Electronic Journal of Graph Theory and Applications

The connected size Ramsey number for matchings versus small disconnected graphs

Hilda Assiyatun, Budi Rahadjeng ${ }^{1 *}$, Edy Tri Baskoro
Combinatorial Mathematics Research Group,
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung, Indonesia
hilda@math.itb.ac.id, budi.rahadjeng@students.itb.ac.id, ebaskoro@math.itb.ac.id

Abstract

Let F, G, and H be simple graphs. The notation $F \rightarrow(G, H)$ means that if all the edges of F are arbitrarily colored by red or blue, then there always exists either a red subgraph G or a blue subgraph H. The size Ramsey number of graph G and H, denoted by $\hat{r}(G, H)$ is the smallest integer k such that there is a graph F with k edges satisfying $F \rightarrow(G, H)$. In this research, we will study a modified size Ramsey number, namely the connected size Ramsey number. In this case, we only consider connected graphs F satisfying the above properties. This connected size Ramsey number of G and H is denoted by $\hat{r}_{c}(G, H)$. We will derive an upper bound of $\hat{r}_{c}\left(n K_{2}, H\right), n \geq 2$ where H is $2 P_{m}$ or $2 K_{1, t}$, and find the exact values of $\hat{r}_{c}\left(n K_{2}, H\right)$, for some fixed n.

Keywords: connected size Ramsey number, disconnected graph, matching
Mathematics Subject Classification : 05D10, 05C55
DOI: 10.5614/ejgta.2019.7.1.9

1. Introduction

All graphs in this paper are finite, undirected, and simple. Let F, G, and H be graphs. The number of vertices and edges of graph F will be denoted by $|V(F)|$ and $|E(F)|$, respectively. The notation $F \rightarrow(G, H)$ means that in any red-blue coloring of the edges of F there exists a red

[^0]copy of G or a blue copy of H in F. We denote $F \nrightarrow(G, H)$ to mean that there is some red-blue coloring of the edges of F such that F contains neither a red G nor a blue H. This coloring is called a (G, H)-coloring of F.

The size Ramsey number for a pair of graphs G and H, denoted by $\hat{r}(G, H)$, is the smallest integer k such that there is a graph F with k edges satisfying $F \longrightarrow(G, H)$. The concept of size Ramsey number of a graph was introduced by Erdős et al. in [2]. A survey of results about the size Ramsey number for a pair of graphs can be seen in [4]. There are only a few results concerning the size Ramsey number for a pair of graphs, namely the size Ramsey numbers involving a complete graph, a star, a cycle or a path. Further results have also been obtained, for instance the size Ramsey number for some regular graphs [5] and the size Ramsey of a directed path [6].

A matching, denoted by $n K_{2}, n \geq 2$, is the graph consisting of $2 n$ vertices and n independent edges. In 1978, Burr et.al [1] determined the size Ramsey number for a pair of graphs involving matching, $\hat{r}\left(n K_{1, s}, m K_{1, t}\right)=(n+m-1)(s+t-1)$, for positive integers s, t, m, and n. The smallest graphs F satisfying this size Ramsey number are $(m+n-1) K_{1,(s+t-1)}$ and $l K_{3} \cup(m+n-l-1) K_{1,3}$ for $s=t=2,1 \leq l \leq m+n-1$, namely $(m+n-1) K_{1,(s+t-1)} \rightarrow\left(n K_{1, s}, m K_{1, t}\right)$ or $l K_{3} \cup(m+n-l-1) K_{1,3} \rightarrow\left(n K_{1,2}, m K_{1,2}\right)$. These two graphs are disconnected. The other result on the size Ramsey number involving matching was obtained by Erdős and Faudree [3]. They showed that $\hat{r}\left(2 K_{2}, P_{m}\right)=m+1$, where the smallest graph satisfying the size Ramsey number is a C_{m+1}, namely $C_{m+1} \rightarrow\left(2 K_{2}, P_{m}\right)$. Note that in this case, we have a connected smallest graph F satisfying $F \rightarrow(G, H)$.

Therefore, in general we have either connected or disconnected graph F with smallest size and satisfying $F \rightarrow(G, H)$, for given G and H. In this paper, we are interested in finding a connected graph F with minimum size and satisfying $F \rightarrow(G, H)$. The smallest size of a connected graph F so that $F \rightarrow(G, H)$ is called the connected size Ramsey number and denoted by $\hat{r}_{c}(G, H)$.

Some results on the connected size Ramsey number for a pairs of graphs were established. Rahadjeng et al. [8] determined the connected size Ramsey number for the pairs ($2 K_{2}, K_{1, m}$) and $\left(3 K_{2}, K_{1, m}\right)$. Then, in [7], they showed that $\hat{r}_{c}\left(n K_{2}, K_{1,3}\right)=4 n-1$, for $n \geq 2$.

In this paper, we will determine an upper bound of $\hat{r}_{c}\left(n K_{2}, H\right), n \geq 2$ where H is isomorphic to $2 P_{m}$ or $2 K_{1, t}$. We also determine the exact values of $\hat{r}_{c}\left(n K_{2}, H\right)$ for some fixed n.

2. Main Results

In this section, we present the following results.
Theorem 2.1. For $m \geq 2, \hat{r}_{c}\left(2 K_{2}, 2 P_{m}\right)=2 m+1$.
Proof. First, we will show that $\hat{r}_{c}\left(2 K_{2}, 2 P_{m}\right) \leq 2 m+1$. To do this, we will define the connected graph F having $2 m+1$ edges satisfying $F \rightarrow\left(2 K_{2}, 2 P_{m}\right)$. Consider the graph $F=C_{2 m+1}$. Let μ be any red-blue coloring of F such that there is no red $2 K_{2}$. Then, there is no red edge in F or a red subgraph in F is isomorphic to either P_{2} or P_{3}. Let us consider a subgraph $F^{\prime}=F-E\left(P_{i}\right)$ with $i=2$ or 3 . Certainly, F^{\prime} is isomorphic to either a path $P_{2 m+1}$ or $P_{2 m}$. Since the necessary condition of the path containing $2 P_{m}$ is having at least $2 m$ vertices, then obviously F^{\prime} contains $2 P_{m}$. Hence, $F \rightarrow\left(2 K_{2}, 2 P_{m}\right)$.

Now, we will show that $\hat{r}_{c}\left(2 K_{2}, 2 P_{m}\right) \geq 2 m+1$. Let G be a connected graph with $|E(G)| \leq$ 2 m . We will show that $G \nrightarrow\left(2 K_{2}, 2 P_{m}\right)$. We are going to prove it by using the number of vertices of G.

First, we assume that $|V(G)|=2 m+1$. In this case, G is a tree. Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be the longest path in G, with $k \leq 2 m+1$. Choose one vertex of $V(P)$, say v_{i}, so that $G-v_{i}$ contains no $2 P_{m}$. Color all edges incident with v_{i} by red and all edges in $G-v_{i}$ by blue. By this coloring, there is a $\left(2 K_{2}, 2 P_{m}\right)$-coloring on F. Thus, $G \nrightarrow\left(2 K_{2}, 2 P_{m}\right)$.

Next, suppose that $|V(G)| \leq 2 m$. Let us consider a complete graph $K_{2 m}$. For every $v \in$ $V\left(K_{2 m}\right), K_{2 m}-v \nsupseteq 2 P_{m}$. Since all graphs of order $2 m$ and size $2 m$ are proper subgraphs of $K_{2 m}$, then we can color all edges of G with red-blue so that there exists a $\left(2 K_{2}, 2 P_{m}\right)$-coloring in G. Thus, $G \nrightarrow\left(2 K_{2}, 2 P_{m}\right)$.

Theorem 2.2. $\hat{r}_{c}\left(n K_{2}, 2 P_{3}\right) \leq \begin{cases}3 n+1, & \text { for } n=3,4,5,6,7, \\ 5\left(\frac{n}{2}\right)+4, & \text { for even } n, n \geq 8, \\ 5\left(\frac{n+1}{2}\right)+2, & \text { for odd } n, n \geq 9 .\end{cases}$
Proof. We will find a connected graph F such that $F \rightarrow\left(n K_{2}, 2 P_{3}\right)$. First, we will prove for the case of $n \in[3,7]$. Let us consider the graph $F=C_{3 n+1}$.

Let μ be any red-blue coloring of F that maximizes the number of red edges and contains no red $n K_{2}$. The red subgraph of F contains at most $2(n-1)$ edges. The remaining edges, which are blue, are at least $3 n+1-2(n-1)=n+3$. This blue subgraph consists of at most $n-1$ disjoint paths. By the pigeon-hole principle, there are at least two disjoint paths of length 2 . Thus F contains blue $2 P_{3}$. Hence $F \rightarrow\left(n K_{2}, 2 P_{3}\right)$.

For the case of even n and $n \geq 8$, we consider the graph in Figure 1. The graph G contains $\left(\frac{n}{2}+1\right)$ disjoint cycles of length 4 and $\frac{n}{2}$ disjoint edges. Thus, the number of edges of G is $4\left(\frac{n}{2}+1\right)+\frac{n}{2}=5\left(\frac{n}{2}\right)+4$. Let μ be any red-blue coloring of G such that there is no red $n K_{2}$.

Figure 1. The graph $G \rightarrow\left(n K_{2}, 2 P_{3}\right)$, for even n.

Observe that for each 4 -cycle in G, we find at most two red K_{2}. Since G contains no red $n K_{2}$, we have at most $\left(\frac{n}{2}-1\right) 4$-cycles containing two red K_{2} and one 4 -cycle containing at most one red K_{2}. As a consequence, we have at least one 4 -cycle whose all edges are blue and one 4 -cycle which at least 2 consecutive edges are blue. Since those two 4 -cycles are separated by at least an edge, G contains a blue $2 P_{3}$. Thus, $G \rightarrow\left(n K_{2}, 2 P_{3}\right)$.

For the case of odd $n, n \geq 9$, let consider the graph in Figure 2. The graph F contains $\left(\frac{n+1}{2}\right)$ disjoint cycles of length $4,\left(\left(\frac{n+1}{2}\right)-1\right)$ disjoint edges and one star $K_{1,3}$. Thus, the number of edges of F is $4\left(\frac{n+1}{2}\right)+\left(\left(\frac{n+1}{2}\right)-1\right)+3=5\left(\frac{n+1}{2}\right)+2$.

Figure 2. The graph $F \rightarrow\left(n K_{2}, 2 P_{3}\right)$, for odd n.

Let μ be any red-blue coloring of F such that there is no red $n K_{2}$. By a similar argument as in the case for even n, there are at most $\left(\frac{n+1}{2}-1\right) 4$-cycles containing red $2 K_{2}$. As a consequence, we have at least one 4 -cycle which all edges are blue and a blue star $K_{1,3}$. Thus, $G \rightarrow\left(n K_{2}, 2 P_{3}\right)$.

Theorem 2.3. $\hat{r}_{c}\left(3 K_{2}, 2 P_{3}\right)=10$.
Proof. According Theorem 2.2, $\hat{r}_{c}\left(3 K_{2}, 2 P_{3}\right) \leq 10$. Now, we will prove that $\hat{r}_{c}\left(3 K_{2}, 2 P_{3}\right) \geq 10$. Suppose that F is a connected graph with $|E(F)| \leq 9$. We will show that $F \nrightarrow\left(3 K_{2}, 2 P_{3}\right)$.
Decompose F into two connected subgraph F_{1} and F_{2} with $\left|E\left(F_{1}\right)\right| \leq 3$ and $\left|E\left(F_{2}\right)\right| \leq 6$. Consider that the subgraph F_{1} is isomorphic to a star $K_{1,3}$ or a cycle C_{3} or a path P_{4}. If F_{1} is a star $K_{1,3}$ or a cycle C_{3}, then color all edges in F_{1} with red. According Theorem $2.1 \hat{r}_{c}\left(2 K_{2}, 2 P_{3}\right)=7$, then there is a $\left(2 K_{2}, 2 P_{3}\right)$ - coloring in F_{2}. Therefore, F contains at most two red K_{2} and no blue $2 P_{3}$. So, $F \nrightarrow\left(3 K_{2}, 2 P_{3}\right)$.

Now, suppose that F_{1} is a path P_{4}. We claim there are at most 2 common vertices of F_{1} and F_{2}. Suppose there are 3 common vertices of F_{2} and F_{1}. Consider the following graph. Let v_{i}^{1} and v_{j}^{2} be vertices of F_{1} and F_{2}, respectively. Since F_{2} is connected, there is a vertex v_{k}^{2} of F_{2} adjacent

to $v_{j}^{2}, j=5$ or 6 or 7 . Therefore, if we remove the vertex $v=v_{2}^{1}$, the graph $F-v$ is connected. Hence, this is the same as the previous case, namely when F_{1} is a star $K_{1,3}$. So, there are at most two common vertices of F_{1} and F_{2}, as claimed.

By Theorem 2.1, there is a $\left(2 K_{2}, 2 P_{3}\right)$ - coloring in F_{2}. Observe that, if there are at least two blue paths in F_{2}, the longest one is P_{4}. Therefore, we color two consecutive edges in F_{1} with red and the other edge with blue so that the blue edge of F_{1} is adjacent to the longest blue path in F_{2} (if any). Otherwise, the blue edge of F_{1} is adjacent to the red edges of F_{2}. In this coloring, F contains at most two red K_{2} and no blue $2 P_{3}$. So, $F \nrightarrow\left(3 K_{2}, 2 P_{3}\right)$. Thus, $\hat{r}_{c}\left(3 K_{2}, 2 P_{3}\right) \geq 10$. Combining the two inequalities, we have $\hat{r}_{c}\left(3 K_{2}, 2 P_{3}\right)=10$.

Theorem 2.4. $\hat{r}_{c}\left(n K_{2}, 2 P_{3}\right)=3 n+1$, for $n=3,4,5,6,7$.
Proof. By Theorem 2.2, we obtain $\hat{r}_{c}\left(n K_{2}, 2 P_{3}\right) \leq 3 n+1$. Now, we will prove $\hat{r}_{c}\left(n K_{2}, 2 P_{3}\right) \geq$ $3 n+1$. Suppose that F is a connected graph with $|E(F)| \leq 3 n$. We will show that $F \nrightarrow$ $\left(n K_{2}, 2 P_{3}\right)$. We proceed by induction on n. The assertion is true for $n=3$. Furthermore, we may assume that $\hat{r}_{c}\left(k K_{2}, 2 P_{3}\right) \geq 3 k+1$, for all $n \leq k \leq 6$.

Let F^{\prime} be a connected graph with $\left|E\left(F^{\prime}\right)\right| \leq 3(k+1)$. Decompose F^{\prime} into two connected subgraphs F_{1} and F_{2} with $\left|E\left(F_{1}\right)\right| \leq 3$ and $\left|E\left(F_{2}\right)\right| \leq 3 k$. Consider that the subgraph F_{1} isomorphic to a star $K_{1,3}$ or a cycle C_{3} or a path P_{4}. If F_{1} is a star $K_{1,3}$ or a cycle C_{3}, then color all edges in F_{1} with red. Next, by the induction hypothesis, there is a $\left(k K_{2}, 2 P_{3}\right)-$ coloring in F_{2}. By combining the coloring in F_{1} and F_{2}, there exists at most k red K_{2} and no blue $2 P_{3}$ in F^{\prime}. So, $F \nrightarrow\left((k+1) K_{2}, 2 P_{3}\right)$.

Now, assume that F_{1} is a path P_{4}. There are at most two common vertices of F_{1} and F_{2}, as in the previous theorem, namely x and y. Consider $\left(k K_{2}, 2 P_{3}\right)$ - coloring in F_{2}, that maximizes the number of red edges and minimizes the length of blue paths. If at most one of x and y is adjacent with a blue edge in F_{2}, then we color two consecutive edges in F_{1} with red and the other edge with blue so that the blue edge in F_{2} is adjacent with red edges in F_{1}. If both x and y are adjacent with blue edges in F_{2}, we claim that the longest blue path in F_{2} is P_{4}. Suppose the longest blue path in F_{2} is P_{5}. Let $F_{2}^{\prime}=F_{2}-P_{5}$. Observe that $\left|F_{2}^{\prime}\right| \leq 3 k-4$. We can view the coloring in F_{2}^{\prime} as a chain of alternating blue and red subgraphs, starting with a blue subgraph and ending with a red subgraph. As the number of red edges is maximized, there are at least $2(k-1)$ red edges in F_{2}^{\prime}. Thus, the number of edges in F_{2}^{\prime} is at least $(k-1)+2(k-1)=3 k-3$, a contradiction. So, the longest blue path in F_{2} is P_{4}, as claimed. Color two consecutive edges in F_{1} with red and the other edge with blue so that the blue edge in F_{1} is adjacent with the longest blue path of F_{2} (if any). In this coloring, F^{\prime} contains at most k red K_{2} and no blue $2 P_{3}$. So, $F^{\prime} \nrightarrow\left((k+1) K_{2}, 2 P_{3}\right)$. Thus, $\hat{r}_{c}\left((k+1) K_{2}, 2 P_{3}\right) \geq 3(k+1)+1$.

Combining the two inequalities, we conclude that $\hat{r}_{c}\left(n K_{2}, 2 P_{3}\right)=3 n+1$, for $3 \leq n \leq 7$.
Theorem 2.5. $\hat{r}_{c}\left(8 K_{2}, 2 P_{3}\right)=24$.
Proof. By Theorem 2.2, we obtain $\hat{r}_{c}\left(8 K_{2}, 2 P_{3}\right) \leq 24$. Now, we will prove $\hat{r}_{c}\left(8 K_{2}, 2 P_{3}\right) \geq 24$. Suppose that F is a connected graph with $|E(F)| \leq 23$. We will show that $F \nrightarrow\left(8 K_{2}, 2 P_{3}\right)$. Decompose F into two connected subgraphs F_{1} and F_{2} with $\left|E\left(F_{1}\right)\right| \leq 2$ and $\left|E\left(F_{2}\right)\right| \leq 21$. Color all edges in F_{1} with red. According to Theorem 2.4, $\hat{r}_{c}\left(7 K_{2}, 2 P_{3}\right)=22$. Thus there is a $\left(7 K_{2}, 2 P_{3}\right)$ - coloring in F_{2}. By combining the coloring in F_{1} and F_{2}, there are at most 7 red K_{2} and no blue $2 P_{3}$ in F. So, $F \nrightarrow\left(8 K_{2}, 2 P_{3}\right)$. Hence, $\hat{r}_{c}\left(8 K_{2}, 2 P_{3}\right) \geq 24$.
Combining the two inequalities, we may conclude that $\hat{r}_{c}\left(8 K_{2}, 2 P_{3}\right)=24$.
Theorem 2.6. For $m \geq 3, n \geq 3, \hat{r}_{c}\left(n K_{2}, 2 K_{1, m}\right)=m n+m+n$.
Proof. First, we will show that $\hat{r}_{c}\left(n K_{2}, 2 K_{1, m}\right) \leq m n+m+n$. Let G be a graph obtained from one cycle $C_{2 n+1}$ and $(n+1)$ stars $K_{1, m-1}$ by identifying the vertex of degree $m-1$ of $K_{1, m-1}$ to the vertices of $C_{2 n+1}$, where two vertices of $C_{2 n+1}$ are adjacent and the other $n-1$ vertices have distance two from the other, as depicted in Figure 3. The graph G has $2 n+1+(m-1)(n+1)=m n+m+n$ edges.

Figure 3. The graph G satisfy $G \rightarrow\left(n K_{2}, 2 K_{1, m}\right)$.

Let μ be any red-blue coloring of G such that there is no red $n K_{2}$. Then, all edges of G are colored by blue or the red subgraph G^{*} of G forms a path of length at most $2(n-1)$ or a subgraph containing at most $(n-1)$ stars $K_{1, i}, i \leq m+1$. Let G^{\prime} be a subgraph of G without edges of the red subgraph G^{*}. This subgraph G^{\prime} forms a path of length at least 3 having at least two vertices of degree $\geq m$ or a disconnected graph containing 2 disjoint $K_{1, m}$. Hence, G contains a blue $2 K_{1, m}$. So, $G \rightarrow\left(n K_{2}, 2 K_{1, m}\right)$. Thus, $\hat{r}_{c}\left(n K_{2}, 2 K_{1, m}\right) \leq m n+m+n$.

Now, we will show that $\hat{r}_{c}\left(n K_{2}, 2 K_{1, m}\right) \geq m n+m+n$. Let G be a connected graph with $|E(G)| \leq m n+m+n-1$. We will show that $G \nrightarrow\left(n K_{2}, 2 K_{1, m}\right)$. Consider the following cases.

Case 1. $\Delta(G)<m$.
Color all edges in G with blue. By this coloring, there is a $\left(n K_{2}, 2 K_{1, m}\right)-$ coloring in G.
Case 2. $\Delta(G) \geq m$.
Let A be the set of vertices of degree at least m in G. If $|A| \leq n-1$, then color all edges incident with all vertices in A by red and the other edges by blue. By this coloring, there is a $\left(n K_{2}, 2 K_{1, m}\right)-$ coloring in G.
Next, we assume that $|A| \geq n$. Since $|E(G)| \leq m n+m+n-1$, there are at most n disjoint $K_{1, m}$ in G, otherwise G has at least $m n+m+n$ edges, a contradiction.

Suppose G contains at most n disjoint stars $K_{1, m}$.
Let C be the set of centers of n disjoint $K_{1, m}$. Observe that, the remaining edges of G are at least m. We consider these remaining edges. If these edges induce no $K_{1, m}$, then we choose $n-1$ vertices of C and then color all edges incident with these vertices by red. Next, we color the remaining edges of G with blue. By this coloring, we obtain a $\left(n K_{2}, 2 K_{1, m}\right)$-coloring in G.

Now, suppose these edges induce a $K_{1, m}$ with center u. Since G is connected, then at least one vertex of the $K_{1, m}$ is adjacent to a vertex of C, say $v_{i_{0}}$. Therefore, u and $v_{i_{0}}$ have distance at most 2. If u is adjacent to $v_{i_{0}}$, we color all edges incident with u by red. Next, choose at most $(n-2)$ vertices of C that are different with $v_{i_{0}}$ (if any) and color all edges incident with these vertices by red. By coloring all the remaining edges of G by blue, we obtain a $\left(n K_{2}, 2 K_{1, m}\right)$-coloring in G. Suppose u is not adjacent to $v_{i_{0}}$. In this case, we choose a path P_{3} connecting u and $v_{i_{0}}$ and color the P_{3} with red. Furthermore, similar as in the previous case, choose at most $(n-2)$ vertices of C that are different with $v_{i_{0}}$ (if any) and color all edges incident with these vertices by red. By giving the blue color to the remaining edges of G, we obtain a $\left(n K_{2}, 2 K_{1, m}\right)-$ coloring in G. Hence, in all cases, we have that $G \nrightarrow\left(n K_{2}, 2 K_{1, m}\right)$.

Acknowledgement

This research has been partially supported by Research Grant: "Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT)" and "Penelitian Disertasi Doktor", the Ministry of Research, Technology and Higher Education, Indonesia.

References

[1] S.A. Burr, P. Erdős, R.J. Faudree, C.C. Rousseau, R.H. Schelp, Ramsey minimal graphs for multiple copies, Nederl. Akad. wetensch, Proc. Ser. A81 (1978), 187-195.
[2] P. Erdős, R. J. Faudree, C.C. Rousseau, R.H. Schelp, The size Ramsey number, Period. Math. Hungar. 9 (1-2) (1978), 145-161.
[3] P. Erdős, R.J Faudree, Size Ramsey numbers involving matching, Finite and infinite sets, Colloq. Math. Soc. János Bolyai 37 (1981), 247-264.
[4] R.J. Faudree, R.H. Schelp, A survey of results on the size Ramsey number, in Paul Erdős and his mathematics II (Budapest, 1999), Bolyai Soc. Math. Stud. 11 (2002), 291-309.
[5] H. Bielak, Note size Ramsey number for some regular graphs, Discrete Math. 309 (2012), 6446-6449.
[6] I. Ben-Eliezer, M. Krivelevich, B. Sudakov, The size Ramsey of a directed path, J. Combin. Theory 102 (2012), 743-755.
[7] B. Rahadjeng, E.T. Baskoro, H. Assiyatun, Connected size Ramsey numbers for matchings vs small stars or cycles, Proc. Indian Acad. Sci. Math. Sci. 127 (5) (2017), 787-792.
[8] B. Rahadjeng, E.T. Baskoro, H. Assiyatun, Connected size Ramsey numbers of matchings and stars, AIP Conf. Proc., 1707, 020015 (2016); doi :10.1063/1.4940816.

[^0]: ${ }^{1}$ Permanent Affiliation: Universitas Negeri Surabaya, Indonesia.
 *Corresponding author.
 Received: 19 February 2018, Revised: 19 August 2018, Accepted: 5 January 2019.

