Electronic Journal of Graph Theory and Applications

Total vertex irregularity strength for trees with many vertices of degree two

Rinovia Simanjuntak ${ }^{\text {a }}$, Susilawati $^{\text {b }}$, Edy Tri Baskoro ${ }^{\text {a }}$
${ }^{a}$ Combinatorial Research Group, Faculty of Mathematics and Natural Sciences,
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung, Indonesia
${ }^{b}$ Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Riau,
Kampus Bina Widya KM. 12,5, Pekanbaru, Indonesia

rino@math.itb.ac.id, susilawati_nurdin@yahoo.com, ebaskoro@math.itb.ac.id

Abstract

For a simple graph $G=(V, E)$, a mapping $\phi: V \cup E \rightarrow\{1,2, \ldots, k\}$ is defined as a vertex irregular total k-labeling of G if for every two different vertices x and $y, w t(x) \neq w t(y)$, where $w t(x)=\phi(x)+\sum_{x y \in E(G)} \phi(x y)$. The minimum k for which the graph G has a vertex irregular total k labeling is called the total vertex irregularity strength of G. In this paper, we provide three possible values of total vertex irregularity strength for trees with many vertices of degree two. For each of the possible values, sufficient conditions for trees with corresponding total vertex irregularity strength are presented.

Keywords: irregularity strength, total vertex irregularity strength, tree, degree
Mathematics Subject Classification : 05C78, 05C05
DOI: 10.5614/ejgta.2020.8.2.17

1. Introduction

The concept of total vertex irregularity strength of graphs was first introduced by Baca et.al [2] in 2007. They defined a mapping $\phi: V \cup E \rightarrow\{1,2,3, \ldots, k\}$ to be a vertex irregular total k-labeling of G if for every two different vertices x and y, wt $(x) \neq w t(y)$, where $w t(x)=\phi(x)+\sum_{x y \in E(G)} \phi(x y)$. The minimum k for which the graph G has a vertex irregular
total k-labeling is called the total vertex irregularity strength of G, denoted by $t v s(G)$. Baca et.al determined the total vertex irregularity strength of some well-known classes of graphs, i.e. paths, cycles, and stars. Other authors (for instance, [1], [3]) determined the total vertex irregularity strength of some other classes of graphs, however results are still limited.

In the original paper of Baca et.al [2], it was proved that for a tree T with m pendant vertices and no vertex of degree $2,\left\lceil\frac{m+1}{2}\right\rceil \leq t v s(T) \leq m$. In 2010, Nurdin et.al [4] settled the total vertex irregularity strength for a tree T with m pendant vertices and no vertices of degree 2 , i.e. $\operatorname{tvs}(T)=\left\lceil\frac{m+1}{2}\right\rceil$. They also improved the lower bound of Baca et.al as in the following.

Theorem 1.1. [4] Let T be any tree having n_{i} vertices of degree $i(i=1,2, \ldots, \Delta)$, where Δ is the maximum degree in T. Then

$$
\operatorname{tvs}(T) \geq \max \left\{\left\lceil\frac{1+n_{1}}{2}\right\rceil,\left\lceil\frac{1+n_{1}+n_{2}}{3}\right\rceil, \ldots,\left\lceil\frac{1+n_{1}+n_{2}+\cdots+n_{\Delta}}{\Delta+1}\right\rceil\right\}
$$

The lower bound in Theorem 1.1 remains the most general bound known for trees. However, it was conjectured that the total vertex irregularity strength of a tree is only determined by the number of vertices of degrees at most 3 .

Conjecture 1.1. [4] Let T be a tree with maximum degree Δ. Let n_{i} be the number of vertices of degree $i(i=1,2, \ldots, \Delta)$ and $t_{i}=\left\lceil\frac{1+\sum_{k=1}^{i} n_{k}}{(i+1)}\right\rceil(i=1,2, \ldots, \Delta)$. Then

$$
\operatorname{tvs}(T)=\max \left\{t_{1}, t_{2}, t_{3}\right\} .
$$

To date, the conjecture has been confirmed for some types of trees, i.e. paths and stars, trees with maximum degree up to $5[4,6,7]$ and subdivision of some classes of trees [5, 8].

In this paper, our aim is to determine the total vertex irregularity strength of trees with many vertices of degree 2 which include subdivision of trees. This result could somewhat be viewed as generalization of our result in [8], where we presented sufficient conditions for subdivision of trees to admit total vertex irregularity strength of t_{2}.

Throughout the paper, we consider T as a tree with maximum degree Δ. We denote by n_{i} the number of vertices of degree $i(i=1,2, \ldots, \Delta)$ and $t_{i}=\left\lceil\frac{1+\sum_{k=1}^{i} n_{k}}{(i+1)}\right\rceil(i=1,2, \ldots, \Delta)$.

2. Basic Properties of Trees

In this section, we shall provide properties of trees, in term on n_{1}, n_{2}, and n_{3}, having t_{1}, t_{2} or t_{3} as the maximum among all $t_{i} \mathrm{~s}$. We start by quoting a useful property proved in [2].

Lemma 2.1. [2]

$$
n_{1}=2+\sum_{i \geq 2}(i-2) n_{i}
$$

Lemma 2.2. If $n_{1} \geq 2 n_{2}-1$ and $n_{2}=n_{3}$ then $t_{1} \geq \max \left\{t_{1}, t_{2}, \ldots, t_{\Delta}\right\}$.
Proof. Utilising Lemma 2.1 in the definition of t_{i}, we have $t_{i}=\left\lceil\frac{3+\sum_{k=2}^{i}(k-1) n_{k}+\sum_{j=i+1}^{\Delta}(j-2) n_{j}}{(i+1)}\right\rceil$.
Consider $t_{1}-t_{2}=\left\lceil\frac{1+n_{1}}{2}\right\rceil-\left\lceil\frac{1+n_{1}+n_{2}}{3}\right\rceil=\left\lceil\frac{\left(2 n_{1}+2 n_{2}+2\right)+\left(n_{1}+1-2 n_{2}\right)}{6}\right\rceil-\left\lceil\frac{2+2 n_{1}+2 n_{2}}{6}\right\rceil$. Since $n_{1} \geq 2 n_{2}-1$, we have $n_{1}+1-2 n_{2} \geq 0$ and thus $t_{1} \geq t_{2}$.

On the other hand,

$$
\begin{aligned}
t_{1}-t_{3} & =\left\lceil\frac{1+n_{1}}{2}\right\rceil-\left\lceil\frac{1+n_{1}+n_{2}+n_{3}}{4}\right\rceil \\
& =\left\lceil\frac{\left(2+2 n_{1}+2 n_{2}+2 n_{3}\right)+\left(2 n_{1}+2-2 n_{3}-2 n_{2}\right)}{8}\right\rceil-\left\lceil\frac{2+2 n_{1}+2 n_{2}+2 n_{3}}{8}\right\rceil .
\end{aligned}
$$

Since $n_{1} \geq 2 n_{2}-1$ and $n_{2}=n_{3}$ then $2 n_{1}+2-2 n_{3}-2 n_{2} \geq 0$, which yields $t_{1} \geq t_{3}$.
For $i \geq 4$,

$$
\begin{aligned}
t_{1}-t_{i} & =\left\lceil\frac{1+n_{1}}{2}\right\rceil-\left\lceil\frac{3+\sum_{k=2}^{i}(k-1) n_{k}+\sum_{j=i+1}^{\Delta}(j-2) n_{j}}{i+1}\right\rceil \\
& \geq\left\lceil\frac{5+5 n_{1}}{2(i+1)}\right\rceil-\left\lceil\frac{6+2 n_{2}+4 n_{3}+6 n_{4}+2 \sum_{j=5}^{\Delta}(j-2) n_{j}}{2(i+1)}\right\rceil .
\end{aligned}
$$

Since $n_{1} \geq 2 n_{2}-1$ and $n_{2}=n_{3}, 9+n_{3}+4 n_{4}+3 \sum_{i=5}^{\Delta}(i-2) n_{i}-2 n_{2} \geq 6+2 n_{4}+2 \sum_{i=5}^{\Delta}(i-2)>0$, which leads to $t_{1}-t_{i} \geq 0$.

Using similar proof of Lemma 2.2, we could prove the following lemmas.
Lemma 2.3. If $n_{2} \geq \frac{1}{2}\left(n_{1}+1\right)$ and $n_{1} \geq 2 n_{3}-1$ then $t_{2} \geq \max \left\{t_{1}, t_{2}, \ldots, t_{\Delta}\right\}$.
Lemma 2.4. If $n_{2}=n_{1}$ and $n_{3} \geq \frac{1}{3}\left(2 n_{2}+1\right)$ then $t_{3} \geq \max \left\{t_{1}, t_{2}, \ldots, t_{\Delta}\right\}$.

3. Trees with Many Vertices of Degree 2

In this section, we provide sufficient conditions, in term on n_{1}, n_{2}, and n_{3}, for a tree T with many vertices of degree 2 admitting $\operatorname{tvs}(T)=t_{1}, t_{2}$ or t_{3}.

We start by defining several notions that will be frequently utilized in our labeling algorithms. Let v be a vertex of T. A branch of T at v is defined as maximal subtree of T containing v as an end point. That is, a branch of T at v is the subgraph induced by v and one of the components of $T-v$. If the degree of v is k, then v has k different branches. A branch of T at v which isomorphic to a path will be called a branch path at v, provided that the degree of v is at least 3. The vertex v, in this case, will be called a stem of the branch path at v. We define an interior path in T as a path whose both of end vertices are stem vertices. A vertex of degree one in T is called a pendant vertex. A vertex incident to a pendant vertex in T is called an exterior vertex. The vertices other than exterior and pendant vertices are called interior vertices. An edge incident with a pendant vertex is called a pendant edge. We denote by $E^{p}(v)$ the set of pendant edges incident to an exterior vertex v.

Total vertex irregularity strength for trees with many vertices of degree two $\quad \mid \quad$ R. Simanjuntak, et al.

Theorem 3.1. If $n_{1} \geq 2 n_{2}-1$ and $n_{2}=n_{3}>0$ then $\operatorname{tvs}(T)=t_{1}$.
Proof. By Lemma 2.2 and Theorema 1.1, $\operatorname{tvs}(T) \geq t_{1}$. We define a total labeling $\alpha: V(G) \cup$ $E(G) \rightarrow\left\{1,2, \ldots, t_{1}\right\}$ according to the following algorithm.

Algorithm 1: Labeling α with tvs t_{1}

1. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be the set of exterior vertices in T such that either $d\left(w_{i}\right) \geq d\left(w_{i+1}\right)$ or $\left|E^{p}\left(w_{i}\right)\right| \geq\left|E^{p}\left(w_{i+1}\right)\right|$.
2. Let $V_{1}=\left\{w_{i j} \mid i=1,2, \ldots, k\right.$ and $\left.j=1,2, \ldots,\left|E^{p}\left(w_{i}\right)\right|\right\}$ be the ordered set of pendant vertices adjacent to all exterior vertices. Label the first t_{1} pendant vertices in V_{1} with 1 and the remaining $\left(n_{1}-t_{1}\right)$ pendant vertices with $2,3, \ldots, n_{1}-t_{1}+1$, respectively.
3. Let $E_{1}=\left\{e_{i j}\left|i=1,2, \ldots, k, j=1,2, \ldots,\left|E^{p}\left(w_{i}\right)\right|\right\}\right.$ be the ordered set of pendant edges incident to $w_{i j}$. Label the first t_{1} pendant edges in E_{1} with $\left\{1,2, \ldots, t_{1}\right\}$ and the remaining edges with t_{1}.
4. Let $y_{1}, y_{2}, \ldots, y_{N}$ be vertices in $V \backslash V_{1}$. For all $y \in V \backslash V_{1}$, define $w t^{\prime}(y)=\alpha(y)+\sum_{y z \in E(T)} \alpha(y z)$, as a temporary weight of a vertex y, where $w t^{\prime}\left(y_{i}\right) \leq w t\left(y_{i+1}\right)$. Label y_{1} with $n_{1}+2-w t^{\prime}\left(y_{1}\right)$. For $2 \leq i \leq N$, label y_{i} with $\max \left\{1, w t\left(y_{i-1}\right)+1-w t^{\prime}\left(y_{i}\right)\right\}$.

We observe that α is a labeling from $V(T) \cup E(T)$ into $\left\{1,2, \ldots, t_{1}\right\}$ where the weights of n_{1} pendant vertices are $2,3, \ldots, n_{1}+1$ and the weights of all remaining vertices are $n_{1}+2=$ $w t\left(y_{1}\right)<w t\left(y_{2}\right)<w t\left(y_{3}\right)<\cdots<w t\left(y_{N}\right)$ where $N=\sum_{i=2}^{\Delta} n_{i}$. Therefore, $\operatorname{tvs}(T) \leq t_{1}$.

Theorem 3.2. If $n_{2} \geq \frac{1}{2}\left(n_{1}+1\right)$ and $n_{1} \geq 2 n_{3}-1$ then $\operatorname{tvs}(T)=t_{2}$.
Proof. By Lemma 2.3 and Theorem 1.1, $\operatorname{tvs}(T) \geq t_{2}$. We show that $t v s(T) \leq t_{2}$ through a total labeling $\beta: V(T) \cup E(T) \rightarrow\left\{1,2, \ldots, t_{2}\right\}$ according to the following algorithm.

Algorithm 2: Labeling β with tvs t_{2}

1. If T has more interior paths than branch paths then
(a) Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be the set of stem vertices where $d\left(w_{i}\right) \geq d\left(w_{i+1}\right)$.
(b) Let $V_{1}=\left\{w_{i j} \mid i=1,2, \ldots, k, j=1,2, \ldots, j_{i}\right\}$ be the set of all pendant vertices $w_{i j}$ in the branch path of w_{i}. Label n_{1} pendant vertices in V_{1} with $\left\lceil\frac{i}{2}\right\rceil$.
(c) Let $E_{1}=\left\{e_{i j}\right\}$ be the set of all pendant edges $e_{i j}$ incident to $w_{i j}$. Label n_{1} pendant edges $e \in E_{1}$ with $\left\lceil\frac{i+1}{2}\right\rceil$.
(d) Label all edges incident to stem vertices with t_{2}.
(e) Let $E_{2}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be the set of edges where both of end vertices of e_{i} are of degree two. Label e_{i} with $\left\lceil\frac{n_{1}+1+i}{3}\right\rceil$.

else

(a) Let $P=\left\{P^{1}, P^{2}, \ldots, P^{k}\right\}$ be the ordered set of branch paths, where $\left|P^{i}\right| \geq\left|P^{i+1}\right|$.
(b) Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be the set of stem vertices where $d\left(w_{i}\right) \geq d\left(w_{i+1}\right)$.
(c) Let $E_{1}=\bigcup_{i=1} E\left(w_{i}\right)$ be an ordered set of all pendant edges in the path P^{i}. Label n_{1} pendant edges in E_{1} with $\left\lceil\frac{i+1}{2}\right\rceil$.
(d) Label n_{1} pendant vertices incident to e_{i} with $\left\lceil\frac{i}{2}\right\rceil$.
(e) Label all edges incident to stem vertices with t_{2}.
(f) Let $E_{2}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be the ordered set of edges in $P^{1} \cup P^{2} \cup \cdots \cup P^{k}$. Label $e_{i} \in E_{2}$ with $\beta\left(e_{i}\right)=\left\lceil\frac{1+n_{1}+i}{3}\right\rceil$.
(g) Let $L=\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}$ be the set of interior paths where $\left|L_{i}\right| \geq\left|L_{i+1}\right|$.
(h) Let $E_{3}=\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ be the ordered set of edges in path $L_{1} \cup L_{2} \cup \cdots \cup L_{k}$. Label $f_{i} \in E_{3}$ with $\left\lceil\frac{n_{1}+1+i}{3}\right\rceil$.
2. Denote all vertices not in V_{1} by $y_{1}, y_{2}, \ldots, y_{N}$ such that $w t^{\prime}\left(y_{1}\right) \leq w t^{\prime}\left(y_{2}\right) \leq \cdots \leq w t^{\prime}\left(y_{N}\right)$, where $w t^{\prime}(y)=\sum_{y z \in E} \beta(y z)$ can be considered as a temporary weight of y. Label y_{1} with $n_{1}+2-s\left(y_{1}\right)$. For $2 \leq i \leq N$, label y_{i} with $\max \left\{1, w t\left(y_{i}+1-s\left(y_{i}\right)\right)\right\}$.

We observe that β is a labeling from $V(T) \cup E(T)$ into $\left\{1,2, \ldots, t_{2}\right\}$, the weight of all pendant vertices form a sequence $1,2,3, \ldots, n_{1}+1$, and the weight of all remaining vertices are $n_{1}+2=$ $w t\left(y_{1}\right)<w t\left(y_{2}\right)<\cdots<w t\left(y_{N}\right)$. Therefore, $\operatorname{tvs}(T) \leq t_{2}$.

Examples of families of trees admitting total vertex irregularity strength of t_{2} are special cases of subdivision of tress that could be found in [8].

Theorem 3.3. If $n_{2}=n_{1}>0$ and $n_{3} \geq \frac{1}{3}\left(2 n_{2}+1\right)$ then $\operatorname{tvs}(T)=t_{3}$.

Total vertex irregularity strength for trees with many vertices of degree two $\quad \mid \quad R$. Simanjuntak, et al.

Proof. By Lemma 2.4 and Theorem 1.1, $\operatorname{tvs}(T) \geq t_{3}$. A total labeling $\gamma: V(T) \cup E(T) \rightarrow$ $\left\{1,2,3, \ldots, t_{3}\right\}$ is defined according to the following algorithm.

Algorithm 3: Labeling γ with tvs t_{3}

1. Let $W=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{k}\right\}$ be the set of all exterior vertices in T such that either $d\left(w_{i}\right) \geq d\left(w_{i+1}\right)$ or $\left|E^{p}\left(w_{i}\right)\right| \geq\left|E^{p}\left(w_{i+1}\right)\right|$.
2. Let $V_{1}=\left\{w_{i j}\left|i=1,2, \ldots, k, j=1,2, \ldots,\left|E^{p}\left(w_{i}\right)\right|\right\}\right.$ be the ordered set of pendant vertices adjacent to w_{i}. Label the first t_{3} pendant vertices in V_{1} with 1 and the remaining pendant vertices with $2,3, \ldots, n_{1}-t_{3}+1$, respectively.
3. Let $E_{1}=\left\{e_{i j}\left|i=1,2, \ldots, k, j=1,2, \ldots,\left|E^{p}\left(w_{i}\right)\right|\right\}\right.$ be the ordered set of pendant edges. Label the first t_{3} pendant edges in E_{1} with $\left\{1,2,3, \ldots, t_{3}\right\}$ and the remaining pendant edges with t_{3}.
4. If T has at least t_{3} interior vertices of degree 2 then
(a) Let $Y=\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$ be the set of exterior and interior vertices where either $w t^{\prime}\left(y_{i}\right) \leq w t\left(y_{i+1}\right)\left(w t^{\prime}(y)=\gamma(y)+\sum_{y z \in E(T)} \gamma(y z)\right.$ is the temporary weight of $\left.y\right)$ or $\operatorname{deg}\left(y_{i}\right) \leq \operatorname{deg}\left(y_{i+1}\right)$. Then $y_{1}, y_{2}, \ldots, y_{n_{2}}$ are the interior vertices of degree 2 where $w t^{\prime}(y)=0$.
(b) for $i=1,2, \ldots, N$ do label y_{i} and all its adjacent edges (almost) evenly such that $w t\left(y_{i}\right)=n_{1}+i+1$ and the labels of edges are at least the label of y_{i}.
(c) Let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ be the set of exterior and interior vertices where $w t^{\prime}(s) \neq 0$ and $w t^{\prime}\left(s_{i}\right) \leq w t^{\prime}\left(s_{i+1}\right)$.
(d) for $i=1,2, \ldots, k$ do label s_{i} and all its adjacent edges (almost) evenly such that $w t\left(s_{i}\right)=n_{1}+1 / 2 n_{2}+i+1$ and the labels of edges are at least the label of s_{i}.
else
(a) Label all edges not in E_{1} with t_{3}.
(b) Let $y_{1}, y_{2}, \ldots, y_{N}$ be the vertices in V / V_{1}. For all $y \in V / V_{1}$, define $w t^{\prime}(y)=\gamma(y)+\sum_{y z \in E(T)} \gamma(y z)$ as the temporary weight y. Label y_{1} with $n_{1}+2-w t^{\prime}\left(y_{1}\right)$. For $2 \leq i \leq N$, label y_{i} with $\max \left\{1, w t\left(y_{i-1}\right)+1-w t^{\prime}\left(y_{i}\right)\right\}$.

We observe that γ is a labeling from $V(T) \cup E(T)$ into $\left\{1,2, \ldots, t_{3}\right\}$ where the weights of n_{1} pendant vertices are $\left\{2,3,4, \ldots, n_{1}+1\right\}$ and the weights of all the remaining vertices are $n_{1}+2=$ $w t\left(y_{1}\right)<w t\left(y_{2}\right)<\cdots<w t\left(y_{N}\right)$. This yields $t_{3} \leq t v s(T)$.

Total vertex irregularity strength for trees with many vertices of degree two $\quad \mid \quad$ R. Simanjuntak, et al.

4. Conclusion

Our results provide sufficient conditions for trees containing many vertices of degree 2 where the total vertex irregularity strength is either t_{1}, t_{2} or t_{3}. These results strengthens the conjecture Nurdin et.al.

Acknowledgement

This research has been supported by Program Riset ITB 2020 funded by Institut Teknologi Bandung, Indonesia.

References

[1] M. Anholcer, M. Kalkowski and J. Przybylo, A new upper bound for the total vertex irregularity strength of graphs, Discrete Math. 309 (2009), 6316-6317.
[2] M. Bac̆a, S. Jendrol, M. Miller, and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007), 1378-1388.
[3] D. Indriati, W.I.E. Wijayanti, K.A. Sugeng, M. Bac̆a and A. Semaničová-Feňovčíková, The total vertex irregularity strength of generalized helm graphs and prism with outer pendant edges, Australas. J. Combin. 65 (1) (2016), 14-26.
[4] Nurdin, E.T. Baskoro, A.N.M. Salman, and N.N. Gaos, On total vertex-irregularity strength of trees, Discrete Math. 310 (2010), 3043-3048.
[5] Susilawati, E.T. Baskoro, and R. Simanjuntak R, Total vertex-irregularity labelings for subdivision of several classes of tree, Procedia Computer Science 74 (2015), 112-117.
[6] Susilawati, E.T. Baskoro, and R. Simanjuntak, Total vertex irregularity strength of tree with maximum degree four, AIP Conf. Proc. 1707 (2016), 1-7.
[7] Susilawati, E.T. Baskoro, and R. Simanjuntak, Total vertex irregularity strength of trees with maximum degree five, Electron. J. Graph Theory Appl. 6 (2) (2018), 250257.
[8] Susilawati, E.T. Baskoro, R. Simanjuntak, and J. Ryan, On the vertex irregular total labeling for subdivision of trees, Australas. J. Combin. 71 (2) (2018), 293-302.

