Electronic Journal of Graph Theory and Applications

Zeroth-order general Randić index of trees with given distance k-domination number

Tomáš Vetrík ${ }^{* a}$, Mesfin Masre ${ }^{\text {b }}$, Selvaraj Balachandran ${ }^{\text {a,c }}$
${ }^{a}$ Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South Africa
${ }^{b}$ Department of Mathematics, Addis Ababa University, Addis Ababa, Ethiopia
${ }^{c}$ Department of Mathematics, School of Arts, Sciences and Humanities, SASTRA Deemed University, Thanjavur, India
vetrikt@ufs.ac.za, mesfin.masre@au.edu.et, bala_maths@rediffmail.com
*Corresponding author

Abstract

The zeroth-order general Randić index of a graph G is defined as $R_{a}(G)=\sum_{v \in V(G)} d_{G}^{a}(v)$, where $a \in \mathbb{R}, V(G)$ is the vertex set of G and $d_{G}(v)$ is the degree of a vertex v in G. We obtain bounds on the zeroth-order general Randić index for trees of given order and distance k-domination number, where $k \geq 1$. Lower bounds are given for $0<a<1$ and upper bounds are given for $a<0$ and $a>1$. All the extremal graphs are presented which means that our bounds are the best possible.

Keywords: zeroth-order general Randić index, tree, distance k-domination number Mathematics Subject Classification: 05C05, 05C07, 92E10 DOI: 10.5614/ejgta.2022.10.1.17

1. Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The number of vertices of a graph G is called the order of G. The degree $d_{G}(v)$ of a vertex $v \in V(G)$ is the number of edges incident with v. A pendant vertex is a vertex having degree one. The distance $d_{G}(u, v)$ between two vertices $u, v \in V(G)$ is the number of edges in a shortest path connecting them. The diameter of G is the

[^0]distance between any two furthest vertices in G. A diametral path is a shortest path in G connecting two furthest vertices in G. A tree is a connected graph containing no cycles.

For a positive integer k, a set $D \subset V(G)$ is a distance k-dominating set of G if every vertex in G is of distance at most k from some vertex in D. The cardinality of a smallest distance k dominating set of G is called the distance k-domination number of G, denoted by $\gamma_{k}(G)$ (or γ_{k}). We say that $v \in V(G)$ is dominated by $u \in D$ if $d_{G}(u, v) \leq k$. We also say that the vertex u dominates the vertex v. Note that the distance 1-domination number is the classical domination number of G.

For $a \in \mathbb{R}$, the zeroth-order general Randić index of a graph G is defined as

$$
R_{a}(G)=\sum_{v \in V(G)} d_{G}^{a}(v)
$$

Some other important indices are special cases of the R_{a} index. If $a=2$, we get the first Zagreb index and if $a=-\frac{1}{2}$, we obtain the classical zeroth-order Randić index.

Indices of graphs have a lot of applications, especially in chemistry. Mathematical properties of the zeroth-order general Randić index have been extensively studied. The minimum and maximum zeroth-order general Randić index for tress of prescribed order and number of leaves/branching vertices/segments were obtained by Khalid and Ali [6], the maximum R_{a} index of trees in terms of order and diameter/radius was presented by Yamaguchi [14], an upper bound for trees with respect to order and independence number was given by Tomescu and Jamil [11], upper and lower bounds for trees with prescribed order and independence number/domination number were given in [12], bounds for graphs of given order and size were obtained by Milošević et al. [8], sharp upper and lower bounds for bicyclic graphs of given order were presented by Chen and Deng [3], tight bounds for cactus graphs were given by Ahmed, Bhatti and Ali [1], graphs of given chromatic number, clique number, connectivity and number of cut edges were studied by Jamil et al. [5]. Some related indices were studied in [2], [4] and [10].

We obtain sharp bounds on the zeroth-order general Randić index for trees of given order and distance k-domination number. Bounds on the zeroth-order general Randić index for trees of given order and classical domination number, and bounds on the first Zagreb index for trees of given order and distance k-domination number are special cases of our results.

2. Preliminary results

Results given in this section are used in the proofs of our theorems presented in Section 3. Lemma 2.1 was proved in [13].

Lemma 2.1. Let $a, x, y, c \in \mathbb{R}$, where $1 \leq x<y$ and $c>0$. For $0<a<1$, we have

$$
(x+c)^{a}-x^{a}>(y+c)^{a}-y^{a} .
$$

For $a>1$ and $a<0$, we have

$$
(x+c)^{a}-x^{a}<(y+c)^{a}-y^{a} .
$$

For a tree T with a pendant vertex $u \in V(T)$, we denote by $T-u$ a tree obtained by the removal of u and the edge incident with u from T. Let A_{T} be the set containing each pendant vertex u of T for which $\gamma_{k}(T-u)=\gamma_{k}(T)$. So, a pendant vertex $u \in A_{T}$ if $\gamma_{k}(T-u)=\gamma_{k}(T)$ and $u \notin A_{T}$ if $\gamma_{k}(T-u)=\gamma_{k}(T)-1$. Let $N_{T}\left(A_{T}\right)=\bigcup_{u \in A_{T}} N_{T}(u)$, where $N_{T}(u)$ is the set containing the vertex adjacent to u in T.
Lemma 2.2. Let T^{\prime} be a tree with the maximum zeroth-order general Randić index for $a<0$ and $a>1$ (the minimum zeroth-order general Randić index for $0<a<1$) among trees of order n and distance k-domination number $\gamma_{k}\left(T^{\prime}\right) \geq 2$, where $k \geq 1$. Then $\left|N_{T^{\prime}}\left(A_{T^{\prime}}\right)\right| \leq 1$.
Proof. Suppose to the contrary that $\left|N_{T^{\prime}}\left(A_{T^{\prime}}\right)\right| \geq 2$; say $v, v^{\prime} \in N_{T^{\prime}}\left(A_{T^{\prime}}\right)$. Without loss of generality, assume that $r=d_{T^{\prime}}(v) \leq d_{T^{\prime}}\left(v^{\prime}\right)=s$. Let us denote any pendant vertex adjacent to v in T^{\prime} by u (adjacent to v^{\prime} by u^{\prime}), where $u, u^{\prime} \in A_{T^{\prime}}$.

Let D be any distance k-dominating set of T^{\prime} which does not contain u. We define $T^{\prime \prime}$ with $E\left(T^{\prime \prime}\right)=\left\{u v^{\prime}\right\} \cup E\left(T^{\prime}\right) \backslash\{u v\}$. Since $\gamma_{k}\left(T^{\prime}-u\right)=\gamma_{k}\left(T^{\prime}\right)$, we get $\gamma_{k}\left(T^{\prime \prime}\right)=\gamma_{k}\left(T^{\prime}\right)$.

We obtain $d_{T^{\prime \prime}}(v)=r-1, d_{T^{\prime \prime}}\left(v^{\prime}\right)=s+1$ and

$$
\begin{aligned}
R_{a}\left(T^{\prime}\right)-R_{a}\left(T^{\prime \prime}\right) & =d_{T^{\prime}}^{a}(v)-d_{T^{\prime \prime}}^{a}(v)+d_{T^{\prime}}^{a}\left(v^{\prime}\right)-d_{T^{\prime \prime}}^{a}\left(v^{\prime}\right) \\
& =r^{a}-(r-1)^{a}+s^{a}-(s+1)^{a} .
\end{aligned}
$$

For $a<0$ and $a>1$, by Lemma 2.1, we have $r^{a}-(r-1)^{a}<(s+1)^{a}-s^{a}$, thus $r^{a}-(r-$ $1)^{a}+s^{a}-(s+1)^{a}<0$ which implies that $R_{a}\left(T^{\prime}\right)<R_{a}\left(T^{\prime \prime}\right)$, so T^{\prime} does not have the maximum R_{a} index.

For $0<a<1$, by Lemma 2.1, we have $r^{a}-(r-1)^{a}>(s+1)^{a}-s^{a}$, thus $r^{a}-(r-1)^{a}+$ $s^{a}-(s+1)^{a}>0$ and $R_{a}\left(T^{\prime}\right)>R_{a}\left(T^{\prime \prime}\right)$, so T^{\prime} does not have the minimum R_{a} index, which is a contradiction.

Pei and Pan [9] (who presented bounds for the Zagreb indices) proved that for any tree with n vertices, maximum degree Δ and distance k-domination number $\gamma_{k} \geq 2$, where $k \geq 1$, we have

$$
\begin{equation*}
\Delta \leq n-k \gamma_{k} \tag{1}
\end{equation*}
$$

3. Main results

For positive integers n and k with $n \geq 2(k+1)$, let $T_{n}^{j}(k, 2)$ be the tree obtained from the path $v_{0} v_{1} \ldots v_{2 k+1}$ by joining v_{j} to $n-2(k+1)$ pendant vertices, where $j \in\{1,2, \ldots, 2 k\}$. Let $\mathbb{T}_{n}(k, 2)$ be the set containing the trees $T_{n}^{1}(k, 2), T_{n}^{2}(k, 2), \ldots, T_{n}^{2 k}(k, 2)$. Since $T_{n}^{i}(k, 2)$ and $T_{n}^{2 k-i}(k, 2)$ are isomorphic for every $i=1,2, \ldots, k-1$, we have

$$
\mathbb{T}_{n}(k, 2)=\left\{T_{n}^{1}(k, 2), T_{n}^{2}(k, 2), \ldots, T_{n}^{k}(k, 2)\right\}
$$

Every tree in $\mathbb{T}_{n}(k, 2)$ has one vertex of degree $n-2 k, 2 k-1$ vertices of degree 2 and $n-2 k$ vertices of degree 1. Therefore,

$$
R_{a}\left(T_{n}^{i}(k, 2)\right)=(n-2 k)^{a}+(2 k-1) 2^{a}+n-2 k .
$$

for each $i=1,2, \ldots, k$. We show that any tree in the set $\mathbb{T}_{n}(k, 2)$ is a tree with the maximum R_{a} index for $a<0$ and $a>1$ (the minimum R_{a} index for $0<a<1$) among trees of order n and distance k-domination number 2 .

Theorem 3.1. Let T be any tree with n vertices and distance k-domination number 2 , where $k \geq 1$. For $a<0$ and $a>1$, we have $n \geq 2(k+1)$ and

$$
R_{a}(T) \leq(n-2 k)^{a}+(2 k-1) 2^{a}+n-2 k
$$

with equality if and only if T is in $\mathbb{T}_{n}(k, 2)$.
Proof. Let T^{\prime} be a tree with the maximum R_{a} index among trees of order n and distance k domination number 2 .

Let $v_{0} v_{1} \ldots v_{d}$ be a diametral path of T^{\prime}. Note that $d \geq 2 k+1$, otherwise if $d \leq 2 k$, then T^{\prime} can be dominated by its central vertex $v_{\left\lfloor\frac{d}{2}\right\rfloor}$. By Lemma 2.2, we have $\left|N_{T^{\prime}}\left(A_{T^{\prime}}\right)\right| \leq 1$. Therefore, $v_{0} \notin A_{T^{\prime}}$ or $v_{d} \notin A_{T^{\prime}}$. Without loss of generality, assume that $v_{0} \notin A_{T^{\prime}}$ which means that $\gamma_{k}\left(T^{\prime}-v_{0}\right)=\gamma_{k}\left(T^{\prime}\right)-1=1$. This implies that the diameter of $T^{\prime}-v_{0}$ is at most $2 k$, therefore the diameter of T^{\prime} is at most $2 k+1$ which yields $d=2 k+1$ and $n \geq 2(k+1)$.

It follows that if $n=2(k+1)$, then T^{\prime} is the path $v_{0} v_{1} \ldots v_{2 k+1}$ which is the only tree in the set $\mathbb{T}_{2(k+1)}(k, 2)$ and

$$
R_{a}\left(T^{\prime}\right)=(2 k) 2^{a}+2
$$

Thus, Theorem 3.1 holds for $n=2(k+1)$. For $n>2(k+1)$, we prove Theorem 3.1 by induction on n.

Assume that $n>2(k+1)$ and the result holds for $n-1$. Thus T^{\prime} contains a pendant vertex, say w other than v_{0} and $v_{2 k+1}$. Note that $A_{T^{\prime}} \neq \emptyset$, otherwise if $A_{T^{\prime}}=\emptyset$, then $\gamma_{k}\left(T^{\prime}-w\right)=$ $\gamma_{k}\left(T^{\prime}\right)-1=1$ which is not possible, since v_{0} and $v_{2 k+1}$ cannot be dominated by one vertex. Since $A_{T^{\prime}} \neq \emptyset$, we get $N_{T^{\prime}}\left(A_{T^{\prime}}\right) \neq \emptyset$.

Therefore, by Lemma 2.2, we obtain $\left|N_{T^{\prime}}\left(A_{T^{\prime}}\right)\right|=1$. Let v be the vertex in $N_{T^{\prime}}\left(A_{T^{\prime}}\right)$ and let $u \in A_{T^{\prime}}$. So $\gamma_{k}\left(T^{\prime}-u\right)=\gamma_{k}\left(T^{\prime}\right)=2$.

Then by (1), we get $d_{T^{\prime}}(v) \leq n-2 k$. Thus by Lemma 2.1, for $a<0$ and $a>1$, we obtain

$$
d_{T^{\prime}}^{a}(v)-\left(d_{T^{\prime}}(v)-1\right)^{a} \leq(n-2 k)^{a}-(n-2 k-1)^{a} .
$$

The equality holds if and only if $d_{T^{\prime}}(v)=n-2 k$. Note that

$$
R_{a}\left(T^{\prime}\right)-R_{a}\left(T^{\prime}-u\right)=d_{T^{\prime}}^{a}(v)-\left(d_{T^{\prime}}(v)-1\right)^{a}+d_{T^{\prime}}^{a}(u) .
$$

By the induction hypothesis,

$$
R_{a}\left(T^{\prime}-u\right) \leq(n-2 k-1)^{a}+(2 k-1) 2^{a}+n-2 k-1
$$

with equality if and only if T is in $\mathbb{T}_{n-1}(k, 2)$. Thus

$$
\begin{aligned}
R_{a}\left(T^{\prime}\right) & =R_{a}\left(T^{\prime}-u\right)+d_{T^{\prime}}^{a}(v)-\left(d_{T^{\prime}}(v)-1\right)^{a}+d_{T^{\prime}}^{a}(u) \\
& \leq(n-2 k-1)^{a}+(2 k-1) 2^{a}+n-2 k-1+(n-2 k)^{a}-(n-2 k-1)^{a}+1 \\
& =(n-2 k)^{a}+(2 k-1) 2^{a}+n-2 k
\end{aligned}
$$

with equality if and only if $T^{\prime}-u$ is any tree in $\mathbb{T}_{n-1}(k, 2)$ and $d_{T^{\prime}}(v)=n-2 k$. Hence, T^{\prime} is any tree in $\mathbb{T}_{n}(k, 2)$.

Theorem 3.2. Let T be any tree with n vertices and distance k-domination number 2 , where $k \geq 1$. For $0<a<1$, we have $n \geq 2(k+1)$ and

$$
R_{a}(T) \geq(n-2 k)^{a}+(2 k-1) 2^{a}+n-2 k
$$

with equality if and only if T is in $\mathbb{T}_{n}(k, 2)$.
Proof. The proofs of Theorems 3.1 and 3.2 are similar. We present only those parts of the proof of Theorem 3.2 which are different from the proof of Theorem 3.1.

Let T^{\prime} be a tree with the minimum R_{a} index among trees of order n and distance k-domination number 2.

By Lemma 2.1, for $0<a<1$, we obtain

$$
d_{T^{\prime}}^{a}(v)-\left(d_{T^{\prime}}(v)-1\right)^{a} \geq(n-2 k)^{a}-(n-2 k-1)^{a} .
$$

By the induction hypothesis,

$$
R_{a}\left(T^{\prime}-u\right) \geq(n-2 k-1)^{a}+(2 k-1) 2^{a}+n-2 k-1 .
$$

Thus

$$
\begin{aligned}
R_{a}\left(T^{\prime}\right) & =R_{a}\left(T^{\prime}-u\right)+d_{T^{\prime}}^{a}(v)-\left(d_{T^{\prime}}(v)-1\right)^{a}+d_{T^{\prime}}^{a}(u) \\
& \geq(n-2 k-1)^{a}+(2 k-1) 2^{a}+n-2 k-1+(n-2 k)^{a}-(n-2 k-1)^{a}+1 \\
& =(n-2 k)^{a}+(2 k-1) 2^{a}+n-2 k .
\end{aligned}
$$

Let T be a tree with a diametral path $v_{0} v_{1} \ldots v_{d}$ and let T_{i} be the subtree of T induced by v_{i} and the vertices which are closer to v_{i} than to all the other vertices in $v_{0} v_{1} \ldots v_{d}$, where $i=$ $0,1, \ldots, d$. Note that T_{0} contains only v_{0} and no edge, and T_{d} contains only v_{d} and no edge. For $i=1,2, \ldots, d-1, T_{i}$ is the component of F containing v_{i}, where $V(F)=V(T)$ and $E(F)=$ $E(T) \backslash\left\{v_{i-1} v_{i}, v_{i} v_{i+1}\right\}$.

For integers n, k, γ_{k} such that $k \geq 1, \gamma_{k} \geq 3$ and $n \geq(k+1) \gamma_{k}$, let $T_{n}\left(k, \gamma_{k}\right)$ be a tree containing a vertex of degree $n-k \gamma_{k}$ which is attached to one path of length $k, \gamma_{k}-1$ paths of length $k+1$ and $n-(k+1) \gamma_{k}$ paths of length 1 . The tree $T_{n}\left(k, \gamma_{k}\right)$ has one vertex of degree $n-k \gamma_{k}, k \gamma_{k}-1$ vertices of degree 2 and $n-k \gamma_{k}$ vertices of degree 1 , thus

$$
R_{a}\left(T_{n}\left(k, \gamma_{k}\right)\right)=\left(n-k \gamma_{k}\right)^{a}+\left(k \gamma_{k}-1\right) 2^{a}+n-k \gamma_{k} .
$$

We show that $T_{n}\left(k, \gamma_{k}\right)$ is the tree with the maximum R_{a} index for $a<0$ and $a>1$ (the minimum R_{a} index for $0<a<1$) among trees of order n and distance k-domination number $\gamma_{k} \geq 3$. First, we study the case $\gamma_{k}=3$.

Theorem 3.3. Let T be any tree with n vertices and distance k-domination number 3 , where $k \geq 1$. For $a<0$ and $a>1$, we have $n \geq 3(k+1)$ and

$$
R_{a}(T) \leq(n-3 k)^{a}+(3 k-1) 2^{a}+n-3 k
$$

with equality if and only if T is $T_{n}(k, 3)$.

Proof. Let T^{\prime} be a tree with the maximum R_{a} index among trees of order n and distance k domination number 3.

Let $v_{0} v_{1} \ldots v_{d}$ be a diametral path of T^{\prime}. Note that $d \geq 2 k+2$, otherwise T^{\prime} can be dominated by its one or two central vertices. We can include the vertices v_{k} and v_{d-k} in a distance k-dominating set D of T^{\prime} having cardinality $\gamma_{k}\left(T^{\prime}\right)=3$, where no vertex of $\bigcup_{j=0}^{k} V\left(T_{j}^{\prime}\right) \backslash\left\{v_{k}\right\}$ and no vertex of $\bigcup_{j=d-k}^{d} V\left(T_{j}^{\prime}\right) \backslash\left\{v_{d-k}\right\}$ is in D, since v_{k} dominates all the vertices in $\bigcup_{j=0}^{k} V\left(T_{j}^{\prime}\right)$ and v_{d-k} dominates all the vertices in $\bigcup_{j=d-k}^{d} V\left(T_{j}^{\prime}\right)$.

First, we solve Theorem 3.3 for $n \leq 3(k+1)$. Since both $\bigcup_{j=0}^{k} V\left(T_{j}^{\prime}\right)$ and $\bigcup_{j=d-k}^{d} V\left(T_{j}^{\prime}\right)$ contain at least $k+1$ vertices, $\bigcup_{j=k+1}^{d-k-1} V\left(T_{j}^{\prime}\right)$ contains at most $k+1$ vertices. It is easy to check that the only tree satisfying this condition not dominated by 2 vertices v_{k} and v_{d-k} is $T_{3(k+1)}(k, 3)$ which is the tree of order $3(k+1)$ and diameter $2 k+2$, where T_{k+1}^{\prime} is the path of length k. Hence, $n \geq 3(k+1)$ and the result holds for $n=3(k+1)$.

For $n>3(k+1)$, we prove Theorem 3.3 by induction on n. Assume that $n>3(k+1)$ and the result holds for $n-1$.

Claim 1: $A_{T^{\prime}} \neq \emptyset$.
Suppose to the contrary that $A_{T^{\prime}}=\emptyset$. Then $\gamma_{k}\left(T^{\prime}-u\right)=\gamma_{k}\left(T^{\prime}\right)-1$ for every pendant vertex u of T^{\prime}. We have $d_{T^{\prime}}\left(v_{i}\right)=2$ for each $i \in\{1,2, \ldots, k\} \cup\{d-k, d-k+1, \ldots, d-1\}$, otherwise if $d_{T^{\prime}}\left(v_{i}\right) \geq 3$ for some $i \in\{1,2, \ldots, k\} \cup\{d-k, d-k+1, \ldots, d-1\}$, then $V\left(T_{i}^{\prime}\right)$ contains a pendant vertex, say w, such that $\gamma_{k}\left(T^{\prime}-w\right)=\gamma_{k}\left(T^{\prime}\right)$, since all the vertices in D are necessary also for the tree $T^{\prime}-w$.

Note that $\gamma_{k}\left(T^{\prime}-v_{0}\right)=\gamma_{k}\left(T^{\prime}\right)-1$. This means that v_{k} is in D only because of v_{0}. We can include the vertices v_{k+1} and v_{d-k} in a distance k-dominating set D^{\prime} of $T^{\prime}-v_{0}$ having cardinality $\gamma_{k}\left(T^{\prime}\right)-1$, where no vertex of $\bigcup_{j=1}^{k} V\left(T_{j}^{\prime}\right)$ and no vertex of $\bigcup_{j=d-k}^{d} V\left(T_{j}^{\prime}\right) \backslash\left\{v_{d-k}\right\}$ is in D^{\prime}. It follows that $D^{\prime} \cup\left\{v_{k}\right\}$ is a distance k-dominating set of T^{\prime}, therefore we can include v_{k+1} in D. Similarly, we can show that we can include v_{d-k-1} in D.

It follows that $d=2 k+2$, otherwise if $d>2 k+2$, then $k+1<d-k-1$ and $v_{k+1} \neq v_{d-k+1}$, which means that $\gamma_{k}\left(T^{\prime}\right) \geq 4$. So $D=\left\{v_{k}, v_{k+1}, v_{d-k}\right\}$. We have $d_{T^{\prime}}\left(v_{k+1}\right) \geq 3$, otherwise if $d_{T^{\prime}}\left(v_{k+1}\right)=2$, then T^{\prime} is the path $v_{0} v_{1} \ldots v_{2 k+2}$, which has distance k-domination number 2 .

Moreover, the tree T_{k+1}^{\prime} contains one pendant vertex, otherwise if T_{k+1}^{\prime} contains (at least) two pendant vertices, say u_{1} and u_{2}, such that $\gamma_{k}\left(T^{\prime}-u_{i}\right)=\gamma_{k}\left(T^{\prime}\right)-1$ for $i=1,2$, then $d_{T^{\prime}}\left(u_{i}, v_{k+1}\right)=$ k for $i=1,2$, which implies that the vertices v_{0}, v_{d}, u_{2} cannot be dominated by two vertices in $T^{\prime}-u_{1}$. So, T_{k+1}^{\prime} is a path of length at most k, which gives $n \leq 3(k+1)$, which is a contradiction. Hence, Claim 1 is proved.

Since $A_{T^{\prime}} \neq \emptyset$, we obtain $N_{T^{\prime}}\left(A_{T^{\prime}}\right) \neq \emptyset$. Therefore, by Lemma 2.2, we have $\left|N_{T^{\prime}}\left(A_{T^{\prime}}\right)\right|=1$. Let v be the vertex in $N_{T^{\prime}}\left(A_{T^{\prime}}\right)$ and let $u \in A_{T^{\prime}}$. So $\gamma_{k}\left(T^{\prime}-u\right)=\gamma_{k}\left(T^{\prime}\right)=3$.

Then by (1), we get $d_{T^{\prime}}(v) \leq n-3 k$. Thus by Lemma 2.1, for $a<0$ and $a>1$, we obtain

$$
d_{T^{\prime}}^{a}(v)-\left(d_{T^{\prime}}(v)-1\right)^{a} \leq(n-3 k)^{a}-(n-3 k-1)^{a} .
$$

The equality holds if and only if $d_{T^{\prime}}(v)=n-3 k$. Note that

$$
R_{a}\left(T^{\prime}\right)-R_{a}\left(T^{\prime}-u\right)=d_{T^{\prime}}^{a}(v)-\left(d_{T^{\prime}}(v)-1\right)^{a}+d_{T^{\prime}}^{a}(u) .
$$

By the induction hypothesis,

$$
R_{a}\left(T^{\prime}-u\right) \leq(n-3 k-1)^{a}+(3 k-1) 2^{a}+n-3 k-1
$$

with equality if and only if $T^{\prime}-u$ is $T_{n-1}(k, 3)$. Thus

$$
\begin{aligned}
R_{a}\left(T^{\prime}\right) & =R_{a}\left(T^{\prime}-u\right)+d_{T^{\prime}}^{a}(v)-\left(d_{T^{\prime}}(v)-1\right)^{a}+d_{T^{\prime}}^{a}(u) \\
& \leq(n-3 k-1)^{a}+(3 k-1) 2^{a}+n-3 k-1+(n-3 k)^{a}-(n-3 k-1)^{a}+1 \\
& =(n-3 k)^{a}+(3 k-1) 2^{a}+n-3 k
\end{aligned}
$$

with equality if and only if $T^{\prime}-u$ is $T_{n-1}(k, 3)$ and $d_{T^{\prime}}(v)=n-3 k$. Hence, T^{\prime} is $T_{n}(k, 3)$.
Theorem 3.4. Let T be any tree with n vertices and distance k-domination number 3 , where $k \geq 1$. For $0<a<1$, we have $n \geq 3(k+1)$ and

$$
R_{a}(T) \geq(n-3 k)^{a}+(3 k-1) 2^{a}+n-3 k
$$

with equality if and only if T is $T_{n}(k, 3)$.
Proof. We present the parts of the proof of Theorem 3.4 which are different from the proof of Theorem 3.3.

Let T^{\prime} be a tree with the minimum R_{a} index among trees of order n and distance k-domination number 3. By Lemma 2.1,

$$
d_{T^{\prime}}^{a}(v)-\left(d_{T^{\prime}}(v)-1\right)^{a} \geq(n-3 k)^{a}-(n-3 k-1)^{a}
$$

for $0<a<1$. By the induction hypothesis,

$$
R_{a}\left(T^{\prime}-u\right) \geq(n-3 k-1)^{a}+(3 k-1) 2^{a}+n-3 k-1
$$

Therefore,

$$
\begin{aligned}
R_{a}\left(T^{\prime}\right) & =R_{a}\left(T^{\prime}-u\right)+d_{T^{\prime}}^{a}(v)-\left(d_{T^{\prime}}(v)-1\right)^{a}+d_{T^{\prime}}^{a}(u) \\
& \geq(n-3 k-1)^{a}+(3 k-1) 2^{a}+n-3 k-1+(n-3 k)^{a}-(n-3 k-1)^{a}+1 \\
& =(n-3 k)^{a}+(3 k-1) 2^{a}+n-3 k .
\end{aligned}
$$

In Theorems 3.5 and 3.6, we obtain bounds on the R_{a} index for trees of given order and distance k-domination number $\gamma_{k} \geq 3$.

Theorem 3.5. Let T be any tree with n vertices and distance k-domination number $\gamma_{k} \geq 3$, where $k \geq 1$. For $a<0$ and $a>1$, we have $n \geq \gamma_{k}(k+1)$ and

$$
R_{a}(T) \leq\left(n-k \gamma_{k}\right)^{a}+\left(k \gamma_{k}-1\right) 2^{a}+n-k \gamma_{k}
$$

with equality if and only if T is $T_{n}\left(k, \gamma_{k}\right)$.

Proof. Let T^{\prime} be a tree with the maximum R_{a} index among trees with n vertices and distance k domination number $\gamma_{k}\left(T^{\prime}\right) \geq 3$. Let $v_{0} v_{1} \ldots v_{d}$ be a diametral path of T^{\prime}. Note that $d \geq 2 k+2$, otherwise T^{\prime} can be dominated by its one or two central vertices. We can include the vertices v_{k} and v_{d-k} in a distance k-dominating set D of T^{\prime} having cardinality $\gamma_{k}\left(T^{\prime}\right)$, where no vertex of $\bigcup_{j=0}^{k} V\left(T_{j}^{\prime}\right) \backslash\left\{v_{k}\right\}$ and no vertex of $\bigcup_{j=d-k}^{d} V\left(T_{j}^{\prime}\right) \backslash\left\{v_{d-k}\right\}$ is in D, since v_{k} dominates all the vertices in $\bigcup_{j=0}^{k} V\left(T_{j}^{\prime}\right)$ and v_{d-k} dominates all the vertices in $\bigcup_{j=d-k}^{d} V\left(T_{j}^{\prime}\right)$.

By Lemma 2.2, we have $\left|N_{T^{\prime}}\left(A_{T^{\prime}}\right)\right| \leq 1$. Therefore, if $N_{T^{\prime}}\left(A_{T^{\prime}}\right) \neq \emptyset$, then the vertex of $N_{T^{\prime}}\left(A_{T^{\prime}}\right)$ is not in the set $\bigcup_{j=0}^{k} V\left(T_{j}^{\prime}\right)$ or it is not in the set $\bigcup_{j=d-k}^{d} V\left(T_{j}^{\prime}\right)$. Without loss of generality, assume that $\bigcup_{j=0}^{k} V\left(T_{j}^{\prime}\right) \cap N_{T^{\prime}}\left(A_{T^{\prime}}\right)=\emptyset$. Obviously, this holds also if $N_{T^{\prime}}\left(A_{T^{\prime}}\right)=\emptyset$. Since the set $A_{T^{\prime}}$ can contain only pendant vertices, it follows that $\bigcup_{j=0}^{k} V\left(T_{j}^{\prime}\right) \cap A_{T^{\prime}}=\emptyset$.

So $v_{0} \notin A_{T^{\prime}}$ and thus $\gamma_{k}\left(T^{\prime}-v_{0}\right)=\gamma_{k}\left(T^{\prime}\right)-1$. This means that v_{k} is in D only because of v_{0}. We can include the vertices v_{k+1} and v_{d-k} in a distance k-dominating set D^{\prime} of $T^{\prime}-v_{0}$ having cardinality $\gamma_{k}\left(T^{\prime}\right)-1$, where no vertex of $\bigcup_{j=1}^{k} V\left(T_{j}^{\prime}\right)$ and no vertex of $\bigcup_{j=d-k}^{d} V\left(T_{j}^{\prime}\right) \backslash\left\{v_{d-k}\right\}$ is in D^{\prime}. It follows that $D^{\prime} \cup\left\{v_{k}\right\}$ is a distance k-dominating set of T^{\prime}, therefore we can include v_{k+1} in D. Thus, we have $\left\{v_{k}, v_{k+1}, v_{d-k}\right\} \subset D$.

For $i=1,2, \ldots, k$, we have $d_{T^{\prime}}\left(v_{i}\right)=2$, otherwise if $d_{T^{\prime}}\left(v_{i}\right) \geq 3$, then T_{i}^{\prime} contains a pendant vertex, say u, such that $u \notin A_{T^{\prime}}$, which means that $\gamma_{k}\left(T^{\prime}-u\right)=\gamma_{k}\left(T^{\prime}\right)-1$ and that is not possible, since all the vertices in D are needed also for $T^{\prime}-u$.

Let T_{0} be the tree obtained from T^{\prime} by the removal of the vertices $v_{0}, v_{1}, \ldots, v_{k}$ (which means that the edges $v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{k} v_{k+1}$ are also removed). Since the only vertex dominated only by v_{k} in T^{\prime} is v_{0}, the set $D \backslash\left\{v_{k}\right\}$ is a distance k-dominating set of T_{0}. Thus $\gamma_{k}\left(T_{0}\right) \leq \gamma_{k}\left(T^{\prime}\right)-1$. Note that the purpose of the vertices of $D \backslash\left\{v_{k}\right\}$ in T^{\prime} is to dominate the vertices in T_{0}, since $v_{0}, v_{1}, \ldots, v_{k}$ are dominated by v_{k} in T^{\prime}. Therefore, $\gamma_{k}\left(T^{\prime}\right)-1$ vertices are necessary also for a minimum distance k-dominating set of T_{0}. Thus $\gamma_{k}\left(T_{0}\right)=\gamma_{k}\left(T^{\prime}\right)-1$.

Using this equality, we prove Theorem 3.5 by induction on $\gamma_{k}\left(T^{\prime}\right)=\gamma_{k}$. Theorem 3.5 holds for $\gamma_{k}=3$ by Theorem 3.3. Assume that $\gamma_{k} \geq 4$ and Theorem 3.5 holds for $\gamma_{k}-1$.

The tree T_{0} has order $n\left(T_{0}\right)=n-k-1$ and $\gamma_{k}\left(T_{0}\right)=\gamma_{k}-1$. Note that $n-k-1=\left|V\left(T_{0}\right)\right| \geq$ $\gamma_{k}\left(T_{0}\right)(k+1)=\left(\gamma_{k}-1\right)(k+1)$ is equivalent to $n \geq \gamma_{k}(k+1)$. By the induction hypothesis, Theorem 3.5 holds for T_{0}, so

$$
R_{a}\left(T_{0}\right) \leq\left(n-k-1-k\left(\gamma_{k}-1\right)\right)^{a}+\left(k\left(\gamma_{k}-1\right)-1\right) 2^{a}+n-k-1-k\left(\gamma_{k}-1\right)
$$

with equality if and only if T_{0} is $T_{n-k-1}\left(k, \gamma_{k}-1\right)$.
By (1), every vertex of T^{\prime} has degree at most $n-k \gamma_{k}$. so $d_{T^{\prime}}\left(v_{k+1}\right) \leq n-k \gamma_{k}$. Thus by Lemma 2.1, for $a<0$ and $a>1$, we obtain

$$
d_{T^{\prime}}^{a}\left(v_{k+1}\right)-\left(d_{T^{\prime}}\left(v_{k+1}\right)-1\right)^{a} \leq\left(n-k \gamma_{k}\right)^{a}-\left(n-k \gamma_{k}-1\right)^{a} .
$$

The equality holds if and only if $d_{T^{\prime}}^{a}\left(v_{k+1}\right)=n-k \gamma_{k}$. Note that

$$
R_{a}\left(T^{\prime}\right)-R_{a}\left(T_{0}\right)=\sum_{i=0}^{k} d_{T^{\prime}}^{a}\left(v_{i}\right)+d_{T^{\prime}}^{a}\left(v_{k+1}\right)-\left(d_{T^{\prime}}\left(v_{k+1}\right)-1\right)^{a} .
$$

Thus

$$
\begin{aligned}
R_{a}\left(T^{\prime}\right)= & R_{a}\left(T_{0}\right)+\sum_{i=0}^{k} d_{T^{\prime}}^{a}\left(v_{i}\right)+d_{T^{\prime}}^{a}\left(v_{k+1}\right)-\left(d_{T^{\prime}}\left(v_{k+1}\right)-1\right)^{a} \\
\leq & \left(n-k-1-k\left(\gamma_{k}-1\right)\right)^{a}+\left(k\left(\gamma_{k}-1\right)-1\right) 2^{a}+n-k-1-k\left(\gamma_{k}-1\right) \\
& +k 2^{a}+1+\left(n-k \gamma_{k}\right)^{a}-\left(n-k \gamma_{k}-1\right)^{a} \\
= & \left(n-k \gamma_{k}\right)^{a}+\left(k \gamma_{k}-1\right) 2^{a}+n-k \gamma_{k},
\end{aligned}
$$

with equality if and only if T_{0} is $T_{n-k-1}\left(k, \gamma_{k}-1\right)$ and $d_{T^{\prime}}\left(v_{k+1}\right)=n-k \gamma_{k}$, which implies that T^{\prime} is $T_{n}\left(k, \gamma_{k}\right)$.

Theorem 3.6. Let T be any tree with n vertices and distance k-domination number $\gamma_{k} \geq 3$, where $k \geq 1$. For $0<a<1$, we have $n \geq \gamma_{k}(k+1)$ and

$$
R_{a}(T) \geq\left(n-k \gamma_{k}\right)^{a}+\left(k \gamma_{k}-1\right) 2^{a}+n-k \gamma_{k}
$$

with equality if and only if T is $T_{n}\left(k, \gamma_{k}\right)$.
Proof. We present the parts of the proof of Theorem 3.6 which are different from the proof of Theorem 3.5.

Let T^{\prime} be a tree with the minimum R_{a} index among trees with n vertices and distance k domination number $\gamma_{k}\left(T^{\prime}\right) \geq 3$.

By the induction hypothesis,

$$
R_{a}\left(T_{0}\right) \geq\left(n-k-1-k\left(\gamma_{k}-1\right)\right)^{a}+\left(k\left(\gamma_{k}-1\right)-1\right) 2^{a}+n-k-1-k\left(\gamma_{k}-1\right) .
$$

By Lemma 2.1, for $0<a<1$,

$$
d_{T^{\prime}}^{a}\left(v_{k+1}\right)-\left(d_{T^{\prime}}\left(v_{k+1}\right)-1\right)^{a} \geq\left(n-k \gamma_{k}\right)^{a}-\left(n-k \gamma_{k}-1\right)^{a} .
$$

Therefore

$$
\begin{aligned}
R_{a}\left(T^{\prime}\right)= & R_{a}\left(T_{0}\right)+\sum_{i=0}^{k} d_{T^{\prime}}^{a}\left(v_{i}\right)+d_{T^{\prime}}^{a}\left(v_{k+1}\right)-\left(d_{T^{\prime}}\left(v_{k+1}\right)-1\right)^{a} \\
\geq & \left(n-k-1-k\left(\gamma_{k}-1\right)\right)^{a}+\left(k\left(\gamma_{k}-1\right)-1\right) 2^{a}+n-k-1-k\left(\gamma_{k}-1\right) \\
& +k 2^{a}+1+\left(n-k \gamma_{k}\right)^{a}-\left(n-k \gamma_{k}-1\right)^{a} \\
= & \left(n-k \gamma_{k}\right)^{a}+\left(k \gamma_{k}-1\right) 2^{a}+n-k \gamma_{k} .
\end{aligned}
$$

4. Conclusion

We presented bounds on the zeroth-order general Randić index for trees of given order and distance k-domination number $\gamma_{k} \geq 2$, where $k \geq 1$. Lower bounds were given for $0<a<1$ and upper bounds were given for $a<0$ and $a>1$. All the extremal graphs were also presented.

Let us note that the problem is easy if $\gamma_{k}=1$. From [7] it follows that the star S_{n} is the tree having the maximum R_{a} index for $a<0$ and $a>1$ (the minimum R_{a} index for $0<a<1$) among trees of order n. Obviously, S_{n} has distance k-domination number 1. Therefore, if T is a tree with n vertices and distance k-domination number 1 , then

$$
R_{a}(T) \leq(n-1)^{a}+(n-1)
$$

for $a<0$ and $a>1$, and

$$
R_{a}(T) \geq(n-1)^{a}+(n-1)
$$

for $0<a<1$, with equalities if and only if T is S_{n}.

Acknowledgement

The work of T. Vetrík is based on the research supported by the National Research Foundation of South Africa (Grant Number 129252).

References

[1] H. Ahmed, A.A. Bhatti, and A. Ali, Zeroth-order general Randić index of cactus graphs, AKCE Int. J. Graphs Comb. 16 (2019), 182-189.
https://www.sciencedirect.com/science/article/pii/S0972860017300774
[2] A. Ali, M. Matejić, E. Milovanović, and I. Milovanović, Some new upper bounds for the inverse sum indeg index of graphs, Electron. J. Graph Theory Appl. 8 (1) (2020), 59-70. https://www.ejgta.org/index.php/ejgta/article/view/618
[3] S. Chen and H. Deng, Extremal $(n, n+1)$-graphs with respected to zeroth-order general Randić index, J. Math. Chem. 42 (2007), 555-564. https://link.springer.com/article/10.1007/s10910-006-9131-8
[4] H. Deng, S. Balachandran, S. Elumalai, and T. Mansour, Harary index of bipartite graphs, Electron. J. Graph Theory Appl. 7 (2) (2019), 365-372.
https://www.ejgta.org/index.php/ejgta/article/view/710
[5] M.K. Jamil, I. Tomescu, M. Imran and A. Javed, Some bounds on zeroth-order general Randić index, Mathematics 8 (2020), 1-12. https://www.mdpi.com/2227-7390/8/1/98
[6] S. Khalid and A. Ali, On the zeroth-order general Randić index, variable sum exdeg index and trees having vertices with prescribed degree, Discrete Math. Algorithms Appl. 10 (2018), 1850015.
https://www.worldscientific.com/doi/10.1142/S1793830918500155
[7] X. Li and H. Zhao, Trees with first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004), 57-62.
http://match.pmf.kg.ac.rs/electronic_versions/Match50/match50_57-62.pdf
[8] P. Milošević, I. Milovanović, E. Milovanović, and M. Matejić, Some inequalities for general zeroth-order Randić index, Filomat 33 (2019), 5249-5258.
https://www.pmf.ni.ac.rs/filomat-content/2019/33-16/33-16-19-10987.pdf
[9] L. Pei and X. Pan, Extremal values on Zagreb indices of trees with given distance k domination number, J. Inequal. Appl. 16 (2018), 1-17.
https://link.springer.com/article/10.1186/s13660-017-1597-3
[10] I. Tomescu, On the general sum-connectivity index of connected graphs with given order and girth, Electron. J. Graph Theory Appl. 4 (1) (2016), 1-7.
https://ejgta.org/index.php/ejgta/article/view/173/0
[11] I. Tomescu and M.K. Jamil, Maximum general sum-connectivity index for trees with given independence number, MATCH Commun. Math. Comput. Chem. 72 (2014), 715-722. http://match.pmf.kg.ac.rs/electronic_versions/Match72/n3/match72n3_715-722.pdf
[12] T. Vetrík and B. Balachandran, Zeroth-order general Randć Index of trees, Bol. Soc. Parana. Mat. 40 (2022), published online.
https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/45062
[13] T. Vetrík and M. Masre, General eccentric connectivity index of trees and unicyclic graphs, Discrete Appl. Math., 284 (2020), 301-315.
https://www.sciencedirect.com/science/article/abs/pii/S0166218X20301505
[14] S. Yamaguchi, Zeroth-order general Randi index of trees with given order and distance conditions, MATCH Commun. Math. Comput. Chem. 62 (2009), 171-175.
http://match.pmf.kg.ac.rs/electronic_versions/Match62/n1/match62n1_171-175.pdf

[^0]: Received: 12 May 2020, Revised: 14 March 2022, Accepted: 19 March 2022.

