$ forces $u_{3} u_{4}$ to be red. Consequently, $q_{r}\left(u_{6}, W\right)=0$ and $q_{r}\left(u_{1}, W\right) \leq$ 2. But then we find six vertices in $W$ with four common green neighbors in $U$, a contradiction to Claim 6. If $T_{8,4}{ }^{(6)} \nsubseteq[V]_{r}$, then $q_{r}\left(u_{i}, W\right) \leq 1$ for $i=3,4$ and $q_{r}\left(u_{i}, W\right) \leq 2$ for $i=$ $1,2,5$. Since $B_{4} \nsubseteq[V]_{g},\left[\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right]$ has to be a red $K_{5}$. Moreover, $T_{8,4}{ }^{(6)} \nsubseteq[V]_{r}$ forces $q_{r}\left(\left\{u_{6}, u_{7}\right\}, W\right)=0$, and there are six vertices in $W$ with four common green neighbors in $U$ contradicting Claim 6. Finally, if $T_{8,4}{ }^{(7)} \nsubseteq[V]_{r}$, then $q_{r}\left(u_{6}, W\right)=0$ and $q_{r}\left(u_{i}, W\right) \leq 2$ for $i=1,2,5$. Hence $B_{4} \nsubseteq[V]_{g}$ forces $\left[\left\{u_{1}, u_{2}, u_{5}, u_{6}, u_{7}\right\}\right]$ to be a red $K_{5}$. Moreover, $T_{8,4}{ }^{(7)} \nsubseteq[V]_{r}$ implies $q_{r}\left(u_{i}, W\right)=0$ for $i=1,2,5,6,7$ and we find eight vertices in $W$ with five common green neighbors in $U$, another contradiction to Claim 6.


Figure 4. The trees $T_{8,3}$.

Case 4: $\Delta\left(T_{n}\right)=n-5$ where $n=8$. The ten trees $T_{8,3}$ are shown in Figure 4. We may use that $P_{8}$ and $T_{7,3}{ }^{(i)}$ for $i \in\{3,4,5\}$ occur in $[V]_{r}$ (see (5) and Case 3). If a red $T_{7,3}{ }^{(i)}$ in $\chi$ with $U=V\left(T_{7,3}{ }^{(i)}\right)$ is considered, then the vertices in $U$ shall be denoted as in Figure 5 and $W$ means $V \backslash U$.

- $T_{8} \in\left\{T_{8,3}{ }^{(1)}, T_{8,3}{ }^{(2)}, T_{8,3}{ }^{(3)}\right\}$. Consider a red $P_{8}=u_{1} u_{2} \ldots u_{8}$ in $\chi$. Let $W=V \backslash$ $\left\{u_{1}, \ldots, u_{8}\right\}$. If $T_{8,3}{ }^{(1)} \nsubseteq[V]_{r}$, then $\left\{u_{2}, u_{3}, u_{6}, u_{7}\right\} \subseteq N_{g}(W)$, and $T_{8,3}{ }^{(2)} \nsubseteq[V]_{r}$ forces that $\left\{u_{3}, u_{4}, u_{5}, u_{6}\right\} \subseteq N_{g}(W)$, both cases contradicting Claim 6. If $T_{8,3}{ }^{(3)} \nsubseteq[V]_{r}$, then $u_{3} u_{5}, u_{4} u_{6}$ and all edges between $W$ and $\left\{u_{4}, u_{5}\right\}$ are green. Hence, by Claim $6, q_{r}\left(\left\{u_{1}, u_{8}\right\}, W\right) \geq 1$, and we may assume that $u_{1} w^{*}$ for some $w^{*} \in W$ is red. But this forces all edges from $u_{3}$ to $W \backslash\left\{w^{*}\right\}$ to be green yielding a green $B_{4}$, a contradiction.


Figure 5. Some trees $T_{7,3}$ with vertex labeling.

- $T_{8} \in\left\{T_{8,3}{ }^{(4)}, T_{8,3}{ }^{(5)}\right\}$. Consider a red $T_{7,3}{ }^{(4)}$ in $\chi$. If $T_{8,3}{ }^{(4)} \nsubseteq[V]_{r}$, then $q_{r}\left(u_{i}, W\right) \leq$ 1 for $i=1,2,6,7$, and $B_{4} \nsubseteq[V]_{g}$ implies that $\left[\left\{u_{1}, u_{2}, u_{6}, u_{7}\right\}\right]$ is a red $K_{4}$. By Claim 6, $q_{r}\left(\left\{u_{1}, u_{2}, u_{6}, u_{7}\right\}, W\right) \geq 1$, and we may assume that $u_{1} w^{*}$ for some $w^{*} \in W$ is red. But this yields a red $T_{8,3}{ }^{(4)}$, a contradiction. If $T_{8,3}{ }^{(5)} \nsubseteq[V]_{r}$, then $\left\{u_{1}, u_{2}, u_{6}, u_{7}\right\} \subseteq N_{g}(W)$ contradicting Claim 6.
$\bullet T_{8}=T_{8,3}{ }^{(6)}$. Consider a red $T_{7,3}{ }^{(5)}$ in $\chi$. If $T_{8,3}{ }^{(6)} \nsubseteq[V]_{r}$, then $\left\{u_{1}, u_{5}, u_{7}\right\} \subseteq N_{g}(W)$. Since $B_{4} \nsubseteq[V]_{g},\left[\left\{u_{1}, u_{5}, u_{7}\right\}\right]$ is a red $K_{3}$, and Claim 6 forces $q_{r}\left(u_{2}, W\right) \geq 1$. But then we find a red
$T_{8,3}{ }^{(6)}$ with $u_{5}$ as vertex of degree 3 , a contradiction.
- $T_{8}=T_{8,3}{ }^{(7)}$. Consider a red $T_{7,3}{ }^{(3)}$ in $\chi$. If $T_{8,3}{ }^{(7)} \nsubseteq[V]_{r}$, then $q_{r}\left(u_{7}, W\right)=0$. Moreover, $B_{4} \nsubseteq[V]_{g}$ implies that $q_{r}(w, W) \geq 4$ for every $w \in W$. Hence, as $T_{8,3}{ }^{(7)} \nsubseteq[V]_{r}, q_{r}\left(u_{4}, W\right)=0$ and $q_{r}\left(u_{3}, W\right) \leq 1$. But then Claim 6 forces $q_{r}\left(u_{i}, W\right) \geq 2$ for $i=1,2$, and this yields a red $T_{8,3}{ }^{(7)}$, a contradiction.
- $T_{8} \in\left\{T_{8,3}{ }^{(8)}, T_{8,3}{ }^{(9)}, T_{8,3}{ }^{(10)}\right\}$. From above we already know that $T_{8,3}{ }^{(7)} \subseteq[V]_{r}$. Consider a red $T_{8,3}{ }^{(7)}$ in $\chi$ where the vertices are denoted as in Figure 3. Let $W=V \backslash\left\{u_{1}, \ldots, u_{8}\right\}$. If $T_{8,3}{ }^{(8)} \nsubseteq[V]_{r}$, then $u_{6} u_{8}$ and all edges between $\left\{u_{6}, u_{8}\right\}$ and $W$ have to be green. But this yields a green $B_{4}$, a contradiction. If $T_{8,3}{ }^{(9)} \nsubseteq[V]_{r}$, then $q_{r}\left(\left\{u_{1}, u_{2}\right\}, W\right)=0$, and $B_{4} \nsubseteq[V]_{g}$ implies that $u_{1} u_{2}$ is red. Hence $q_{r}\left(u_{3}, W\right)=0$, and, by Claim 6, a red edge $u_{4} w^{*}$ with $w^{*} \in W$ must occur. Moreover, $B_{4} \nsubseteq[V]_{g}$ implies $q_{r}(w, W) \geq 3$ for every $w \in W$. But then we find a red $T_{8,3}{ }^{(9)}$ in $\left[\left\{u_{4}, u_{5}, u_{6}, u_{7}, w^{*}, w_{1}, w_{2}, w_{3}\right\}\right]$ where $w_{1}$ and $w_{2}$ are red neighbors of $w^{*}$ in $W$ and $w_{3}$ is a red neighbor of $w_{2}$ in $W$ different from $w^{*}$ and $w_{1}$, a contradiction. Finally, if $T_{8,3}{ }^{(10)} \nsubseteq[V]_{r}$, then $q_{r}\left(\left\{u_{5}, u_{7}\right\}, W\right)=0$. Hence $B_{4} \nsubseteq[V]_{g}$ implies that $u_{5} u_{7}$ is red. Consequently, $q_{r}\left(u_{4}, W\right)=0$, and, by Claim 6, $q_{r}\left(u_{1}, W\right) \geq 2$. But this yields a red $T_{8,3}{ }^{(10)}$ in $\left[\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{7}, w_{1}, w_{2}\right\}\right]$ where $w_{1}$ and $w_{2}$ are red neighbors of $u_{1}$ in $W$, a contradiction, and the proof of Theorem 2 is complete.


## References

[1] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs III: Small off-diagonal numbers, Pacific J. Math. 41 (1972), 335-345.
[2] M. Clancy, Some small Ramsey numbers, J. Graph Theory 1 (1977), 89-91.
[3] P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, The book-tree Ramsey numbers, Sci. Ser. A Math. Sci. (N.S) 1 (1988), 111-117.
[4] G. Hua, S. Hongxue and L. Xiangyang, Ramsey numbers $r\left(K_{1,4}, G\right)$ for all three-partite graphs $G$ of order six, J. Southeast Univ. (English Ed.) 20 (2004), 378-380.
[5] G.R.T. Hendry, Ramsey numbers for graphs with five vertices, J. Graph Theory 13 (1989), 245-248.
[6] R. Lortz and I. Mengersen, On the Ramsey numbers for stars versus connected graphs of order six, Australas. J. Combin. 73 (2019), 1-24.
[7] R. Lortz and I. Mengersen, On the Ramsey numbers for non-star trees versus connected graphs of order six, Discuss. Math. Graph Theory, to appear.
[8] C.C. Rousseau and J. Sheehan, A class of Ramsey problems involving trees, J. London Math. Soc.(2) 18 (1978), 392-396.
[9] L. Zhang, K. Chen and D. Zhu, Some tree-book Ramsey numbers, Ars Combin. 130 (2017), 97-102.

