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Abstract

A k-hypertournament is a complete k-hypergraph with each k-edge endowed with an orientation,
that is, a linear arrangement of the vertices contained in the edge. In a k-hypertournament, the
score si (losing score ri) of a vertex vi is the number of arcs containing vi in which vi is not the
last element (in which vi is the last element). The total score of vi is defined as ti = si − ri. In
this paper we obtain stronger inequalities for the quantities

∑
i∈I ri,

∑
i∈I si and

∑
i∈I ti, where

I ⊆ {1, 2, . . . , n}. Furthermore, we discuss the case of equality for these inequalities. We also
characterize total score sequences of strong k-hypertournaments.
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1. Introduction

A tournament is a complete oriented graph. In a tournament the score of a vertex is its out-
degree and the sequence of scores listed in non-decreasing order is called the score sequence.
Landau’s theorem [10] gives a necessary and sufficient condition for a sequence of non-negative
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integers to be the score sequence of some tournament. More results on tournament scores can be
found in [7, 13, 14, 15, 16, 17, 19]

A k-hypergraph is a pair H = (V,E), where V is the set of vertices and E is the set of k-
subsets of V , called edges [2]. Hypertournaments are generalizations of tournaments. Given two
non-negative integers n and k with n ≥ k > 1, a k-hypertournament on n vertices is a pair (V,A),
where V is the set of vertices with |V | = n, and A is the set of k-tuples of vertices, called arcs,
such that for any k-subset S of V , A contains exactly one of the k! k-tuples whose entries belong to
S. Several authors have generalized concepts and results from tournaments to hypertournaments.
The recent work on reconstruction of complete interval tournaments due to Ivanyi [5, 6] can be
extended to hypertournaments. The concept of kings in tournaments has been introduced in hy-
pertournaments by Brcanov and Petrovic [4], but is still in its infancy. Zhou et al. [24] extended
the concept of scores in tournaments to that of scores and losing scores in hypertournaments, and
derived a result analogous to Landau’s theorem on tournaments. The score s(vi) or si of a vertex
vi is the number of arcs containing vi in which vi is not the last element, and the losing score r(vi)
or ri of a vertex vi is the number of arcs containing vi in which vi is the last element. The score
sequence (losing score sequence) is formed by listing the scores (losing scores) in non-decreasing
order.

The following characterizations of score sequences and losing score sequences of k-hypertournaments
can be found in [24].

Proposition 1.1. Given two non-negative integers n and k with n ≥ k > 1, a non-decreasing
sequence R = [r1, r2, · · · , rn] of non-negative integers is a losing score sequence of some k-
hypertournament if and only if for each 1 ≤ j ≤ n,

j∑
i=1

ri ≥
(
j

k

)
,

with equality when j = n.

Proposition 1.2. Given non-negative integers n and k with n ≥ k > 1, a non-decreasing sequence
S = [s1, s2, · · · , sn] of non-negative integers is a score sequence of some k-hypertournament if and
only if for each 1 ≤ j ≤ n,

j∑
i=1

si ≥ j

(
n− 1

k − 1

)
+

(
n− j

k

)
−
(
n

k

)
,

with equality when j = n.

Bang and Sharp [1] proved Landau’s theorem using Hall’s theorem on a system of distinct rep-
resentatives of a collection of sets. Based on Bang and Sharp’s ideas, Koh and Ree [9] have given
a different proof of Proposition 1.1 and 1.2. Some more results on scores of k-hypertournaments
can be found in [8, 11, 12, 18, 20, 21, 22, 23].
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Brualdi and Shen [3] have strengthened the inequalities on scores in a tournament. In section
2 we extend their results to losing scores and scores in k-hypertournaments and obtain bounds for∑

i∈I ri,
∑

i∈I si that are stronger than those given in Proposition 1.1 and 1.2 We discuss the case
of equality for several inequalities derived in this section.

The total score of vertex vi is defined as ti = si−ri. The total score sequence is the sequence of
total scores arranged in non-increasing order. Koh and Ree [9] characterized total score sequences
in k-hypertournaments.

Proposition 1.3. A non-increasing sequence of integers t1 ≥ t2 ≥ · · · ≥ tn is a total score
sequence of a k-hypertournament of order n if and only if ti has the same parity as that of

(
n−1
k−1

)
for each i = 1, 2, · · ·n,

j∑
i=1

ti ≤ j

(
n− 1

k − 1

)
− 2

(
j

k

)
with equality when j = n.

In Section 3, we improve on the bounds for total scores given by Proposition 1.3. Moreover we
give necessary and sufficient conditions for a non-increasing sequence of integers to be the total
score sequence of a strong k-hypertournament.

We adopt standard notations. The set of first n positive integers is denoted by [n], |I| stands for
the cardinality of set I and [xi]

n

1
represents an n-term sequence.

2. Stronger inequalities on losing scores and scores

Brualdi and Shen [3] obtained stronger bounds for scores in tournaments, which indeed give
better necessary and sufficient conditions for a sequence of non-negative integers to be the score
sequence of a tournament. The bounds obtained in Theorems 2.1, 2.2 and 2.3 are generalizations
of those on tournament scores given in [3]. The following result gives a lower bound for

∑
i∈I ri,

where I ⊆ [n].

Theorem 2.1. Given two non-negative integers n and k with n ≥ k > 1, a sequence R =
[ri]

n

1
of non-negative integers in non-decreasing order is a losing score sequence of some k-

hypertournament if and only if for every subset I ⊆ [n],∑
i∈I

ri ≥
1

2

∑
i∈I

(
i− 1

k − 1

)
+

1

2

(
|I|
k

)
, (1)

with equality when |I| = n.

Proof. Sufficiency. Let the sequence R = [ri]
n

1
of non-negative integers satisfy conditions (1). For

any subset I ⊆ [n], we have

∑
i∈I

(
i− 1

k − 1

)
≥
|I|∑
i=1

(
i− 1

k − 1

)
=

|I|∑
i=1

[(
i

k

)
−
(
i− 1

k

)]
=

(
|I|
k

)
.
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Therefore, from conditions (1) we have∑
i∈I

ri ≥
1

2

(
|I|
k

)
+

1

2

(
|I|
k

)
=

(
|I|
k

)
.

Hence, by Proposition 1.1, R is a losing score sequence.
Necessity. Assume R = [ri]

n

1
is a losing score sequence of some k-hypertournament. For any

subset I ⊆ [n], define

f(I) =
∑
i∈I

ri −
1

2

∑
i∈I

(
i− 1

k − 1

)
− 1

2

(
|I|
k

)
.

Suppose among all I minimizing f(I), we select one that minimizes |I|. We claim that I = {i :
1 ≤ i ≤ |I|}. If not, then there exist i0 /∈ I and j ∈ I such that j = i0 + 1. So ri0 ≤ rj and we
have

f(I) =
∑
t∈I

rt −
1

2

∑
t∈I

(
t− 1

k − 1

)
− 1

2

(
|I|
k

)

=
∑

t∈I,t 6=j

rt + rj −
1

2

[ ∑
t∈I,t 6=j

(
t− 1

k − 1

)
+

(
j − 1

k − 1

)]
− 1

2

(
|I|
k

)
.

Therefore,

f(I)− f(I − {j}) = rj −
1

2

(
j − 1

k − 1

)
− 1

2

(
|I| − 1

k − 1

)
.

By the choice of I we have f(I)− f(I − {j}) < 0. Therefore

rj −
1

2

(
j − 1

k − 1

)
− 1

2

(
|I| − 1

k − 1

)
< 0,

or

rj <
1

2

(
j − 1

k − 1

)
+

1

2

(
|I| − 1

k − 1

)
.

Again,

f(I ∪ {i0}) =
∑
t∈I

rt + ri0 −
1

2

[∑
t∈I

(
t− 1

k − 1

)
+

(
i0 − 1

k − 1

)]
− 1

2

(
|I|+ 1

k

)
.

So,

f(I ∪ {i0})− f(I) = ri0 −
1

2

(
i0 − 1

k − 1

)
− 1

2

(
|I|

k − 1

)
.

Since f(I ∪ {i0})− f(I) ≥ 0, therefore,

ri0 −
1

2

(
i0 − 1

k − 1

)
− 1

2

(
|I|

k − 1

)
≥ 0,
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or

ri0 ≥
1

2

(
i0 − 1

k − 1

)
+

1

2

(
|I|

k − 1

)
.

Hence,
1

2

(
i0 − 1

k − 1

)
+

1

2

(
|I|

k − 1

)
≤ ri0 ≤ rj <

1

2

(
j − 1

k − 1

)
+

1

2

(
|I| − 1

k − 1

)
,

or (
i0 − 1

k − 1

)
+

(
|I|

k − 1

)
<

(
i0

k − 1

)
+

(
|I| − 1

k − 1

)
since j = i0 + 1, or (

|I|
k − 1

)
−
(
|I| − 1

k − 1

)
<

(
i0

k − 1

)
−
(
i0 − 1

k − 1

)
,

or (
|I| − 1

k − 2

)
<

(
i0 − 1

k − 2

)
,

which is a contradiction, and the claim is proved.
Hence,

f(I) =

|I|∑
i=1

ri −
1

2

|I|∑
i=1

(
i− 1

k − 1

)
− 1

2

(
|I|
k

)

=

|I|∑
i=1

ri −
1

2

(
|I|
k

)
− 1

2

(
|I|
k

)
≥
(
|I|
k

)
−
(
|I|
k

)
(by Proposition 1.1)

= 0.

Thus, ∑
i∈I

ri −
1

2

∑
i∈I

(
i− 1

k − 1

)
− 1

2

(
|I|
k

)
≥ 0,

or ∑
i∈I

ri ≥
1

2

∑
i∈I

(
i− 1

k − 1

)
+

1

2

(
|I|
k

)
,

which proves the necessity as I has been chosen to minimize f(I). �

Since
∑

i∈I
(
i−1
k−1

)
≥
∑j

i=1

(
i−1
k−1

)
=
(
j
k

)
, the lower bounds proved in Theorem 2.1 are individu-

ally stronger than the ones given in Proposition 1.1. However, as a whole Theorem 1.1 is equivalent
to Proposition 1.1. The next result gives a set of upper bounds for

∑
i∈I ri.
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Theorem 2.2. Given two non-negative integers n and k with n ≥ k > 1, a sequence R =
[ri]

n

1
of non-negative integers in non-decreasing order is a losing score sequence of some k-

hypertournament if and only if for any subset I ⊆ [n],∑
i∈I

ri ≤
1

2

∑
i∈I

(
i− 1

k − 1

)
+

1

2

(
n

k

)
− 1

2

(
n− |I|

k

)
,

with equality when |I| = n.

Proof. Let J = [n]− I , so that I ∪J = [n] and |J |+ |I| = n. Then, by Theorem 2.1, R is a losing
score sequence if and only if∑

i∈[n]

ri =

(
n

k

)
and

∑
i∈J

ri ≥
1

2

∑
i∈J

(
i− 1

k − 1

)
+

1

2

(
|J |
k

)
or equivalently if∑

i∈I

ri +
∑
i∈J

ri =

(
n

k

)
and

∑
i∈J

ri ≥
1

2

∑
i∈J

(
i− 1

k − 1

)
+

1

2

(
|J |
k

)
or equivalently if ∑

i∈I

ri =

(
n

k

)
−
∑
i∈J

ri ≤
(
n

k

)
− 1

2

∑
i∈J

(
i− 1

k − 1

)
− 1

2

(
|J |
k

)

=

(
n

k

)
− 1

2

[(
n

k

)
−
∑
i∈I

(
i− 1

k − 1

)]
− 1

2

(
n− |I|

k

)
,

because
∑

i∈I
(
i−1
k−1

)
+
∑

i∈J
(
i−1
k−1

)
=
(
n
k

)
and |I|+ |J | = n.

Hence, ∑
i∈I

ri ≤
1

2

∑
i∈I

(
i− 1

k − 1

)
+

1

2

(
n

k

)
− 1

2

(
n− |I|

k

)
,

which proves the result. �

The next result follows from Theorem 2.1 and Theorem 2.2.

Theorem 2.3. Let n and k be two non-negative integers with n ≥ k > 1. If R = [ri]
n

1
is a losing

score sequence of a k-hypertournament, then for each 1 ≤ i ≤ n we have

1

2

(
i− 1

k − 1

)
≤ ri ≤

1

2

(
i− 1

k − 1

)
+

1

2

(
n− 1

k − 1

)
.
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Proof. Let I = {i} in Theorem 2.1 and Theorem 2.2. Then,∑
i∈I

ri ≥
1

2

∑
i∈I

(
i− 1

k − 1

)
+

1

2

(
|I|
k

)
implies that

ri ≥
1

2

(
i− 1

k − 1

)
+

1

2

(
1

k

)
=

1

2

(
i− 1

k − 1

)
,

and ∑
i∈I

ri ≤
1

2

∑
i∈I

(
i− 1

k − 1

)
+

1

2

(
n

k

)
− 1

2

(
n− |I|

k

)
implies that

ri ≤
1

2

(
i− 1

k − 1

)
+

1

2

(
n

k

)
− 1

2

(
n− 1

k

)
=

1

2

(
i− 1

k − 1

)
+

1

2

(
n− 1

k − 1

)
.

Therefore,
1

2

(
i− 1

k − 1

)
≤ ri ≤

1

2

(
i− 1

k − 1

)
+

1

2

(
n− 1

k − 1

)
,

completing the proof. �

Since sn+1−i + ri =
(
n−1
k−1

)
, for I ⊆ [n] = {1, 2, ..., n}, we have

∑
i∈I sn+1−i +

∑
i∈I ri =∑

i∈I
(
n−1
k−1

)
or
∑

i∈I sn+1−i = |I|
(
n−1
k−1

)
−
∑

i∈I ri. Hence by using Theorem 2.1 and Theorem 2.2,
we obtain respectively the following results.

Lemma 2.1. Given two non-negative integers n and k with n ≥ k > 1, a sequence S = [si]
n

1
of

non-negative integers in non-decreasing order is a score sequence of some k-hypertournament if
and only if for every subset I ⊆ [n] = {1, 2, · · · , n},∑

i∈I

sn+1−i ≤ |I|
(
n− 1

k − 1

)
− 1

2

∑
i∈I

(
i− 1

k − 1

)
− 1

2

(
|I|
k

)
with equality when |I| = n.

Lemma 2.2. Given two non-negative integers n and k with n ≥ k > 1, a sequence S = [si]
n

1
of

non-negative integers in non-decreasing order is a score sequence of some k-hypertournament if
and only if for every subset I ⊆ [n] = {1, 2, · · · , n},∑

i∈I

sn+1−i ≥ |I|
(
n− 1

k − 1

)
− 1

2

∑
i∈I

(
i− 1

k − 1

)
− 1

2

(
n

k

)
+

1

2

(
n− |I|

k

)
with equality when |I| = n.
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The following is the consequence of Lemma 2.4 and 2.5.

Theorem 2.4. Let n and k be two non-negative integers with n ≥ k > 1. If S = [si]
n

1
is a score

sequence of a k-hypertournament, then for each 1 ≤ i ≤ n we have

1

2

(
n− 1

k − 1

)
− 1

2

(
i− 1

k − 1

)
≤ sn+1−i ≤

(
n− 1

k − 1

)
− 1

2

(
i− 1

k − 1

)
.

Proof. Let I = {i} in Lemma 2.4 and 2.5. Then,∑
i∈I

sn+1−i ≤ |I|
(
n− 1

k − 1

)
− 1

2

∑
i∈I

(
i− 1

k − 1

)
− 1

2

(
|I|
k

)
implies that

sn+1−i ≤
(
n− 1

k − 1

)
− 1

2

(
i− 1

k − 1

)
,

and ∑
i∈I

sn+1−i ≥ |I|
(
n− 1

k − 1

)
− 1

2

∑
i∈I

(
i− 1

k − 1

)
− 1

2

(
n

k

)
+

1

2

(
n− |I|

k

)
implies that

sn+1−i ≥
(
n− 1

k − 1

)
− 1

2

(
i− 1

k − 1

)
− 1

2

(
n

k

)
+

1

2

(
n− 1

k

)
,

or

sn+1−i ≥
(
n− 1

k − 1

)
− 1

2

(
i− 1

k − 1

)
− 1

2

(
n− 1

k − 1

)
,

or

sn+1−i ≥
1

2

(
n− 1

k − 1

)
− 1

2

(
i− 1

k − 1

)
.

Therefore,
1

2

(
n− 1

k − 1

)
− 1

2

(
i− 1

k − 1

)
≤ sn+1−i ≤

(
n− 1

k − 1

)
− 1

2

(
i− 1

k − 1

)
.

�

3. Total scores and strong hypertournaments

Let [si]
n

1
in non-increasing order and [ri]

n

1
in non-decreasing order be respectively the score

and losing score sequences of a k-hypertournament. The total score ti of a vertex vi is defined as
ti = si− ri. So T = [ti]

n

1
, called the total score sequence, is a non-increasing sequence of integers.

Using the improved bounds for scores and losing scores proved earlier we now derive stronger
upper and lower bounds for total scores in hypertournaments.
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Theorem 3.1. A non-increasing sequence of integers T = [ti]
n

1
is a total score sequence of a k-

hypertournament of order n, with n ≥ k > 1, if and only if ti has the same parity as
(
n−1
k−1

)
for

each i = 1, 2, . . . n, and for every I ⊆ [n]

|I|
(
n− 1

k − 1

)
−
∑
i∈I

(
i− 1

k − 1

)
−
(
n

k

)
+

(
n− |I|

k

)
≤
∑
i∈I

ti (2)

≤ |I|
(
n− 1

k − 1

)
−
∑
i∈I

(
i− 1

k − 1

)
−
(
|I|
k

)
with equality when I = [n].

Proof. Suppose t1 ≥ t2 ≥ · · · ≥ tn is the total score sequence of a k-hypertournament H of order
n. Then, there exist score and losing score sequences s1 ≥ s2 ≥ · · · ≥ sn and r1 ≤ r2 ≤ · · · ≤ rn
with ti = si− ri. Therefore, Theorems 2.1, 2.2 and Lemma 2.4, 2.5 together imply conditions (2).
Furthermore, since ti = si− ri and

(
n−1
k−1

)
= si + ri, therefore ti =

(
n−1
k−1

)
− 2ri has the same parity

as
(
n−1
k−1

)
for i = 1, 2, . . . , n.

For the converse, suppose that a non-increasing sequence of integers t1 ≥ t2 ≥ · · · ≥ tn satisfies
conditions (2). For each i = 1, 2, . . . , n, define

si =
1

2

[(
n− 1

k − 1

)
+ ti

]
and ri =

1

2

[(
n− 1

k − 1

)
− ti

]
. (3)

Then, t1 ≤
(
n−1
k−1

)
, and

tn =
∑
i∈[n]

ti −
∑

i∈[n−1]

ti

≥

n(n− 1

k − 1

)
−
∑
i∈[n]

(
i− 1

k − 1

)
−
(
n

k

)
−

(n− 1)

(
n− 1

k − 1

)
−
∑

i∈[n−1]

(
i− 1

k − 1

)
−
(
n− 1

k

)
= −

(
n− 1

k − 1

)
.

So,

−
(
n− 1

k − 1

)
≤ ti ≤

(
n− 1

k − 1

)
and hence si ≥ 0 and ri ≥ 0 for all i. The sequence [si]

n

1
is non-increasing. So, for 1 ≤ j ≤ n,

∑
i∈I

si =
∑
i∈I

1

2

[(
n− 1

k − 1

)
+ ti

]
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≤ 1

2

[
|I|
(
n− 1

k − 1

)
+ |I|

(
n− 1

k − 1

)
−
∑
i∈I

(
i− 1

k − 1

)
−
(
|I|
k

)]

= |I|
(
n− 1

k − 1

)
− 1

2

∑
i∈I

(
i− 1

k − 1

)
− 1

2

(
|I|
k

)
.

If we arrange [si]
n

1
in non-decreasing order, then

∑
i∈I

sn+1−i ≤ |I|
(
n− 1

k − 1

)
− 1

2

∑
i∈I

(
i− 1

k − 1

)
− 1

2

(
|I|
k

)
.

Similarly for the non-decreasing sequence [ri]
n

1
,

∑
i∈I

ri =
1

2

[
|I|
(
n− 1

k − 1

)
−
∑
i∈I

ti

]

≥ 1

2

[
|I|
(
n− 1

k − 1

)
− |I|

(
n− 1

k − 1

)
+
∑
i∈I

(
i− 1

k − 1

)
+

(
|I|
k

)]

=
1

2

∑
i∈I

(
i− 1

k − 1

)
+

1

2

(
|I|
k

)
.

Thus, by Lemma 2.4 and Theorem 2.1, there exists a k-hypertournament with [si]
n

1
and [ri]

n

1
as its

score and losing score sequences,and hence ti = si − ri, for i = 1, 2, . . . , n as its total scores. �

Theorem 3.2. If a non-increasing sequence of integers T = [ti]
n

1
is a total score sequence of a

k-hypertournament of order n, with n ≥ k > 1, then for 1 ≤ i ≤ n,

−
(
i− 1

k − 1

)
≤ ti ≤

(
n− 1

k − 1

)
−
(
i− 1

k − 1

)
Proof. If the scores are arranged in non-increasing order, then from Theorem 2.7

1

2

(
n− 1

k − 1

)
− 1

2

(
i− 1

k − 1

)
≤ si ≤

(
n− 1

k − 1

)
− 1

2

(
i− 1

k − 1

)
.

This together with Theorem 2.3 proves the result. �

Alternatively, we can prove Theorem 3.2 by substituting I = {i} in Theorem 3.1.

An (x, y)-path in a k-hypertournament H is a sequence

(x =)v1e1v2e2v3 · · · vt−1et−1vt(= y)

17
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of distinct vertices v1, v2, · · · , vt, t ≥ 1 and distinct arcs e1, e2, · · · , et−1 such that vi+1 lies on
the last entry in ei, 1 ≤ i ≤ t − 1. A k-hypertournament H is strong if for any two vertices
x ∈ V and y ∈ V , H contains both an (x, y)-path and a (y, x)-path. A strong component of a
k-hypertournament H is a maximal strong subhypertournament of H . The following results due to
Zhou et al. [24] characterizes the score and losing score sequences of a strong k-hypertournament.

Theorem 3.3. A sequence R = [ri]
n

1
of non-negative integers in non-decreasing order is a losing

score sequence of a strong k-hypertournament with n > k if and only if

j∑
i=1

ri >

(
j

k

)
, for k ≤ j ≤ n− 1 and

n∑
i=1

ri =

(
n

k

)
. (4)

Theorem 3.4. A sequence S = [si]
n

1
of non-negative integers in non-decreasing order is a score

sequence of a strong k-hypertournament with n > k if and only if

j∑
i=1

si > j

(
n− 1

k − 1

)
+

(
n− j

k

)
−
(
n

k

)
, for k ≤ j ≤ n− 1 and

n∑
i=1

si = (k − 1)

(
n

k

)
.

Rearranging the score sequence in non-increasing order, s1 ≥ s2 ≥ · · · ≥ sn, we obtain

j∑
i=1

si < j

(
n− 1

k − 1

)
−
(
j

k

)
, for k ≤ j ≤ n− 1 and

n∑
i=1

si = (k − 1)

(
n

k

)
. (5)

We conclude this section by characterizing total score sequences of strong k-hypertournaments.

Theorem 3.5. A non-increasing sequence of integers t1 ≥ t2 ≥ · · · ≥ tn is a total score sequence
of a strong k-hypertournament of order n with n > k if and only if ti has the same parity as that
of
(
n−1
k−1

)
for each i = 1, 2, · · ·n,

j∑
i=1

ti < j

(
n− 1

k − 1

)
− 2

(
j

k

)
, for 1 ≤ j ≤ n− 1 and

n∑
i=1

ti = (k − 2)

(
n

k

)
. (6)

Proof. The proof of necessity is on the same lines as the proof of Theorem 3.1. Here the necessity
follows from conditions (4) and (5). For the proof of sufficiency, suppose that a non-increasing
sequence of integers t1 ≥ t2 ≥ · · · ≥ tn satisfies conditions (6). For each i = 1, 2, · · · , n, define
si and ri as in (3), then t1 <

(
n−1
k−1

)
, and

tn =
n∑

i=1

ti −
n−1∑
i=1

ti > (k − 2)

(
n

k

)
− (n− 1)

(
n− 1

k − 1

)
+ 2

(
n− 1

k

)
= −

(
n− 1

k − 1

)
.

18
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So, −
(
n−1
k−1

)
< ti <

(
n−1
k−1

)
and hence si > 0 and ri > 0 for all i. The sequence [si]

n

1
and [ri]

n

1
are

respectively non-increasing and non-decreasing. So, for 1 ≤ j ≤ n− 1,

j∑
i=1

si =

j∑
i=1

1

2

[(
n− 1

k − 1

)
+ ti

]

<
1

2

[
j

(
n− 1

k − 1

)
+ j

(
n− 1

k − 1

)
− 2

(
j

k

)]
= j

(
n− 1

k − 1

)
−
(
j

k

)
and likewise

j∑
i=1

ri =
j

2

(
n− 1

k − 1

)
− 1

2

j∑
i=1

ti >

(
j

k

)
,

with
∑n

i=1 si = (k − 1)
(
n
k

)
and

∑n
i=1 ri =

(
n
k

)
.

Thus, by conditions (4) and (5), there exists a strong k-hypertournament with [si]
n

1
and [ri]

n

1
as its

score and losing score sequences, and hence ti = si − ri, for i = 1, 2, · · · , n as its total scores. �
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