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Abstract

The clique polynomial C(G, x) of a finite, simple and undirected graph G = (V,E) is defined
as the ordinary generating function of the number of complete subgraphs of G. A real root of
C(G, x) is called a clique root of the graph G. Hajiabolhasan and Mehrabadi showed that every
simple graph G has at least a clique root in the interval [−1, 0). Moreover, they showed that the
class of triangle-free graphs has only clique roots. In this paper, we extend their result by showing
that the class of K4-free chordal graphs has also only clique roots. In particular, we show that this
class always has a clique root −1. We conclude our paper with some interesting open questions
and conjectures.
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1. Introduction and Motivation

Throughout this paper graphs are finite, simple and undirected. For the terminology and nota-
tions which are not defined here, we refer the readers to the book [1]. For a given graphG = (V,E),
a complete subgraph of G on k vertices is called a k-clique. For a subset U ⊆ V (G), the subgraph
induced on U will be denoted by G[U ]. We recall that an edge which joins two vertices of a cycle
but is not itself an edge of the cycle is called a chord of the cycle. A graph is chordal if each cycle
of length at least four has a chord. We also recall that the clique polynomial [2] of the graph G,
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denote it by C(G, x) is defined, as follows

C(G, x) := 1 +
∑

∅6=U⊆V (G):G[U ] is a clique

x|U |, (1)

or equivalently

C(G, x) := 1 +

ω(G)∑
k=1

ck(G), (2)

in which ck(G) is the number of k-cliques in G and ω(G) is the size of the largest clique of G.
From now on, any real root of a clique polynomial C(G, x) will be called the clique root of G.
Hajiabolhasan and Mehrabadi [2] showed that the clique polynomial of every simple graph always
has a clique root in the interval [−1, 0). They also showed that the class of triangle-free graphs has
only clique roots.

Polynomials with only real roots arise often in graph theory and other branches of mathemat-
ics. Such polynomials with positive coefficients have attracted the attention of many researchers
because of their implication on unimodality and log-concavity.

Our main goal here is to contribute in this active line of research by extending the above result
for the class of K4-free chordal graphs. More precisely, we will prove the following.

Theorem 1.1. The class of K4-free connected chordal graphs has only clique roots. In particular,
this class always has a clique root −1.

We will also give the following immediate corollary of the above theorem, which is indeed a
new algebraic proof of Turan’s graph theorem for planar K4-free graphs.

Corollary 1.1. If G is a K4-free connected graph with n vertices and m edges, then we have

m ≤ n2

3
.

2. Chordal Graphs and Clique Polynomials

In this section, we investigate the important class of chordal graphs. This class of graphs
is very important in computer science, specially from the computational complexity view point.
Many hard problems in general graphs have easy solutions in the class of chordal graphs. As we
will see, the clique polynomial of chordal graphs can give us important insights into the structure
of these graphs.

Definition 2.1. A graph is chordal if every cycle of length greater than three has a chord. A vertex
of a graph is simplicial if its neighbors induces a clique in the graph.

One of the important properties of a chordal graph is that it always has a clique decomposition.
For the sake completeness, here we quickly review the idea of decomposing a chordal graph into
cliques. For detailed information, one can refer to [3].
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Definition 2.2. For given graphs G1 and G2, we say that a graph G arises from G1 and G2 by
pasting along S if we have G1 ∪G2 = G and G1 ∩G2 = S. In this case, the graphs Gi are called
the simplicial summands of G.

Remark 2.1. From the above definition, it is clear that a graph is chordal if it can be constructed
recursively by pasting complete graphs along cliques. It is not hard to see that this process is
independent of the order in which complete graphs paste to each other. Indeed, this recursive
construction gives us a clique decomposition of chordal graphs which is essential to obtain their
clique polynomials.

For simplicity of arguments, we use the notation G1 ∪S G2 whenever G1 and G2 are pasted
along S. The following lemma is key to obtain an explicit formula for the clique polynomial of
chordal graphs. The proof is straight forward application of the inclusion-exclusion principle and
left to the reader as a simple exercise.

Proposition 2.1. Let G1 and G2 be two simple graphs and G = G1 ∪Q G2 be their pasting along
an i - clique Q. Then, we have

C(G, x) = C(G1, x) + C(G2, x)− (x+ 1)i, (i ≥ 1). (3)

By the successive application of the formula (3) and the recursive construction of chordal
graphs, we can obtain the following explicit formula for the clique polynomial of chordal graphs.

Theorem 2.1. Let G be a chordal graph defined as a pasting of the complete graphs {Gi}ri=1 of
sizes ni’s, respectively. That is, G = G1 ∪Q1 G2 ∪Q2 · · · ∪Qr−1 Gr, where {Qj}r−1j=1 are cliques of
sizes lj’s, respectively. Then, we have

C(G, x) =
r∑

i=1

(x+ 1)ni −
r−1∑
j=1

(x+ 1)lj . (4)

As an immediate consequence of the above theorem, we have the following interesting result.

Corollary 2.1. Every chordal graph G without isolated vertices always has a clique root −1. The
multiplicity of this root is equal to the size of the smallest clique in the pasting process of the
recursive construction of G.

Remark 2.2. It is worth to note that the notation G1 ∪Q G2 is also called the clique-sum of two
graphs G1 and G2. Indeed, based on the formula 3, the clique-sum of graphs preserve the property
of having (at least) a clique root−1. Unfortunately, the (ordinary) sum of two graphs which is also
called the (disjoint) union of two graphs has not this property. For instance, the graph G obtained
by the sum of a 1-clique (an isolated vertex) and a 2-clique (an edge) with the clique polynomial
C(G, x) = 1 + 3x + x2 has no clique root −1. Therefore, the clique polynomial of a graph is not
additive over it’s connected components. Thus, from now on, we will concentrate on connected
chordal graphs.
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3. Proofs of the Main Results

Here, we first give a proof of the following proposition which is a weaker version of Theorem
1.1. From now on, we will assume that our graphs are connected. Before proceeding the proof,
we need to have a quick review of breadth-first search (BFS, for short) form the theory of graph
algorithms.

Recall that for a given graph G = (V,E) and a root (node) r ∈ V , the breadth-first search
produces a search-tree T by exploring first the neighbors of r, then the neighbors of it’s children.
A tree obtained by running a breadth-first search is called a breadth-first search tree (BFS-tree, for
short) rooted at r. It can be easily shown that when G is a connected graph, then the BFS-tree of
G is indeed a spanning tree of G rooted at r.

A nice property of a breadth-first search tree is that it can give the distance from the root r
to all other vertices. Therefore we just have to have a value l(v) to every vertex called level of v
which corresponds to distT (r, v) (the length of the unique path form the root r to the vertex v in
the BFS-tree T ). Moreover, for any non-tree edge e ∈ E(G) (an edge e which is not in E(T )), it’s
end vertices can only lie on the same level or the consecutive levels.

Proposition 3.1. The class of K4-free planar chordal graphs has only clique roots. In particular,
−1 is always a clique root.

Proof. For a given K4-free planar graph G, by Euler Formula, we have

n−m+ f = 2, (5)

where n, m and f are the number of vertices, edges and faces of a planar embedding of G, respec-
tively. Moreover, if G is a chordal graph, then we observe that

f = t+ 1, (6)

where t is the number of triangles ( triangular faces ) of G. Hence, form (5) and (6), we conclude
that

n−m+ t = 1,

or equivalently
1− n+m− t = 0. (7)

By last identity and considering the fact that the clique polynomial of a K4-free graph G is
C(G, x) = 1 + nx+mx2 + tx3, we get

C(G,−1) = 1− n+m− t = 0.

That is, everyK4-free planar chordal graphG always has−1 as a clique root. Therefore, we obtain
the following multiplicative decomposition of C(G, x)

C(G, x) = (1 + x)(1 + (n− 1)x+ (m− n+ 1)x2). (8)
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The final step of the proof is to show that the quadratic polynomial:

Q(G, x) = 1 + (n− 1)x+ (m− n+ 1)x2, (9)

always has a real root. To this end, we actually prove that Q(G, x) is a clique polynomial of a
triangle-free graph G̃ which can be obtained from the original graph G based on the idea of the
BFS-tree of G.

For a given K4-free chordal graph G, pick up an arbitrary vertex r ∈ V (G). Now, we construct
a BFS-tree of G rooted at the vertex r. We will denote it by TG. Clearly, this tree has n vertices
and n − 1 edges. Now in the graph G, delete all n − 1 edges of the tree TG and call the resulting
graph Ĝ. This graph has clearly n vertices and m− (n− 1) edges. By the construction, it is clear
that v is an isolated vertex of Ĝ. Next, we prove that Ĝ is a triangle - free graph.

Here is the argument. In contrary, let ∆ = abc be a triangle in Ĝ. Then, the end vertices of
it’s non-tree edges can only lie on the same level or the consecutive levels. Hence, at least two
vertices of ∆ (let say e = ab) lies in the same level. For simplicity of arguments, we will assume
that the vertex a appears in BFS-tree before the vertex b. For a given vertex v ∈ V , the unique
(shortest) paths form the root r to the vertex v is denoted by path(r, v). Now, by the construction
of the BFS-tree of G, there is a vertex c′ (in the same level as c) such that c′a, c′b ∈ E(T ). Now,
let r′ be the last intersection point of the paths (starting from the root r) path(r, c′) and path(r, c).
By the construction of BFS-tree and chordality of the graph G, since the cycle C based on the four
vertices r′, c, b, c′ is of length greater than 3, we conclude that c′c ∈ E(G). Thus, it implies that
the graph G contains a 4-clique abcc′. This contradicts the fact that the graph G is K4-free. This
completes our argument by the contradiction.

Thus, the triangle-free graph G̃ obtained from Ĝ by deleting the vertex v has n−1 vertices and
m− n+ 1 edges, as required.

Remark 3.1. The following figure illustrates the process of obtaining the triangle-free graph G̃
from the original graph G for a sample K4-free connected chordal graph G.

v ⇒G :
v ⇒

TG :
v ⇒Ĝ : G̃ :

Figure 1. The construction of the triangle-free graph G̃.

Now, we are ready to give a proof of our main theorem.

Proof of Theorem 1.1. We first note that by Corollary 2.1, every connected chordal graph always
has a clique root −1. Now, the rest of the proof is similar to the proof of Proposition 3.1.

Next we give an algebraic proof of the Turan’s Graph Theorem [4] for K4 - free graphs which
is indeed Corollary 1.1.
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Proof of Corollary 1.1. We first note that since we want to prove an upper bound for the maximum
possible number of edges, without loss of generality we can assume that the graph G is chordal.
By the proof of Theorem 1.1, we already know that if G is a given K4 - free chordal graph with n
vertices and m edges, then the following quadratic equation

Q(G, x) = 1 + (n− 1)x+ (m− n+ 1)x2,

has only real zeros. Hence, it’s discriminant is nonnegative and therefore we have the following
inequality:

(n− 1)2 − 4(m− n+ 1) ≥ 0,

which is equivalent to

m ≤
(
n+ 1

2

)2

− 1. (10)

On the other hand, we have the inequality(
n+ 1

2

)2

− 1 ≤ n2

3
, (11)

which is equivalent to the obvious inequality (n − 3)2 ≥ 0. Thus, the inequalities (10) and (11)
immediately imply the Turan’s inequality for K4 - free graphs.

4. Open problems and questions

We already showed that the class of K4 - free connected chordal graphs has only clique roots.
Now, one might ask whether the class of K5 - free connected chordal graphs has the same property
or not. Unfortunately, this is not true in general. For example, the connected graphK+

4 ( a complete
graph K4 plus one edge ) has only two clique roots. Indeed, we have

C(K+
4 ) = 1 + 5x+ 7x2 + 4x3 + x4 = (1 + x)(1 + 4x+ 3x2 + x3).

Since the cubic polynomial φ(x) = 1+4x+3x2 +x3 has the first derivative φ(x)′ = 3(x+1)2 +1
which is always positive, by the first derivative criteria, φ(x) = 1 + 4x+ 3x2 + x3 has exactly one
real root. Thus, we come up with the following first open question.

Problem 1. Which subclasses of K5 - free chordal graphs have only clique roots?

Recall that the class of 3 - trees are those graphs which can be constructed recursively by
starting with a complete graph K4, and then repeatedly adding vertices in such a way that each
added vertex has exactly three neighbors that form a clique (triangle).
By the above definition, it is not hard to see that the class of 3-trees is a subclass ofK5-free chordal
graphs. Next, we come up with the following conjecture.

Conjecture 1. The class of 3-trees has only clique roots.

110



www.ejgta.org

Clique roots of K4-free chordal graphs | Hossein Teimoori Faal

Considering the fact that any connected chordal graph has a clique root −1 and the recursive
definition of of chordal graphs, we made the following stronger conjecture.

Conjecture 2. The class of K5-free connected chordal graphs with a clique root−1 of multiplicity
2 has only clique roots.

Considering the above discussions, we also come up with the following open question.

Problem 2. Which subclasses of Kω+3-free connected graphs (ω > 0) have only clique roots?

We call an i-clique an isolated clique if the intersection of all neighborhoods of it’s vertices is
an empty set. In particular, an isolated 1-clique is called an isolated vertex.
The interesting point is that we strongly believe that the following much stronger conjecture is true.

Conjecture 3. The class of Kω+3-free graphs without isolated ω-cliques has only clique roots.
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