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Abstract

Let F , G and H be simple graphs. A graph F is said a (G,H)�arrowing graph if in any red-blue
coloring of edges of F we can find a red G or a blue H . The size Ramsey number of G and H ,
r̂(G,H), is the minimum size of F . If the order of F equals to the Ramsey number of G and H ,
r(G,H), then the minimum size of F is called the restricted size Ramsey number of G and H ,
r
⇤(G,H). The Ramsey number of G and H , r(G,H), is the minimum order of F . In this paper,

we study the restricted size number involving a P3. The value of r⇤(P3, Kn) has been given by
Faudree and Sheehan. Here, we examine r

⇤(P3, H) where H is dense connected graph.
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1. Introduction

Let G be a graph with the vertex and edge set V (G) and E(G), respectively. We denote the
order of G by v(G) and and the size of G by e(G). A �(G) (resp. �(G)) denotes the minimum
(resp. maximum) degree of vertices in G. If G is a graph and H is a subgraph of G, then graph
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G�H has V (G�H) = V (G) and E(G�H) = E(G) \E(H). Further terminologies in graphs
can be found in [3].

A graph F is a (G,H)�arrowing graph if in any red-blue coloring of the edges of F we can
find a red G or a blue H . Let F be (G,H)�arrowing graph. The Ramsey number of G and H ,
r(G,H), is the smallest order of F and the size Ramsey number of G and H , r̂(G,H), is the
smallest size of F . The restricted size Ramsey number of G and H , r⇤(G,H) is the smallest size
of a F when its order equals the Ramsey number r(G,H).

The size Ramsey number for a pair of graphs was introduced by Erdős et al. in 1978 [4], while
the restricted size Ramsey number for a pair of graphs is a direct consequence of the concept of
Ramsey and size Ramsey number in graphs. Some previous results on the (restricted) size Ramsey
number of graphs was given in [1, 5] and the previous results on the restricted size Ramsey number
involving a P3 can be found in [9, 10, 11, 12, 13].

In 1972, Chvátal and Harary [2] introduced the off-diagonal Ramsey number, where the pair of
graphs involved are from different classes. One of their results is the Ramsey number for P3 and
any graph without isolated vertices. In 1983, Faudree and Sheehan [7] investigated the size and
the restricted Ramsey numbers involving stars. One of their results is the size and the restricted
size Ramsey number for P3 and Kn and they found that these both values are the same, namely,
r̂(P3, Kn) = r

⇤(P3, Kn).
Furthermore, it was known that the lower and upper bounds of the size and the restricted size

Ramsey number for any pair of graph G and H as follows.

e(G) + e(H)� 1  r̂(G,H)  r
⇤(G,H) 

✓
r(G,H)

2

◆
. (1)

The first inequality was given by Harary and Miller [8].
In our previous work in [10], we have characterized all graphs H such that r⇤(P3, H) attains

the upper and lower bounds of (1). In this paper, we continue the investigation on the restricted
size Ramsey number involving a P3. We give r

⇤(P3, H) with H a dense graph. Since H is dense,
we can obtain it by removing some edge froms a complete graphs.

2. Preliminaries

The size and the restricted size Ramsey numbers for a path P3 and a complete graph Kn was
given by Faudree and Sheehan [7], as stated in Theorem 2.1. From the proof of Theorem 2.1 [7],
we have Lemma 2.2 and Lemma 2.3.

Theorem 2.1. [7] For a positive integer n � 2,

r̂(P3, Kn) = r
⇤(P3, Kn) = 2(n� 1)2.

Lemma 2.2. [7] For a positive integer n � 2, F = K2n�1 �M is a (P3, Kn)� arrowing graph,
with M is a maximal matching in K2n�1.

Lemma 2.3. [7] For a positive integer n � 2, let F be a graph with v(F ) = 2n � 1. If F is a
(P3, Kn)�arrowing graph, then �(F ) � 2n� 3.
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The Ramsey number for P3 and any graph H without isolated vertices was given by Chvátal
and Harary [2], as stated in Theorem 2.4. This result gives the order of (P3, H)�arrowing graph
to find r

⇤(P3, H).

Theorem 2.4. [2] For any graph H with no isolates,

r(P3, H) =

⇢
v(H), H has 1� factor,

2v(H)� 2�(H)� 1, otherwise,

with �(H) the maximum number of independent edges in the complement of H .

Let H be a connected graph with v(H) = n. From Theorem 2.4 we have r(P3, H) = n if
�(H) = bn

2 c and r(P3, H) > n otherwise. In [10], we showed that r⇤(P3, H) is less than the upper
bound of (1) for all H with r(P3, H) > n. Here, we find the exact value of r⇤(P3, H) for some H

with r(P3, H) > n.
The following monotonicity property is clear from the definition of the (restricted) size Ramsey

number of graphs. If F 0
1 ✓ F1 and F

0
2 ✓ F2, then

r̂(F 0
1, F

0
2)  r̂(F1, F2). (2)

and
r
⇤(F 0

1, F
0
2)  r

⇤(F1, F2). (3)

Note that Chvátal and Harary [2] also gave the same monotonicity property for Ramsey number of
graphs.

3. Main Results

First, we investigate the restricted size Ramsey number r⇤(P3, H) for H a connected graph
obtained by deleting some edges incident to a vertex from a complete graph. The results are given
in Theorem 3.2 and 3.3.

Second, we investigate the restricted size Ramsey number r⇤(P3, H) for H a connected graph
obtained by deleting some edges incident to two vertices from a complete graph. The results are
given in Theorem 3.4, 3.5, and 3.6.

To prove those theorems, we adopt the idea from Faudree and Sheehan in [7] by using a graph
GF which is defined as follows. Let F be a (G,H)�arrowing graph with all edges are colored by
red and blue. A GF is a graph with V (GF ) = V (F ) and E(GF ) consists of red edges in F and
edges in F . Notice that GF is the blue subgraph of F .

Additionally, we will also use Observation 3.1.

Observation 3.1. Let F , F 0, G, and H be graphs. If F is a (G,H)�arrowing graph and F ✓ F
0,

then F
0 is a (G,H)�arrowing graph.

Proof. Suppose to the contrary F
0 is not a (G,F )�arrowing graph. It means there is a red-blue

coloring � of all edges in F
0 not containing a red H or a blue G. However, since F ✓ F

0, � is
also a red-blue coloring of all edges in F not containing a red H or a blue G. Thus, F is not a
(G,F )�arrowing graph. A contradiction.
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Theorem 3.2. Let n and t be integers with 2  t  n� 2. For n � 3,

r
⇤(P3, Kn �K1,t) = 2(n� 2)2.

Proof. Note that Kn�1 ✓ Kn � K1,t for any t. Since �(Kn �K1,t) = 1, Theorem 2.4 implies
the Ramsey number r(P3, Kn � K1,t) = 2n � 3 for 2  t  n � 2. However, the Ramsey
number r(P3, Kn�1) = 2n� 3 too. From Theorem 2.1 we have r

⇤(P3, Kn�1) = 2(n� 2)2. Since
Kn�1 ✓ Kn �K1,t, by (3) we get r⇤(P3, Kn �K1,t) � 2(n� 2)2 for all t in 2  t  n� 2. This
completes the proof for the lower bound.

For the upper bound, let F = K2n�3 � M with M a maximal matching in K2n�3. Note
that e(F ) = 2(n � 2)2. Consider any red-blue coloring � of all edges in F not containing a red
P3. The graph GF will consist of even cycles and paths. It means �(GF )  2. Furthermore,
according to Lemma 2.2, F is a (P3, Kn�1)�arrowing graph. Since �(GF )  2, we can extend
Kn�1 to Kn �K1,t for 2  t  n � 2 in GF . Thus, F is a (P3, Kn �K1,t)�arrowing graph and
r
⇤(P3, Kn �K1,t)  2(n� 2)2 for 2  t  n� 2.

The restricted size Ramsey number r⇤(P3, H) for H = Kn�K1,1 is given in Theorem 3.3. We
use K2 in terms of K1,1.

Theorem 3.3. For n � 4,
r
⇤(P3, Kn �K2) = 2(n� 2)2 + 1.

Proof. Note that Kn�1 ✓ Kn � K2. Since �(Kn �K2) = 1, Theorem 2.4 implies r(P3, Kn �
K2) = 2n � 3. Note again that the Ramsey number r(P3, Kn�1) = 2n � 3 too. For the lower
bound, we consider all graphs F with v(F ) = 2n � 3 and e(F ) = 2(n � 2)2. However, if F is
a (P3, Kn�1)�arrowing graph, Lemma 2.3 implies �(F ) � 2n � 5. The only graph satisfies the
above conditions is F = K2n�3 � M , with M a maximal matching in K2n�3. Take a red-blue
coloring of all edges in F not containing a red P3 such that GF

⇠= P2n�3. According to Lemma
2.2, F is a (P3, Kn�1)�arrowing graph. But, each vertex which does not belong to subgraph Kn�1

in GF is adjacent to exactly two vertices that induced Kn�1 in GF . It means we cannot extend
Kn�1 to Kn �K2 in GF . Thus, F is not a (P3, Kn � P2)�arrowing graph and r

⇤(P3, Kn � P2) �
2(n� 2)2 + 1.

For the upper bound, let F = K2n�3 � (|M | � 1)K2 with M a maximal matching in K2n�3.
Note that e(F ) = 2(n � 2)2 + 1. We will show that F is a (P3, Kn � K2)�arrowing graph.
According to Lemma 2.2, K2n�3 �M is a (P3, Kn�1)�arrowing graph. Since K2n�3 �M ✓ F ,
Observation 3.1 implies F is also a (P3, Kn�1)�arrowing graph. Consider any red-blue coloring �

of all edges in F not containing a red P3. The graph GF will consists of even cycles and paths with
at least one path of even order. Suppose V

0 is the set of vertices that induces a Kn�1 in GF . Since
there is a path of even order in GF , there must be at least one vertex v 2 V \V 0 that is adjacent to
exactly one vertex v

0 2 V
0. It means we can extend Kn�1 to have a Kn �K2 in GF . Thus, F is a

(P3, Kn � P2)�arrowing graph and r
⇤(P3, Kn �K2)  2(n� 2)2 + 1.

The next result is r⇤(P3, H) with H a connected graph obtained by deleting some edges inci-
dent to two vertices in Kn. First, we consider collection of graphs obtained by deleting edges in
K1,s [K1,t for 2  s  n � 2 and 3  t  n � 2, as given in Theorem 3.4. When 1  s, t  2,
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the graph K1,s [K1,t is one of 2P3, P3 [K2, P4, 2K2, P3, or K2. The values of r⇤(P3, H) with H

either Kn � P3 or Kn �K2 already include in Theorems 3.2 and 3.3. Theorems 3.5 and 3.6 give
r
⇤(P3, H) for H a graph obtained by deleting edges in 2P3, P3 [K2, P4, or 2K2 from Kn.

Theorem 3.4. Let n, s, t be integers with 2  s  n� 2 and 3  t  n� 2. For n � 5,

r
⇤(P3, Kn � (K1,s [K1,t)) = 2(n� 3)2.

Proof. Note that Kn�2 ✓ Kn � (K1,s [ K1,t) for 2  s  n � 2 and 3  t  n � 2. Since
�(Kn � (K1,s [K1,t)) = 2, Theorem 2.4 implies r(P3, Kn�(K1,s[K1,t)) = 2n�5. Note that the
Ramsey number r(P3, Kn�2) = 2n�5 too. From Theorem 2.1 we have r⇤(P3, Kn�2) = 2(n�3)2.
Since Kn�2 ✓ Kn � (K1,s [ K1,t), by (3) we get r⇤(P3, Kn � (K1,s [ K1,t)) � 2(n � 3)2 for
2  s  n� 2 and 3  t  n� 2. This completes the proof for the lower bound.

For the upper bound, let F = K2n�5 � M with M a maximal matching in K2n�5. Note that
e(F ) = 2(n � 3)2. Lemma 2.2 implies F is a (P3, Kn�2)�arrowing graph. Consider any red-
blue coloring of all edges of F not containing a red P3. The graph GF will consist of even cycles
and paths. It means �(GF )  2. As a consequence, we can extend the subgraph Kn�2 to have
a subgraph Kn � (K1,s [ K1,t) for 2  s  n � 2 and 3  t  n � 2 in GF . Therefore, F
is a (P3, Kn � (K1,s [ K1,t))�arrowing graph and r

⇤(P3, Kn � (K1,s [ K1,t))  2(n � 3)2 for
2  s  n� 2 and 3  t  n� 2.

Theorem 3.5. For n � 5,

r
⇤(P3, Kn � 2P3) = r

⇤(P3, Kn � (P3 [K2)) = 2(n� 3)2 + 1.

Proof. Note that Kn�2 ✓ Kn�2P3 ✓ Kn�(P3[K2). Since �(Kn � 2P3) = �(Kn � (P3 [K2)) =
2, Theorem 2.4 implies r(P3, Kn � 2P3) = r(P3, Kn � (P3 [ K2)) = 2n � 5. Note that the
Ramsey number r(P3, Kn�2) = 2n � 5 too. For the lower bound, we consider all graphs F with
v(F ) = 2n�5 and e(F ) = 2(n�3)2. However, if F is a (P3, Kn�2)�arrowing graph, then Lemma
2.3 implies �(F ) � 2n � 7. The only graph satisfies the above conditions is F = K2n�5 � M ,
with M a maximal matching in K2n�5. Take a red-blue coloring � of all edges in F such that
GF

⇠= P2n�5. According to Lemma 2.2, F is a (P3, Kn�2)�arrowing graph. Suppose V
0 is the

set of vertices that induces Kn�2 in GF . Since GF
⇠= P2n�5, each vertex v 2 V \V 0 is adjacent

to exactly two vertices that belong to V
0 in GF . It means we cannot extend the subgraph Kn�2 to

have a subgraph Kn � 2P3 in GF . As a consequence, r⇤(P3, Kn � 2P3) � 2(n � 3)2 + 1. Since
Kn � 2P3 ✓ Kn � (P3 [K2), by (3), r⇤(P3, Kn � (P3 [K2)) � 2(n� 3)2 + 1.

For the upper bound, let F = K2n�5 � (|M | � 1)K2 with M a maximal matching in K2n�5.
Note that e(F ) = 2(n� 3)2+1. We will show that F is a (P3, Kn� (P3 [K2))� arrowing graph.
According to Lemma 2.2, K2n�3 �M is a (P3, Kn�2)�arrowing graph. Since K2n�5 �M ✓ F ,
Observation 3.1 implies F is also a (P3, Kn�2)�arrowing graph. Consider any red-blue coloring
� of all edges in F not containing a red P3. The graph GF will consists of even cycles and paths
with at least one path of even order. Suppose V

0 is the set of vertices that induces a Kn�2 in
GF . Since there is a path of even order in GF , there must be at least one vertex v 2 V \V 0 that
adjacent to exactly one vertex v

0 2 V
0 in GF . It means we can extend the subgraph Kn�2 to have
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a subgraph Kn � 2K2 in GF . As a consequence, F is a (P3, Kn � (P3 [ K2))� arrowing graph
and r

⇤(P3, Kn � (P3 [ K2))  2(n � 3)2 + 1. Since Kn � 2P3 ✓ Kn � (P3 [ K2), by (3),
r
⇤(P3, Kn � 2P3)  2(n� 3)2 + 1.

Theorem 3.6. For n � 5,

r
⇤(P3, Kn � P4) = r

⇤(P3, Kn � 2K2) = 2(n� 3)2 + 2.

Proof. Note that Kn�2 ✓ Kn � P4 ✓ Kn � 2K2. Since �(Kn � P4) = �(Kn � 2K2) = 2,
Theorem 2.4 implies r(P3, Kn � P4) = r(P3, Kn � 2K2) = 2n � 5. The Ramsey number
r(P3, Kn�2) = 2n�5 too. For the lower bound, we consider all graphs F with v(F ) = 2n�5 and
e(F ) = 2(n � 3)2 + 1. However, if F is a (P3, Kn�2)�arrowing graph, then Lemma 2.3 implies
�(F ) � 2n � 7. The only graph satisfies the above conditions is F = K2n�5 � (|M | � 1)K2,
with M a maximal matching in K2n�5. Take a red-blue coloring � of all edges in F such that
GF

⇠= P2n�6 [ K1. According to Lemma 2.2, K2n�5 � M is a (P3, Kn�2)�arrowing graph and
according to Observation 3.1, F is also a (P3, Kn�2)�arrowing graph. Suppose V

0 is the set of
vertices that induces a Kn�2 in GF . Since GF is P2n�6 [K1, there must be a leaf v of P2n�6 such
that v /2 V

0 which is adjacent to exactly one vertex v
0 2 V

0 in GF . It means we cannot extend
the subgraph Kn�2 to have a subgraph Kn � P4 in GF . Thus F is not a (P3, Kn � P4)�arrowing
graph and r

⇤(P3, Kn � P4) � 2(n � 3)2 + 2. Since Kn � P4 ✓ Kn � 2K2, by (3) we have
r
⇤(P3, Kn � 2K2) � 2(n� 3)2 + 2.

For the upper bound, let F = K2n�5�(|M |�2)K2 with M a maximal matching in K2n�5. Note
that e(F ) = 2(n� 3)2 +2. We will show that F is a (P3, Kn � 2K2)�arrowing graph. According
to Lemma 2.2, K2n�5 � M is a (P3, Kn�2)�arrowing graph and according to Observation 3.1,
F is also a (P3, Kn�2)�arrowing graph. Consider any red-blue coloring � of all edges in F not
containing a red P3. The graph GF will consists of even cycles and paths with at least two path
of even order. Suppose V

0 is the set of vertices that induced Kn�2 in the GF . Since there are two
path of even order in GF , there must be at least two vertices u, v /2 V

0 adjacent to exactly a vertex
v
0 2 V

0 in GF . It means we can extend the subgraph Kn�2 to have a subgraph Kn � 2K2 in GF .
As a consequence, r⇤(P3, Kn � 2K2)  2(n � 3)2 + 2. Since Kn � P4 ✓ Kn � 2K2, by (3) we
have r

⇤(P3, Kn � P4)  2(n� 3)2 + 2.
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