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Abstract: An injective function f : V (G) → {0, 1, 2, . . . , q} is an odd sum labeling if the

induced edge labeling f∗ defined by f∗(uv) = f(u)+f(v), for all uv ∈ E(G), is bijective and

f∗(E(G)) = {1, 3, 5, . . . , 2q − 1}. A graph is said to be an odd sum graph if it admits an odd

sum labeling. In this paper, we have studied the odd sum property for the graphs paths Pp,
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§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected simple graph. Let G(V, E) be

a graph with p vertices and q edges. For notations and terminology we follow [1].

Path on p vertices is denoted by Pp and a cycle on p vertices is denoted by Cp whose length

is p. If m number of pendant vertices are attached at each vertex of G, then the resultant graph

obtained from G is the graph G ⊙ mK1. When m = 1, G ⊙ K1 is the corona of G. The bistar

graph Bm,n is the graph obtained from K2 by identifying the central vertices of K1,m and K1,n

at the end vertices of K2 respectively. The graph P2 × Pp is the ladder and P2 × Cp is the

cyclic ladder. The balloon of a graph G, Pn(G) is the graph obtained from G by identifying an

end vertex of Pn at a vertex of G. Let v be a fixed vertex of G. The graph [Pm; G] is obtained

from m copies of G and the path Pm : u1u2 . . . um by identifying ui with the vertex v of the

ith copy of G, for 1 ≤ i ≤ m. The graph (Pm; G) is obtained from m copies of G and the path

Pm : u1u2 . . . um by joining ui with the vertex v of the ith copy of G by means of an edge, for

1 ≤ i ≤ m [7]. The cube graph Q3 is P2 ×C4. A quadrilateral snake is obtained from a path by
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identifying each edge of the path with an edge of the cycle C4. The graph T
(n)
p is a tree formed

from n copies of path on p vertices by joining an edge uu′ between every pair of consecutive

paths where u is a vertex in ith copy of the path and u′ is the corresponding vertex in the

(i + 1)th copy of the path.

In [2], an odd edge labeling of a graph is defined as follows: A labeling f : V (G) →

{0, 1, 2, . . . , p − 1} is called an odd edge labeling of G if for the edge labeling f+ on E(G)

defined by f+(uv) = f(u) + f(v) for any edge uv ∈ E(G), for a connected graph G, the edge

labeling is not necessarily injective. In [5], the concept of pair sum labeling was introduced. An

injective function f : V (G) → {±1,±2, . . . ,±p} is said to be a pair sum labeling if the induced

edge function fe : E(G) → Z − {0} defined by fe(uv) = f(u) + f(v) is one-one and fe(E(G))

is either of the form {±k1,±k2, . . . ,±
kq

2 } or {±k1,±k2, . . . ,±k q−1

2

} ∪ {
kq+1

2 } according as q is

even or odd. A graph with a pair sum labeling defined on it is called a pair sum graph. In [6],

the concept of mean labeling was introduced. An injective function f : V (G) → {0, 1, 2, . . . , q}

is said to be a mean labeling if the induced edge labeling f∗ defined by

f∗(uv) =











f(u) + f(v)

2
if f(u) + f(v) is even,

f(u) + f(v) + 1

2
if f(u) + f(v) is odd

is injective and f∗(E(G)) = {1, 2, . . . , q}. A graph G is said to be odd mean if there exists an

injective function f from V (G) to {0, 1, 2, 3, . . . , 2q − 1} such that the induced map f∗ from

E(G) → {1, 3, 5, . . . , 2q − 1} defined by

f∗(uv) =











f(u) + f(v)

2
if f(u) + f(v) is even,

f(u) + f(v) + 1

2
if f(u) + f(v) is odd

is a bijection [6].

Motivated by these, we introduce a new concept called odd sum labeling. An injective

function f : V (G) → {0, 1, 2, . . . , q} is an odd sum labeling if the induced edge labeling f∗

defined by f∗(uv) = f(u)+f(v), for all uv ∈ E(G), is bijective and f∗(E(G)) = {1, 3, 5, . . . , 2q−

1}. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper, we

have studied the odd sum property for the graphs paths Pp, cycles Cp, Cp⊙K1, the ladder P2×

Pp, Pm⊙nK1, the balloon graph Pn(Cp), quadrilateral snake Qn, [Pm; Cn], (Pm; Q3), T
(n)
p , Hn⊙

mK1, bistar graph and cyclic ladder P2 × Cp.

§2. Main Results

Observation 2.1 Every graph having an odd cycle is not an odd sum graph.

Proof If a graph has a cycle of odd length, then at least one edge uv on the cycle such

that f(u) and f(v) are of same suit and hence its induced edge label f∗(uv) is even. 2
Proposition 2.2 Every path Pp, p ≥ 2 is an odd sum graph.
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Proof Let v1, v2, . . . , vp be the vertices of the path Pp. The labeling f : V (G) → {0, 1, 2, . . . , q}

is defined as f(vi) = i − 1 for 1 ≤ i ≤ p and the induced edge label is f∗(vivi+1) = 2i − 1, for

1 ≤ i ≤ p − 1. Then f is an odd sum labeling and hence Pp is an odd sum graph. 2
0 1 2 3 4 5 6 7 8 9

1 3 5 7 9 11 13 15 17

Figure 1: An odd sum labeling of P10.

Proposition 2.3 Cycle Cp is an odd sum graph only when p ≡ 0(mod 4).
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Figure 2: An odd sum labeling of C24.

Proof By Observation 2.1, Cp is not an odd sum graph when p is odd. Suppose p =

2m, m ≥ 2 and Cp admits an odd sum labeling. Then
∑

uv∈E(G)

f∗(uv) =
∑

uv∈E(G)

(f(u) + f(v)).

This implies that 1 + 3 + · · ·+ (4m − 1) = 2(0 + 1 + 2 + · · · + 2m) − 2i where i is not a vertex

label of Cp. From this we have, i = m. If m is odd, then the number of even values is in excess

of 2 that of the number of odd values and they are to be assigned as vertex labels in Cp. Thus

if Cp admits an odd sum labeling, then m should be even and hence p is a multiple of 4.

Suppose p = 4m, m ≥ 1. Let v1, v2, . . . , vp be the vertices of the cycle Cp. The labeling

f : V (G) → {0, 1, 2, . . . , 4m} is defined as follows.

f(vi) =















i, 1 ≤ i ≤ 2m − 1 and i is odd,

i − 2, 1 ≤ i ≤ 2m and i is even,

i, 2m + 1 ≤ i ≤ 4m.

The induced edge labels are obtained as follows.

f∗(vivi+1) =







2i − 1, 1 ≤ i ≤ 2m,

2i + 1, 2m + 1 ≤ i ≤ 4m − 1 and

f∗(v4mv1) = 4m + 1.
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Hence f is an odd sum labeling of Cp only when p ≡ 0(mod 4). 2
Proposition 2.4 For each even integer p ≥ 4, Cp ⊙ K1 is an odd sum graph.

Proof In Cp ⊙ K1, let v1, v2, . . . , vp be the vertices on the cycle and let ui be the pendant

vertex of vi at each i, 1 ≤ i ≤ p.

Case 1 p = 4m, for m ≥ 1.

The labeling f : V (Cp ⊙ K1) → {0, 1, 2, . . . , 8m} is defined as follows.

f(vi) =















2i − 2, 1 ≤ i ≤ 2m − 1 and i is odd,

2i, 2m + 1 ≤ i ≤ 4m− 1 and i is odd,

2i − 1, 2 ≤ i ≤ 4m and i is even and

f(ui) =















2i − 1, 1 ≤ i ≤ 4m − 1 and i is odd,

2i − 2, 2 ≤ i ≤ 2m and i is even,

2i, 2m + 2 ≤ i ≤ 4m and i is even.

The induced edge labels are obtained as follows.

f∗(vivi+1) =







4i − 1, 1 ≤ i ≤ 2m − 1,

4i + 1, 2m ≤ i ≤ 4m − 1,

f∗(v4mv1) = 8m − 1 and

f∗(uivi) =







4i − 3, 1 ≤ i ≤ 2m,

4i − 1, 2m + 1 ≤ i ≤ 4m.

Thus f is an odd sum labeling of Cp ⊙ K1. Hence Cp ⊙ K1 is an odd sum graph when

p = 4m.

Case 2 p = 4m + 2, for m ≥ 1.

The labeling f : V (Cp ⊙ K1) → {0, 1, 2, . . . , 8m + 4} is defined as follows.

f(vi) =







































2i − 2, 1 ≤ i ≤ 2m + 1 and i is odd,

2i, 2m + 3 ≤ i ≤ 4m + 1 and i is odd,

2i − 1, 2 ≤ i ≤ 2m and i is even,

2i + 1, i = 2m + 2,

2i − 1, 2m + 4 ≤ i ≤ 4m + 2 and i is even and

f(ui) =







































2i − 1, 1 ≤ i ≤ 2m + 1 and i is odd,

2i − 3, i = 2m + 3,

2i − 1, 2m + 5 ≤ i ≤ 4m + 1 and i is odd,

2i − 2, 2 ≤ i ≤ 2m + 2 and i is even,

2i, 2m + 4 ≤ i ≤ 4m + 2 and i is even.
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The induced edge labels are obtained as follows.

f∗(vivi+1) =



























4i − 1, 1 ≤ i ≤ 2m,

4i + 1, i = 2m + 1,

4i + 3, i = 2m + 2,

4i + 1, 2m + 3 ≤ i ≤ 4m + 1,

f∗(v4m+2v1) = 8m + 3 and

f∗(uivi) =



























4i − 3, 1 ≤ i ≤ 2m + 1,

4i − 1, i = 2m + 2,

4i − 3, i = 2m + 3

4i − 1, 2m + 4 ≤ i ≤ 4m + 2.

Thus f is an odd sum labeling of Cp ⊙ K1. Hence Cp ⊙ K1 is an odd sum graph. 2
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Figure 3: An odd sum labeling of C24 ⊙ K1.
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Figure 4: An odd sum labeling of C22 ⊙ K1.

Proposition 2.5 For every positive integer p ≥ 2, the ladder P2 × Pp is an odd sum graph.

Proof Let u1, u2, . . . , up and v1, v2, . . . , vp be the vertices of the two copies of Pp. The

labeling f : V (P2 × Pp) → {0, 1, 2, . . . , 3p− 2} is defined as follows.

f(ui) = 3i − 3, for 1 ≤ i ≤ p and

f(vi) = 3i − 2, for 1 ≤ i ≤ p.

The induced edge labels are obtained as follows.

f∗(uiui+1) = 6i − 3, for 1 ≤ i ≤ p − 1,

f∗(vivi+1) = 6i − 1, for 1 ≤ i ≤ p − 1 and

f∗(uivi) = 6i − 5, for 1 ≤ i ≤ p.

Thus f is an odd sum labeling of P2 × Pp. Hence P2 × Pp is an odd sum graph. 2
1 4 7 10 13 16 19 22 25

5 11 17 23 29 35 41 47

1 7 13 19 25 31 37 43 49

0 3 6 9 12 15 18 21 24

3 9 15 21 27 33 39 45

Figure 5: An odd sum labeling of P2 × P9.
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Proposition 2.6 The graph Pm ⊙ nK1 is an odd sum graph if either m is an even positive

integer and n is any positive integer or m is an odd positive integer and n = 1, 2.

Proof In Pm ⊙ nK1, let u1, u2, . . . , um be the vertices on the path and {ui,j : 1 ≤ j ≤ n}

be the pendant vertices attached at ui, 1 ≤ i ≤ m.

Case 1 m is even.

The labeling f : V (Pm ⊙ nK1) → {0, 1, 2, . . . , m(n + 1) − 1} is defined as follows.

For 1 ≤ i ≤ m,

f(ui) =







(n + 1)(i − 1), i is odd,

(n + 1)i − 1, i is even.

For 1 ≤ i ≤ m and 1 ≤ j ≤ n,

f(ui,j) =







(n + 1)(i − 1) + 2j − 1, i is odd,

(n + 1)(i − 2) + 2j, i is even.

The induced edge labels are obtained as follows.

f∗(uiui,j) = 2(n + 1)(i − 1) + 2j − 1, for 1 ≤ i ≤ m and 1 ≤ j ≤ n and

f∗(uiui+1) = 2(n + 1)i − 1, for 1 ≤ i ≤ m − 1.

Thus f is an odd sum labeling of Pm ⊙ nK1.

0 7 7 15 8 23 15 31 16 39 23

1 3 5 2 4 6 9 11 13 10 12 14 17 19 21 18 20 22

1
3

5
9

11
13 17

19
21 25

27
29 33 35

37 41 43
45

Figure 6: An odd sum labeling of P6 ⊙ 3K1.

Case 2 m is odd.

If Pm ⊙nK1 has an odd sum labeling f when m is odd, then f is a bijection from V (Pm ⊙

nK1) to the set {0, 1, 2, . . . , m(n+1)−1}. Since the number of even integers in this set is either

equal to or one excess to the number of odd integers in this set, n should be less than or equal

to 2.

In case of m is odd and n = 1, 2, the labeling f : V (Pm⊙nK1) → {0, 1, 2, . . . , m(n+1)−1}

is defined as follows.

For 1 ≤ i ≤ m,

f(ui) =







(n + 1)(i − 1) + 1, i is odd,

(n + 1)i − 2, i is even.
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For 1 ≤ i ≤ m and 1 ≤ j ≤ n,

f(ui,j) =







(n + 1)(i − 1) + 2(j − 1), i is odd,

(n + 1)(i − 2) + 2j + 1, i is even.

The induced edge labels are obtained as follows.

For 1 ≤ i ≤ m and 1 ≤ j ≤ n,

f∗(uiui,j) = 2(n + 1)(i − 1) + 2j − 1.

For 1 ≤ i ≤ m − 1,

f∗(uiui+1) = 2(n + 1)i − 1.

Thus f is an odd sum labeling of Pm ⊙ nK1. 2
0 3 4 7 8 11 12

1 2 5 6 9 10 13

1 5 9 13 17 21 25

3 7 11 15 19 23

Figure 7: An odd sum labeling of P7 ⊙ K1.

0 2 3 5 6 8 9 11 12 14

1 3 7 9 13 15 19 21 25 27
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11
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17

10

23

13

Figure 8: An odd sum labeling of P5 ⊙ 2K1.

Proposition 2.7 The graph Pn(Cp) is an odd sum graph if either p ≡ 0(mod 4) or p ≡ 2(mod 4)

and n 6≡ 1(mod 3).

Proof Let u1, u2, . . . , up be the vertices of Cp and v1, v2, . . . , vn be the vertices of the path

Pn and up be identified with v1 in Pn(Cp).

Case 1 p ≡ 0(mod 4).

Let p = 4m, m ≥ 1. The labeling f : V (Pn(Cp)) → {0, 1, 2, . . . , 4m + n − 1} is defined as

follows.

f(ui) =















i, 1 ≤ i ≤ 4m and i is odd,

i − 2, 1 ≤ i ≤ 2m and i is even,

i, 2m + 1 ≤ i ≤ 4m and i is even,

f(vi) = 4m + i − 1, 2 ≤ i ≤ n.



On Odd Sum Graphs 67

The induced edge labels are obtained as follows.

f∗(uiui+1) =







2i − 1, 1 ≤ i ≤ 2m,

2i + 1, 2m + 1 ≤ i ≤ 4m − 1.

f∗(u1u4m) = 4m + 1 and

f∗(vivi+1) = 8m + 2i − 1, 1 ≤ i ≤ n − 1.

Thus f is an odd sum labeling of Pn(Cp).

0
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3 1

9

15

13
11
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5

3

9 10 11 12
17 19 21 23

Figure 9: An odd sum labeling of P5(C8).

Case 2 p ≡ 2(mod 4).

Let p = 4m + 2, m ≥ 1.

Subcase 2.1 n ≡ 0(mod 3).

The labeling f : V (Pn(Cp)) → {0, 1, 2, . . . , 4m + n + 1} is defined as follows.

f(u1) = 4m + 3,

f(ui) =















i − 2, 1 ≤ i ≤ 2m + 3,

i, 2m + 4 ≤ i ≤ 4m + 2 and i is even,

i − 2, 2m + 4 ≤ i ≤ 4m + 2 and i is odd and

f(vi) =







































4m + i + 1, 1 ≤ i ≤ n − 3 and i ≡ 1(mod 3),

4m + i − 1, 1 ≤ i ≤ n − 1 and i ≡ 2(mod 3),

4m + i + 3, 1 ≤ i ≤ n − 1 and i ≡ 0(mod 3),

4m + n + 1, i = n − 2,

4m + n − 1, i = n.
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The induced edge labels are obtained as follows.

f∗(uiui+1) =















4m + 3, i = 1,

2i − 3, 2 ≤ i ≤ 2m + 2,

2i − 1, 2m + 3 ≤ i ≤ 4m + 1.

f∗(u4m+2u1) = 8m + 5 and

f∗(vivi+1) =



























8m + 2i + 3, 2 ≤ i ≤ n − 4 and i ≡ 2(mod 3),

8m + 2i + 5, 2 ≤ i ≤ n − 4 and i ≡ 0(mod 3),

8m + 2i + 1, 2 ≤ i ≤ n − 4 and i ≡ 1(mod 3),

8m + 4n − 2i − 5, n − 3 ≤ i ≤ n − 1.

Thus f is an odd sum labeling of Pn(Cp).
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Figure 10: An odd sum labeling of P12(C22).

Subcase 2.2 n ≡ 2(mod 3).

The labeling f : V (Pn(Cp)) → {0, 1, 2, . . . , 4m + n + 1} is defined as follows.

f(u1) = 4m + 3,

f(ui) =















i − 2, 1 ≤ i ≤ 2m + 3,

i, 2m + 4 ≤ i ≤ 4m + 2 and i is even,

i − 2, 2m + 4 ≤ i ≤ 4m + 2 and i is odd,

and f(vi) =















4m + i + 1, 1 ≤ i ≤ n and i ≡ 1(mod 3),

4m + i − 1, 1 ≤ i ≤ n and i ≡ 2(mod 3),

4m + i + 3, 1 ≤ i ≤ n and i ≡ 0(mod 3).
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The induced edge labels are obtained as follows.

f∗(uiui+1) =















4m + 3, i = 1,

2i − 3, 2 ≤ i ≤ 2m + 2,

2i − 1, 2m + 3 ≤ i ≤ 4m + 1,

f∗(u4m+2u1) = 8m + 5 and

f∗(vivi+1) =















8m + 2i + 1, 1 ≤ i ≤ n and i ≡ 1(mod 3),

8m + 2i + 3, 1 ≤ i ≤ n and i ≡ 2(mod 3),

8m + 2i + 5, 1 ≤ i ≤ n and i ≡ 0(mod 3).

Thus f is an odd sum labeling of Pn(Cp). Hence Pn(Cp) is an odd sum graph. 2
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Figure 11: An odd sum labeling of P11(C18).

Proposition 2.8 [Pm; Cn] is an odd sum graph for n ≡ 0(mod 4) and any m ≥ 2.

Proof In [Pm; Cn], let v1, v2, . . . , vm be the vertices on the path Pm, vi,1, vi,2,

. . . , vi,n be the vertices of the ith cycle Cn, for 1 ≤ i ≤ m and each vertex vi,1 of the ith

cycle Cn is identified with the vertex vi of the path Pm, 1 ≤ i ≤ m.

Suppose n = 4t, t ≥ 1. The labeling f : V ([Pm; Cn]) → {0, 1, 2, 3, . . . , m(n + 1) − 1} is

defined as follows.

For 1 ≤ i ≤ m,

f(vi,j) =



















































(n + 1)(i − 1) + j − 1, 1 ≤ j ≤ 2t, i and j are odd,

(n + 1)(i − 1) + j + 1, 2t + 1 ≤ j ≤ 4t, i and j are odd,

(n + 1)(i − 1) + j − 1, 1 ≤ j ≤ 4t, i is odd and j are even,

(n + 1)i − j, 1 ≤ j ≤ 2t, i is even and j is odd,

(n + 1)i − j − 2, 2t + 1 ≤ j ≤ 4t, i is even and j is odd,

(n + 1)i − j, 1 ≤ j ≤ 4t, i is even and j is even.
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For 1 ≤ i ≤ m, the induced edge label is obtained as follows.

f∗(vi,jvi,j+1) =







































2(n + 1)(i − 1) + 2j − 1, 1 ≤ j ≤ 2t − 1 and i is odd,

2(n + 1)(i − 1) + 2j + 1, 2t ≤ j ≤ 4t − 1 and i is odd,

2(n + 1)(i − 1) + 9, j = 1 and i is even,

2(n + 1)(i − 1) + 2j − 3, 2 ≤ j ≤ 2t + 1 and i is even,

2(n + 1)(i − 1) + 2j − 1, 2t + 2 ≤ j ≤ 4t − 1 and i is even

and f∗(vi,4tvi,1) =







2(n + 1)(i − 1) + 4t − 1, i is odd,

2(n + 1)(i − 1) + 8t − 1, i is even.

Thus f is an odd sum labeling of [Pm; Cn]. Hence [Pm; Cn] is an odd sum graph. 2
0 17 18 35 3617 35 53 71

7

8

5

6

3

2

1
7

15

13

11 9

5

3

1 10

9

12

11

14

15

16
27

19

21

23 25

29

31

33 25

26

23

24

21

20

19
43

51

49

47 45

41

39

37 34

33

32

29

30

27

28 63

55

57

59 61

65

67

69 43

44

41

42

39

38

37
79

87

85

83 81

77

75

73

Figure 12: An odd sum labeling of [P5; C8].

Proposition 2.9 Quadrilateral snake Qn is an odd sum graph for n ≥ 1.

Proof The vertex set and edge set of the Quadrilateral snake Qn are V (Qn) = {ui, vj , wj :

1 ≤ i ≤ n + 1, 1 ≤ j ≤ n} and E(Qn) = {uivi, viwi,

uiui+1, ui+1wi : 1 ≤ i ≤ n} respectively. The labeling f : V (Qn) → {0, 1, 2, . . . , 4n} is de-

fined as follows.

f(ui) =







4i − 4, 1 ≤ i ≤ n + 1 and i is odd,

4i − 5, 1 ≤ i ≤ n and i is even,

f(vi) =







4i − 3, 1 ≤ i ≤ n and i is odd,

4i − 2, 1 ≤ i ≤ n and i is even

and f(wi) =







4i, 1 ≤ i ≤ n and i is odd,

4i − 1, 1 ≤ i ≤ n and i is even.

The induced edge labels are obtained as follows

f∗(uiui+1) = 8i − 5, 1 ≤ i ≤ n,

f∗(uivi) = 8i − 7, 1 ≤ i ≤ n,

f∗(viwi) = 8i − 3, 1 ≤ i ≤ n,

f∗(wiui+1) = 8i − 1, 1 ≤ i ≤ n.
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Thus f is an odd sum labeling of Qn. Hence the Quadrilateral snake Qn is an odd sum graph

for n ≥ 1. 2
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Figure 13: An odd sum labeling of Q7.

Proposition 2.10 (Pm; Q3) is an odd sum graph for any positive integer m ≥ 1.

Proof Let vi,j , 1 ≤ j ≤ 8 be the vertices in the ith copy of Q3, 1 ≤ i ≤ m and

u1, u2, . . . , um be the vertices on the path Pm. {uiui+1 : 1 ≤ i ≤ m− 1}∪{uivi,1 : 1 ≤ i ≤ m}∪

{vi,1vi,2, vi,1vi,4, vi,1vi,6, vi,2vi,3, vi,2vi,7, vi,3vi,4, vi,3vi,8, vi,4vi,5,

vi,5vi,6, vi,5vi,8, vi,6vi,7, vi,7vi,8 : 1 ≤ i ≤ m} be the edge set of (Pm; Q3).

The labeling f : V [(Pm; Q3)] → {0, 1, 2, . . . , 14m− 1} is defined as follows:

For 1 ≤ i ≤ m,

f(ui) =







14(i − 1), i is odd,

14i − 1, i is even.

For 1 ≤ i ≤ m and i is odd,

f(vi,j) =



















































14i − 13, j = 1,

14i − 12 + j, 2 ≤ j ≤ 3,

14i − 12, j = 4,

14i − 5, j = 5,

14i − 8 + j, 6 ≤ j ≤ 7,

14i − 4, j = 8.

For 1 ≤ i ≤ m and i is even,

f(vi,j) =



















































14i − 2, j = 1,

14i − j − 3, 2 ≤ j ≤ 3,

14i − 3, j = 4,

14i − 10, j = 5,

14i − j − 7, 6 ≤ j ≤ 7,

14i − 11, j = 8.

The induced edge label of (Pm; Q3) is obtained as follows:
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For 1 ≤ i ≤ m − 1,

f∗(uiui+1) = 28i − 1.

For 1 ≤ i ≤ m,

f∗(uivi,1) =







28i − 27, i is odd,

28i − 3, i is even.

For 1 ≤ i ≤ m and i is odd For 1 ≤ i ≤ m and i is even

f∗(vi,1vi,2) = 28i − 23 f∗(vi,1vi,2) = 28i − 7

f∗(vi,1vi,4) = 28i − 25, f∗(vi,1vi,4) = 28i − 5

f∗(vi,1vi,6) = 28i − 15 f∗(vi,1vi,6) = 28i − 15

f∗(vi,2vi,3) = 28i − 19 f∗(vi,2vi,3) = 28i − 11

f∗(vi,2vi,7) = 28i − 11 f∗(vi,2vi,7) = 28i − 19

f∗(vi,3vi,4) = 28i − 21 f∗(vi,3vi,4) = 28i − 9

f∗(vi,3vi,8) = 28i − 13 f∗(vi,3vi,8) = 28i − 17

f∗(vi,4vi,5) = 28i − 17 f∗(vi,4vi,5) = 28i − 13

f∗(vi,5vi,6) = 28i − 7 f∗(vi,5vi,6) = 28i − 23

f∗(vi,5vi,8) = 28i − 9 f∗(vi,5vi,8) = 28i − 21,

f∗(vi,6vi,7) = 28i − 3 f∗(vi,6vi,7) = 28i − 27

f∗(vi,7vi,8) = 28i − 5 f∗(vi,7vi,8) = 28i − 25

Thus f is an odd sum labeling of (Pm; Q3). Hence (Pm; Q3) is an odd sum graph. 2
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Figure 14: An odd sum labeling of (P4; Q3).

Proposition 2.11 For all positive integers p and n, the graph T
(n)
p is an odd sum graph.

Proof Let v
(j)
i , 1 ≤ i ≤ p be the vertices of the jth copy of the path on p vertices, 1 ≤ j ≤ n.

The graph T
(n)
p is formed by adding an edge v

(j)
i v

(j+1)
i between jth and (j + 1)th copy of the

path at some i, 1 ≤ i ≤ p., The labeling f : V (G) → {0, 1, 2, . . . , np − 1} is defined as follows:
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For 1 ≤ j ≤ n and 1 ≤ i ≤ p,

f(v
(j)
i ) =







p(j − 1) + i − 1, j is odd,

pj − i, j is even.

The induced edge labeling is obtained as follows:

For 1 ≤ j ≤ n and 1 ≤ i ≤ p − 1,

f∗(v
(j)
i v

(j)
i+1) =







2p(j − 1) + 2i − 1, j is odd,

2pj − 2i − 1, j is even and

f∗(v
(j)
i v

(j+1)
i ) = 2pj − 1.

Thus f is an odd sum labeling of the graph T
(n)
p . Hence T

(n)
p is an odd sum graph. 2
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Figure 15: An odd sum labeling of T
(5)
8 .

Proposition 2.12 The graph Hn ⊙ mK1 is an odd sum graph for all positive integers m and

n.

Proof Let u1, u2, . . . , un and v1, v2, . . . , vn be the vertices on the path of length n− 1. Let

xi,k and yi,k, 1 ≤ k ≤ m, be the pendant vertices at ui and vi respectively, for 1 ≤ i ≤ n.

Define f : V (Hn ⊙ mK1) → {0, 1, 2, . . . , 2n(m + 1) − 1} as follows:
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For 1 ≤ i ≤ n,

f(ui) =







i + m(i − 1), i is odd,

i(m + 1) − 2, i is even and

f(vi) =















f(ui) + n(m + 1) + m − 2, i is odd and n is odd,

f(ui) + n(m + 1) − m + 2, i is even and n is odd,

f(ui) + n(m + 1), n is even.

For 1 ≤ i ≤ n and 1 ≤ k ≤ m,

f(xi,k) =







(m + 1)(i − 1) + 2k − 2, i is odd,

(m + 1)(i − 2) + 2k + 1, i is even and

f(yi,k) =















f(xi,k) + n(m + 1) − m + 2, i is odd and n is odd,

f(xi,k) + n(m + 1) + m − 2, i is even and n is odd,

f(xi,k) + n(m + 1), n is even.

The induced edge labels are obtained as follows:

For 1 ≤ i ≤ n − 1,

f∗(uiui+1) = 2i(m + 1) − 1 and

f∗(vivi+1) = f∗(uiui+1) + 2n(m + 1).

For 1 ≤ i ≤ n and 1 ≤ k ≤ m,

f∗(uixi,k) = 2(m + 1)(i − 1) + 2k − 1 and

f∗(viyi,k) = f∗(uixi,k) + 2n(m + 1).

When n is odd,

f∗

(

u n+1

2

vn+1

2

)

= 2n(m + 1) − 1.

When n is even,

f∗
(

u n

2
+1vn

2

)

= 2n(m + 1) − 1.

Thus f is an odd sum labeling of Hn ⊙ mK1. Hence Hn ⊙ mK1 is an odd sum graph for

all positive integers m and n. 2
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Figure 16: An odd sum labeling of H4 ⊙ 3K1.
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Figure 17: An odd sum labeling of H5 ⊙ 4K1.
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Corollary 2.13 For any positive integer m, the bistar graph B(m, m) is an odd sum graph.

Proof By taking n = 1 in Proposition 2.12, the result follows. 2
Proposition 2.14 For any even integer p ≥ 4, the cyclic ladder P2 ×Cp is an odd sum graph.

Proof Let u1, u2, . . . , up and v1, v2, . . . , vp be the vertices of the inner and outer cycle which

are joined by the edges {uivi : 1 ≤ i ≤ p}.

Case 1 p = 4m, m ≥ 2.
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Figure 18: An odd sum labeling of P2 × C24.

The labeling f : V (P2 × Cp) → {0, 1, 2, . . . , 12m} is defined as follows:

f(ui) =















i − 1, 1 ≤ i ≤ 2m − 1 and i is odd,

i + 1, 2 ≤ i ≤ 4m − 2 and i is even,

i + 1, 2m + 1 ≤ i ≤ 4m− 1 and i is odd,

f(u4m) = 1 and

f(vi) =















8k + i, 1 ≤ i ≤ 4m − 1 and i is odd,

8k + i − 2, 2 ≤ i ≤ 2m and i is even,

8k + i, 2m + 2 ≤ i ≤ 4m and i is even.
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The induced edge labeling is obtained as follows.

f∗(uiui+1) =















2i + 1, 1 ≤ i ≤ 2m − 1,

2i + 3, 2m ≤ i ≤ 4m − 2,

i + 2, i = 4m − 1,

f∗(u1u4m) = 1,

f∗(vivi+1) =







16m + 2i − 1, 1 ≤ i ≤ 2m

16m + 2i + 1, 2m + 1 ≤ i ≤ 4m − 1,

f∗(v1v4m) = 20m + 1,

f∗(uivi) =







8m + 2i − 1, 1 ≤ i ≤ 2m,

8m + 2i + 1, 2m + 1 ≤ i ≤ 4m − 1 and

f∗(u4mv4m) = 12m + 1.

Thus f is an odd sum labeling of P2 × Cp. Hence P2 × Cp is an odd sum graph when

p = 4m.

Case 2 p = 4m + 2, m ≥ 1.
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Figure 19: An odd sum labeling of P2 × C22.

The labeling f : V (P2 × Cp) → {0, 1, 2, . . . , 12m} is defined as follows:

f(ui) =







3i − 3, 1 ≤ i ≤ 2m + 2,

3i + 1, 2m + 3 ≤ i ≤ 4m + 1 and i is odd,
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f(ui) =







3i − 3, 2m + 4 ≤ i ≤ 4m and i is even,

3i − 1, i = 4m + 2 and

f(vi) =



























3i − 2, 1 ≤ i ≤ 2m + 1,

3i + 2, 2m + 2 ≤ i ≤ 4m and i is even,

3i − 2, 2m + 3 ≤ i ≤ 4m + 1 and i is odd,

3i, i = 4m + 2.

The induced edge labels are given as

f∗(uiui+1) =















6i − 3, 1 ≤ i ≤ 2m + 1,

6i + 1, 2m + 2 ≤ i ≤ 4m,

6i + 3, i = 4m + 1,

f∗(u1u4m+2) = 12m + 5,

f∗(vivi+1) =















6i − 1, 1 ≤ i ≤ 2m,

6i + 3, 2m + 1 ≤ i ≤ 4m,

6i + 1, i = 4m + 1,

f∗(v1v4m+2) = 12m + 7 and

f∗(uivi) =







6i − 5, 1 ≤ i ≤ 2m + 1,

6i − 1, 2m + 2 ≤ i ≤ 4m + 2.

Thus f is an odd sum labeling of P2 × Cp. Whence P2 × Cp is an odd sum graph if

p = 4m + 2. 2
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