Electronic Journal of Graph Theory and Applications

On the Erdős-Ko-Rado property of finite groups of order a product of three primes

Modjtaba Ghorbani, Mina Rajabi-Parsa
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran.
mghorbani@sru.ac.ir, mina.rparsa@gmail.com

Abstract

Let G be a subgroup of the symmetric group \mathbb{S}_{n}. Then G has the Erdős-Ko-Rado ($E K R$) property, if the size of any intersecting subset of G is bounded above by the size of a point stabilizer of G. The aim of this paper is to investigate the $E K R$ and the strict $E K R$ properties of the groups of order $p q r$, where p, q, r are three prime numbers.

Keywords: Cayley graph, permutation groups, $E K R$ property Mathematics Subject Classification : 05C35, 05D05 DOI: 10.5614/ejgta.2019.7.1.3

1. Introduction

Let $[n]=\{1,2, \ldots, n\}$, the Erdős-Ko-Rado $(E K R)$ Theorem is based on the largest family of subsets of size r from the set $[n]$ such that the intersection of each pair of subsets is non-empty, see [5]. Let $n \geq 2 r$, the size of largest collection is $\binom{n-1}{r-1}$ and in this case, the only collections of this size are the collections of all subsets that contain a fixed element from $[n]$. Suppose $G \leq \mathbb{S}_{n}$ is a permutation group. A subset S of G is said to be intersecting if for any pair of permutations $\sigma, \tau \in S$ there exists $i \in[n]$ such that $\sigma \tau^{-1}(i)=i$. A group G has the Erdős-Ko-Rado ($E K R$) property, if for any intersecting subset $S \subseteq G,|S|$ is bounded above by the size of the largest point stabilizer in G. The maximal intersecting set is one with maximum size. The group G has the strict $E K R$ property if every maximal intersecting set is the coset of the stabilizer of a point.

Received: 4 September 2017, Revised: 2 September 2018, Accepted: 14 September 2018.

It is clear from the definition that if a group has the strict $E K R$ property then it has the $E K R$ property. A group can have the (strict) $E K R$ property under one action while it fails to have this property under another action. In [3] the author defined a new version of the $E K R$ property. Let the action of G on the set X be transitive. We say this action satisfies the weak $E K R$ property if the cardinality of any intersecting set is bounded above by the cardinality of the stabilizers and G has the weak $E K R$ property, if all transitive actions of G have the weak $E K R$ property.

In 1977 Frankl and Deza [6] proved that \mathbb{S}_{n} has the $E K R$ property and they conjectured that it has also the strict $E K R$ property, see for more details [4, 9, 12, 20]. In [19] it is shown that \mathbb{A}_{n} has the strict $E K R$ property and in [20] the $E K R$ property for some Coxeter groups is investigated. Meagher and Spiga [14,15] stablished that the projective special linear group $P G L_{2}(q)$ has the strict $E K R$ property, while the projective general linear group $P G L_{3}(q)$ does not have this property. Ahmadi and Meagher [2] showed the strict $E K R$ property of cyclic, dihedral and Frobenius groups. Recently, they also investigated the $E K R$ property of Mathieu groups and all 2 -transitive groups with degree no more than 20, see [1]. Jalali-Rad and Ashrafi [17] investigated the EKR and the strict $E K R$ properties of the group G, where $G \in\left\{V_{8 n}, U_{6 n}, T_{4 n}, S D_{n}\right\}$. We refer to [5] for background information about the history of this interesting problem. The aim of this paper is to investigate the $E K R$ property of groups of order a product of three primes.

2. Definitions and Preliminaries

Let G be a finite group. A symmetric subset of a group G is a subset $S \subseteq G$, where $e \notin S$ and $S=S^{-1}$. The Cayley graph $\Gamma=\operatorname{Cay}(\mathrm{G}, \mathrm{S})$ with respect to S is a graph whose vertex set is $V(\Gamma)=G$ and two vertices $x, y \in V(\Gamma)$ are adjacent if and only if $y x^{-1} \in S$. A symmetric subset by these properties is called a Cayley set or a connection set. It is a well-known fact that a Cayley graph is connected if and only if $G=\langle S\rangle$. Recall that the Cayley graph $\Gamma=\operatorname{Cay}(\mathrm{G}, \mathrm{S})$ is normal if S is a symmetric normal subset of G.

A derangement is a permutation with no fixed point. The subset \mathcal{D} of a permutation group is a derangement set if all elements of \mathcal{D} are derangements. Suppose G is a permutation group and $\mathcal{D} \subseteq G$ is a derangement set. The derangement graph $\Gamma_{G}=\operatorname{Cay}(\mathrm{G}, \mathcal{D})$ has the elements of G as its vertices and two vertices are adjacent if and only if they do not intersect. Since \mathcal{D} is a union of conjugacy classes of G, Γ_{G} is a normal Cayley graph.

A clique of a graph Γ is a complete subgraph of Γ. A set of vertices of Γ that induces an empty subgraph of Γ is called an independent set. The size of the largest clique and the size of the largest independent set in graph Γ are denoted by $\omega(\Gamma)$ and $\alpha(\Gamma)$, respectively. In particular for any permutation group $G \leq \mathbb{S}_{n}$, an independent set in Cayley graph Γ is a set of permutations in which every two permutations agree at least on one point.

Let G be a permutation group with derangement graph $\Gamma_{G}=\operatorname{Cay}(G, \mathcal{D})$. By these notation, two permutations in G are intersecting if and only if their corresponding vertices are not adjacent in Γ_{G}. Therefore, the problem of classifying the maximum intersecting subsets of G is equivalent to characterizing the maximum independent sets of vertices in Γ_{G}.

The group G has the $E K R$ property if and only if

$$
\begin{equation*}
\alpha(\Gamma)=\max \left\{\left|G_{x}\right| \mid x \in G\right\} . \tag{1}
\end{equation*}
$$

Given a graph Γ, we recall that the independence number of Γ is equal with the clique number of $\bar{\Gamma}$. This means that the Eq. 1 can be reformulated as

$$
\omega(\bar{\Gamma})=\max \left\{\left|G_{x}\right| \mid x \in G\right\} .
$$

For independence and clique numbers of a graph, we have the following result.
Lemma 2.1. [4] If Γ is a vertex-transitive graph, then $\omega(\Gamma) \alpha(\Gamma) \leq|V(\Gamma)|$. Moreover, equality holds, if every maximum independent set and every maximum clique intersect.

The group G has the strict $E K R$ property if and only if the cosets of the largest stabilizer of a point in G are the only independent sets of maximum size.

Lemma 2.2. [2] For any permutation $\sigma \in \mathbb{S}_{n}$, the cyclic group G generated by σ has the strict EKR property.

Now, for every $g \in G$, we define a map $\varphi_{g}: X \longrightarrow X$ by $\varphi_{g}(x)=x g^{-1}$. Clearly, φ_{g} is a permutation on X. Moreover, the map $\varphi: G \longrightarrow \mathbb{S}_{X}$, which is defined by $\varphi(g)=\varphi_{g}$ for every $g \in G$, is a homomorphism. It is called the permutation presentation of G corresponding to the group action G on X.

Suppose H is a subgroup of G and suppose $X=G / H$ denote to the set of right cosets of H in G. The map $\varphi: G \hookrightarrow S_{X}$, for every $g \in G$ is the homomorphism $\varphi(g)=\varphi_{g}$, where for all $a \in G$ we have $\varphi_{g}(H a)=H a g^{-1}$. The core of H in G is defined as $\operatorname{cor}_{G}(H)=\cap_{g \in G} g^{-1} H g$. We say that H is core-free if $\operatorname{cor}_{G}(H)=\{e\}$.

For the subgroup $H \leq G$ and $g \in G$, the conjugate of subgroup H in G is denoted by $H^{g}=$ $g^{-1} H g$. If $G \leq \operatorname{Sym}(n)$ is a transitive permutation group, then G is called a Frobenius group if it has a non-trivial subgroup H for which $H \cap H^{g}=\{e\}$, for all $g \in G \backslash H$. The kernel of a Frobenius group G is defined as

$$
K=\left(G \backslash \cup_{g \in G} H^{g}\right) \cup\{e\} .
$$

It is not difficult to see that the non-identity elements of K are all derangements of G.
Theorem 2.1. [18] (Frobenius Theorem) Suppose H is a proper non-trivial subgroup of G such that for all $g \in G \backslash H$:

$$
H \cap g^{-1} H g=\{e\} .
$$

Let $K=G \backslash \cup_{g \in G} g^{-1}(H \backslash\{e\}) g$, then

$$
K \triangleleft G, G=K H \text { and } H \cap K=\{e\} .
$$

Proposition 2.1. [2] Let $G=K H$ be a Frobenius group with kernel K. Then G has the $E K R$ property. Furthermore, G has the strict EKR property if and only if $|H|=2$.

Let us to show the direct product of two groups G, H by $G \times H$.
Corollary 2.1. [2] Suppose $G_{1} \leq \operatorname{Sym}\left(n_{1}\right), \ldots, G_{k} \leq \operatorname{Sym}\left(n_{k}\right)$ and $G=G_{1} \times \cdots \times G_{k}$ then $G_{i}(1 \leq i \leq k)$ has the (strict) EKR property if and only if G has the (strict) EKR property.

Theorem 2.2. [3] Let G be a finite group which is either nilpotent or a subgroup of a direct product of groups of squrae-free order. Then G has the weak EKR property.

3. Main results

In this section, we study the $E K R$ property of groups of order a product of three primes. Let p be a prime number and $p>q$, where $q \mid p-1$. A non-abelian group of order $p q$ has the following presentation:

$$
F_{p, q}=\left\langle a, b: a^{p}=b^{q}=e, b^{-1} a b=a^{u}\right\rangle
$$

where u is an element of order q in multiplicative group \mathbb{Z}_{p}^{*}, see [11].
It is not difficult to see that this group is a Frobenius group and hence by Proposition 2.1, it has the $E K R$ property.

3.1. Groups of order pqr

Let $p>q>r$ be three prime numbers, in [7] the structures of all groups of order $p q r$ are verified as follows:

- $G_{1}=\mathbb{Z}_{p q r}$,
- $G_{2}=F_{p, q r}(q r \mid p-1)$,
- $G_{3}=\mathbb{Z}_{r} \times F_{p, q}(q \mid p-1)$,
- $G_{4}=\mathbb{Z}_{p} \times F_{q, r}(r \mid q-1)$,
- $G_{5}=\mathbb{Z}_{q} \times F_{p, r}(r \mid p-1)$,
- $G_{5+d}=\left\langle a, b, c: a^{p}=b^{q}=c^{r}=e, a b=b a, c^{-1} b c=b^{u}, c^{-1} a c=a^{v^{d}}\right\rangle$, where $r \mid p-1, q-$ $1, q \mid p-1, o(u)=r$ in \mathbb{Z}_{q}^{*} and $o(v)=r$ in $\mathbb{Z}_{p}^{*}(1 \leq d \leq r-1)$.
By Theorem 2.2, every group of order $p q r$ (similarly every group of order p^{3}) has the weak $E K R$ property and thus it has the $E K R$ property. So we investigate the strict $E K R$ property of them.

Theorem 3.1. Group $G=G_{5+d}(1 \leq d \leq r-1)$ is a Frobenius group.
Proof. Let $H=\langle c\rangle$ and $K=\langle a, b\rangle$. Let $g=a^{i} b^{j} c^{k} \in G \backslash H$ and suppose that $H \cap g^{-1} H g \neq\{e\}$. So there exist $1 \leq l, t \leq r-1$ such that $c^{-k} b^{-j} a^{-i} c^{t} a^{i} b^{j} c^{k}=c^{l}$. Hence $c^{-k+t} a^{-v^{t} i+i} b^{j-u^{t} j} c^{k}=c^{l}$ and so $c^{t} a^{v^{k}\left(i-v^{t} i\right)} b^{u^{k}\left(j-u^{t} j\right)}=c^{l}$. This yields that

$$
\left\{\begin{array}{l}
i-v^{t} i \equiv 0(\bmod p) \\
j-u^{t} j \equiv 0(\bmod q) \\
t=l
\end{array}\right.
$$

and so $i=j=0$, which means that $g \in H$, a contradiction. Hence, $H \cap H^{g}=\{e\}$ and Theorem 2.1 implies that G is a Frobenius group.

Let $p, q \neq 2$, by Lemma 2.2, Proposition 2.1, Corollary 2.1 and Theorem 3.1 we conclude the following theorem.

Theorem 3.2. Among all groups of order pqr only the group G_{1} has the strict $E K R$ property.

3.2. Groups of order $p^{2} q$

According to [16] the structures of groups of order $p^{2} q$, where $p<q$ are as follows:

- $L_{1}=\mathbb{Z}_{p^{2} q}$,
- $L_{2}=\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q}$,
- $L_{3}=\mathbb{Z}_{p} \times F_{q, p}(p \mid q-1)$,
- $L_{4}=F_{q, p^{2}}\left(p^{2} \mid q-1\right)$,
- $L_{5}=\left\langle a, b: a^{p^{2}}=b^{q}=e, a^{-1} b a=b^{u}, u^{p} \equiv 1(\bmod q)\right\rangle\left(p^{2} \mid q-1\right)$
and the structures of groups of order $p^{2} q$ where, $p>q$ are as follows:
- $Q_{1}=\mathbb{Z}_{p^{2} q}$,
- $Q_{2}=\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q}$,
- $Q_{3}=\mathbb{Z}_{p} \times F_{p, q}(q \mid p-1)$,
- $Q_{4}=\left\langle a, b: a^{q}=b^{p^{2}}=1, a^{-1} b a=b^{\alpha}, \alpha^{q} \equiv 1\left(\bmod p^{2}\right)\right\rangle(q \mid p-1)$,
- $Q_{5}=\langle a, b, c| a^{q}=b^{p}=c^{p}=1, a^{-1} b a=c, a^{-1} c a=b^{-1} c^{2 \alpha}, b c=c b$, $\left.\left(\alpha+\sqrt{\alpha^{2}-1}\right)^{q}=1(\bmod p)\right\rangle,(q \mid p+1), \alpha^{2}-1$ is not perfect square.
- $Q_{5+i}=\left\langle a, b, c \mid a^{q}=b^{p}=c^{p}=1, a^{-1} b a=b^{\beta}, a^{-1} c a=c^{\beta^{i}}, b c=c b, \beta^{q} \equiv 1(\bmod p)\right\rangle$ $(q \mid p-1), i=1,2,3, \ldots, \frac{q-1}{2}$ and $q-1$.

Lemma 3.1. Groups L_{1}, \cdots, L_{4} have the EKR property.
Proof. By Lemma 2.2, every cyclic group has the $E K R$ property and thus L_{1} has the EKR property. The group L_{4} is a Frobenius group and it has the EKR property. Also, by Proposition 2.1 and Corollary 2.1, L_{2} and L_{3} have the $E K R$ property.

Lemma 3.2. No subgroup of $L=L_{5}$ is core-free.
Proof. It is not difficult to see that all non-conjugate subgroups of L are $K_{1}=\langle e\rangle, K_{2}=\left\langle a^{p}\right\rangle$, $K_{3}=\langle a\rangle, K_{4}=\langle b\rangle, K_{5}=\left\langle a^{p}, b\right\rangle$ and $K_{6}=L$. We have $N_{L}\left(K_{2}\right)=L$, so K_{2} is a normal subgroup of L. Also by Sylow theorem, K_{4} is a normal subgroup of L. Since $\left[L: K_{5}\right]=p$ and p is the smallest prime number that divides the order of group, K_{5} is normal subgroup of L. Let s be an arbitary integer, then $b^{-s} a^{i} b^{s}=a^{i} b^{s\left(1-u^{i}\right)}$ which yields that K_{3} is not core-free.

Lemma 3.2 implies that the action of L on the set $\left\{1,2, \cdots, p^{2} q\right\}$ is faithful. In the following, by \bar{u} we mean u in modula q.

Lemma 3.3. Suppose $L=L_{5}$ and $H=\{e\}$. The permutation peresentation of generetors of L are

$$
\begin{aligned}
a^{-1}= & \left(1,2, \cdots, p^{2}\right)\left(p^{2}+1, p^{2}+q+\bar{u}-1, \cdots, p^{2} q-q+\overline{u^{p^{2}-1}}-1\right) \cdots \\
& \left(p^{2}+q, p^{2}+2 q+\bar{u}-2, \cdots, p^{2}+\overline{u^{p^{2}-1}}\right) \cdots\left(p^{2} q, p^{2} q+\overline{(q-1) u}, \cdots,\right. \\
& \left.p^{2} q-2 q+2+\overline{(q-1) u^{p-1}}\right), \\
b= & \left(1, p^{2}+q-1, \cdots, p^{2}+1\right)\left(2, p^{2}+2 q-2, \cdots, p^{2}+q\right) \cdots\left(p^{2}, p q, \cdots,\right. \\
& \left.p^{2} q-q+2\right) .
\end{aligned}
$$

Proof. Assign a labeling to the elements of L / H as follows:

$$
\begin{aligned}
H & \rightarrow 1, H a \rightarrow 2, \cdots, H a^{p^{2}-1} \rightarrow p^{2} \\
H b & \rightarrow p^{2}+1, \cdots, H b^{q-1} \rightarrow p^{2}+q-1 \\
H a b & \rightarrow p^{2}+q, \cdots, H a b^{q-1} \rightarrow p^{2}+2 q-2 \\
H a^{2} b & \rightarrow p^{2}+2 q-1, \cdots, H a^{p^{2}-1} b^{q-1} \rightarrow p^{2} q .
\end{aligned}
$$

With regards to the relations of L and the action of L on the set of right cosets L / H, we have $\varphi_{a^{-1}}\left(H a^{i} b^{j}\right)=H a^{i+1} b^{u j}$ and $\varphi_{b}\left(H a^{i} b^{j}\right)=H a^{i} b^{j-1}$. Indeed, the permutation presentation of a^{-1} is composed of q cycles of order p^{2} and the permutation presentation of b is composed of p^{2} cycles of order q.

Lemma 3.4. The group $L=L_{5}$ has the EKR property.
Proof. First, we show that any non-identity element in L has no fixed point. Assume that

$$
a^{-i} b^{j}\left(H a^{r} b^{s}\right)=H a^{r} b^{s},\left(1 \leq i, r \leq p^{2}, 1 \leq j, s \leq q\right) .
$$

Hence $a^{-i} b^{j}\left(H a^{r} b^{s}\right)=a^{-i}\left(H a^{r} b^{s+j}\right)=H a^{r+i} b^{u^{i}(s+j)}=H a^{r} b^{s}$, then

$$
\left\{\begin{array}{l}
i+r \equiv r\left(\bmod p^{2}\right) \\
u^{i}(s+j) \equiv s(\bmod q)
\end{array} .\right.
$$

Thus, $i \equiv 0\left(\bmod p^{2}\right)$ and $j \equiv 0(\bmod q)$. Consequently, $\mathcal{D}_{L}=L-\{e\}$, so the derangement graph $\Gamma_{L}=\operatorname{Cay}\left(\mathrm{L}, \mathcal{D}_{\mathrm{L}}\right)$ is a complete graph and this completes the proof.

Theorem 3.3. Suppose G is a group of order $p^{2} q$, where $p<q$. Then G has the EKR property.
Proof. Use Lemmas 3.1 and 3.4.
Theorem 3.4. Suppose G is a group of order $p^{2} q$, where $p>q$. Then G has the $E K R$ property.
Proof. By Lemma 2.2, Proposition 2.1 and Corollary 2.1, groups Q_{1}, Q_{2}, Q_{3} have the $E K R$ property. Let $H=\langle a\rangle$ and $K=\langle b\rangle$. It is clear that $K \triangleleft Q_{4}$. On the other hand, $\left|S y l_{q}\left(Q_{4}\right)\right|=p^{2}$ and the intersection of Sylow q-subgroups is trivial. This yields that the group $Q_{4}=K H$ is a Frobenius group. By a similar argument we can prove that groups Q_{5} and $Q_{5}+i,(i=$ $1,2,3, \ldots, \frac{q-1}{2}$ and $q-1$) are Frobenius groups and by Proposition 2.1, they have the $E K R$ property.

Corollary 3.1. A group of order $p^{2} q$ has the EKR property.
By Lemma 2.2 and Corollary 2.1, groups L_{1}, L_{2}, Q_{1} and Q_{2} have the strict $E K R$ property. Also, by Lemma 3.4, derangement graph of group L_{5} is complete graph and it has the strict $E K R$ property. Let $p, q \neq 2$, by Proposition 2.1 and Corollary 2.1, the other groups of order $p^{2} q$ do not have the strict $E K R$ property. So we proved the following theorem.

Theorem 3.5. Among all groups of order $p^{2} q$ only the groups $L_{1}, L_{2}, L_{5}, Q_{1}$ and Q_{2} have the strict EKR property.

3.3. Groups of order p^{3}

Let p be an odd prime number. Then there are three abelian groups $\mathbb{Z}_{p^{3}}, \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}, \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ of order p^{3} and two non-abelian groups of order p^{3} as follows:

$$
\begin{aligned}
K_{1} & =\left\langle a, b \mid a^{p}=b^{p^{2}}=e, a^{-1} b a=b^{p+1}\right\rangle \\
K_{2} & =\left\langle a, b, c \mid a^{p}=b^{p}=c^{p}=e,[a, b]=c,[a, c]=[b, c]=e\right\rangle
\end{aligned}
$$

According to Lemma 2.2 and Corollary 2.1, three abelian groups have the strict $E K R$ property. It remains to check the strict $E K R$ property for groups K_{1} and K_{2}. First, consider the group K_{1}. To do this we have the following lemma.

Lemma 3.5. Let $H=\langle a\rangle \leq K_{1}$. Then H is the only core-free subgroup of K_{1}.
Proof. The group K_{1} has three non-conjugate subgroups of order p, namely $H_{1}=\langle e\rangle, H_{2}=\langle a\rangle$ and $H_{3}=Z\left(K_{1}\right)$. It is not difficult to see that H_{2} is core free. On the other hand, there are $p+1$ subgroups of order p^{2} containing $Z\left(K_{1}\right)$ and we denote them by H_{4}, \ldots, H_{p+4}. All of them are normal in K_{1}. So for $i \neq 2, \operatorname{cor}_{G}\left(H_{i}\right)=H_{i}$.

According to Lemma 3.5, the action of K_{1} on the set $\left\{1,2, \cdots, p^{2}\right\}$ is faithful.
Theorem 3.6. Let $H=\langle a\rangle \leq K_{1}$, the permutation peresentation of generators of K_{1} are

$$
\begin{aligned}
a^{-1}= & \left(2,(p+1)^{2}+1, \cdots,(p+1)^{p-1}+1\right) \cdots\left(3,2(p+1)+1, \cdots, 2(p+1)^{p-1}\right. \\
& +1) \cdots\left(p,(p-1)(p+1)+1, \cdots,(p-1)(p+1)^{p-1}+1\right), \\
b= & \left(p^{2}, p^{2}-1, \cdots, 1\right) .
\end{aligned}
$$

Proof. First, consider the labeling $H \rightarrow 1, H b \rightarrow 2, \cdots, H b^{p^{2}-1} \rightarrow p^{2}$. It is not difficult to see that $\varphi_{a^{-1}}\left(H b^{i}\right)=H b^{(p+1) i}$ and $\varphi_{b}\left(H b^{i}\right)=H b^{i-1}$. The permutation presentation of a^{-1} is a product of $p-1$ cycles of order p. Note that b has no fixed point. Since $\varphi_{a^{-1}}\left(H b^{i}\right)=H b^{i}$ if and only if $b^{p i} \in H$, we conclude a^{-1} fixes all points $1, p+1,2 p+1, \cdots, p^{2}+1$. Thus, every element $a^{i} b^{t p}(1 \leq i, t \leq p-1)$ has $p+1$ fixed points.

Theorem 3.7. The derangement graph $\Gamma_{K_{1}}=\operatorname{Cay}\left(\mathrm{K}_{1}, \mathcal{D}_{\mathrm{K}_{1}}\right)$ is isomorphic with the graph depicted in Figure 1.

Figure 1. Cayley graph $\Gamma_{K_{1}}=\operatorname{Cay}\left(\mathrm{K}_{1}, \mathcal{D}_{\mathrm{k}_{1}}\right),\left(1 \leq j \leq p^{2}\right)$.

Proof. The derangement set of $\Gamma_{K_{1}}$ is $\mathcal{D}_{K_{1}}=K_{1}-\left\{e, a^{i} b^{j}\right\}$, where $1 \leq i \leq p-1$ and $j=t p(0 \leq$ $t \leq p-1)$. Hence it is a regular graph and the degree of every vertex is $p^{3}-p-(p-1)^{2}$. Since $a^{i} b^{j}$ is adjacent with $a^{r} b^{s}$ if and only if $a^{r} b^{s-j} a^{-i} \in S$ if and only if $a^{r+p-i} b^{(p+1)^{p-i}(s-j)} \in S$, we conclude that $a^{i} b^{j}$ is adjacent to $a^{r} b^{s}$ if and only if

$$
\left\{\begin{array} { l }
{ r \neq i (\operatorname { m o d } p) } \tag{2}\\
{ (1 - p i) (s - j) \neq t p (\operatorname { m o d } p ^ { 2 }) }
\end{array} \text { or } \left\{\begin{array} { l }
{ r = i (\operatorname { m o d } p) } \\
{ j \neq s }
\end{array} \left\{\begin{array}{l}
r \neq i(\bmod p) \\
j=s,
\end{array}\right.\right.\right.
$$

where $1 \leq t \leq p-1$. The equation $(1-p i)(s-j) \neq t p\left(\bmod p^{2}\right)$, for every t has only one soloution, where $s \neq t p+j$ which yields $\Gamma_{K_{1}}$ has p non-disjoint cliques of order p^{2}.

Lemma 3.6. The independence number of $\Gamma_{K_{1}}=\operatorname{Cay}\left(\mathrm{K}_{1}, \mathcal{D}_{\mathrm{K}_{1}}\right)$ is p.
Proof. By using Lemma 2.1 and Theorem 3.7 one can see that $\alpha\left(\Gamma_{K_{1}}\right) \leq p$. Since $\langle a\rangle$ is an independent set of $\Gamma_{K_{1}}$, we have $\alpha\left(\Gamma_{K_{1}}\right)=p$.

By Eq. (2), and permutation peresentation of generators of K_{1}, we conclude that

$$
S=\left\{e, a b^{p}, a^{2} b^{p}, \cdots, a^{p-1} b^{p}\right\}
$$

is a maximum independent set in $\Gamma=\operatorname{Cay}\left(\mathrm{K}_{1}, \mathrm{~S}\right)$. This yields that the group K_{1} does not have the strict $E K R$ property.

Lemma 3.7. Let $H=\langle a\rangle \leq K_{2}$, then H is the largest core-free subgroup of K_{2}.
Proof. All non-conjugate subgroups of K_{2} are $\langle a\rangle,\langle b\rangle,\langle c\rangle,\left\langle a^{i} b^{j}\right\rangle$ and the number of such subgroups is $p-1+3=p+2$. Let us show them by H_{1}, \ldots, H_{p+2}. For $2 \leq i \leq p+2$, $\left|N_{G}\left(H_{i}\right)\right|=p^{2}$ and $N_{G}\left(H_{3}\right)=G$. On the other hand, all non-conjugate subgroups of order p^{2} are $\left\langle a^{i}, b^{j}\right\rangle(1 \leq i, j \leq p-1)$ and $\langle b, c\rangle$. Hence, there are $p-1+2=p+1$ non-conjugate subgroups of this form. We call them by G_{1}, \ldots, G_{p+1}. For $1 \leq i \leq p+1$, we have $N_{G}\left(G_{i}\right)=G$. Since for $1 \leq i \leq p+1, G_{i}$ is a normal subgroup of G and $\operatorname{cor}_{G}\left(G_{i}\right)=G_{i}$. By the relations in group K_{2} we have $b^{-1} a^{i} b=a^{i} c^{-i}$ which yields $\operatorname{cor}_{K_{2}}(H)=\{e\}$.

According to Lemma 3.7, the action of K_{2} on the set $\left\{1,2, \cdots, p^{2}\right\}$ is faithful.
Theorem 3.8. Let $H=\langle a\rangle \leq K_{2}$. The permutation peresentations of generators of K_{2} are

$$
\begin{aligned}
a^{-1} & =(2,2 p, \cdots, 3 p-2)(3,3 p, \cdots, 4 p-4) \cdots\left(p, p^{2}, \cdots, p^{2}-p+2\right) \\
b & =(1, p, \cdots, 2)\left(p+1, p^{2}-p+2, \cdots, 2 p\right) \cdots\left(2 p-1, p^{2}, \cdots, 3 p-2\right) \\
c & =(1,2 p-1, \cdots, p+1)(2,3 p-2, \cdots, 2 p) \cdots\left(p, p^{2}, \cdots, p^{2}-p+2\right) .
\end{aligned}
$$

Proof. First, asign the following labels to the elements of coset K_{2} / H.

$$
\begin{aligned}
H & \rightarrow 1, H b \rightarrow 2, \cdots, H b^{p-1} \rightarrow p \\
H c & \rightarrow p+1, \cdots, H c^{p-1} \rightarrow 2 p-1 \\
H b c & \rightarrow 2 p, \cdots, H b c^{p-1} \rightarrow 3 p-2 \\
H b^{2} c & \rightarrow 3 p-1, \cdots, H b^{p-1} c^{p-1} \rightarrow p^{2} .
\end{aligned}
$$

With regards to the relations of K_{2} and the action of K_{2} on the right coset K_{2} / H, we have $\varphi_{a^{-1}}\left(H b^{i} c^{j}\right)=H b^{i} c^{i+j}, \varphi_{b}\left(H b^{i} c^{j}\right)=H b^{i-1} c^{j}$ and $\varphi_{c}\left(H b^{i} c^{j}\right)=H b^{i} c^{j-1}$. Indeed, the permutation presentation of a^{-1} is composed of $p-1$ cycles of order p and the permutation presentations of b and c are composed of p cycles of order p. One can see that a^{-1} fixes all points $1, p+1, \cdots 2 p-1$ and b, c move all points.

Theorem 3.9. The Cayley graph $\Gamma_{K_{2}}=\operatorname{Cay}\left(\mathrm{K}_{2}, \mathcal{D}_{\mathrm{K}_{2}}\right)$ is isomorphic with the graph depicted in Figure 2.

Figure 2. Cayley graph $\Gamma_{K_{2}}=\operatorname{Cay}\left(\mathrm{K}_{2}, \mathcal{D}_{\mathrm{k}_{2}}\right)$.

Proof. The derangement set of $\Gamma_{K_{2}}$ is $\mathcal{D}_{K_{2}}=K_{2}-\left\{e, a^{i} c^{k}\right\}$, where $1 \leq i \leq p-1,0 \leq$ $k \leq p-1$. Hence $\Gamma_{K_{2}}$ is a regular graph of degree $p^{3}-p(p-1)-1$. Since $a^{i} b^{j} c^{k}$ is adjacent with $a^{r} b^{s} c^{t}$ if and only if $a^{r} b^{s-j} a^{-i} c^{t-k} \in \mathcal{D}_{K_{2}}$ if and only if $a^{r+p-i} b^{s-j} c^{-s i+i j+t-k} \in \mathcal{D}_{K_{2}}$, we conclude that $a^{i} b^{j} c^{k}$ is not adjacent to $a^{r} b^{s} c^{t}$ if and only if $s=j(\bmod p)$ and $r \neq i(\bmod p)$. By these relations, the derangement graph $\Gamma_{K_{2}}$ is composed of p subgraphs G_{1}, \cdots, G_{p}, where
$G_{i} \cong p K_{p}(i=1,2, \cdots, p)$ and $p K_{p}=\cup_{i=1}^{p} K_{P}$. For two distinct integers $i, j \in[p]$ all vertices of G_{i} are adjacent with all vertices of G_{j}. Hence, the Cayley graph $\Gamma_{K_{2}}=\operatorname{Cay}\left(\mathrm{K}_{2}, \mathcal{D}_{\mathrm{K}_{2}}\right)$ is as depicted in Figure 2 and thus the independence number of $\Gamma_{K_{2}}$ is p.

By the proof of Theorem 3.9 and permutation peresentation of generators of K_{2}, we conclude that $S=\left\{e, a c, a^{2} c, \cdots, a^{p-1} c\right\}$ is a maximum independent set in $\Gamma=\operatorname{Cay}\left(\mathrm{K}_{2}, \mathrm{~S}\right)$. Then the group K_{2} does not have the strict $E K R$ property.

4. Applications

A Kneser graph denoted by $K_{v: k}$ is the graph with the k-subsets of a v-set as its vertices, where two k-subsets are adjacent if they are disjoint as sets. It is a well-known fact that the independence number of Kneser graph is $\binom{v-1}{r-1}$. For proving this result, we construct an intersecting set whose size is equal with the independence number. The idea of EKR theorem on finite groups is given from above algorithm.

Let \mathbb{S}_{n} be the set of permutations of $[n]$. A family of \mathbb{S}_{n} is said to be t-intersecting if any two permutations in the family agree in at least t points. In 1977, Deza and Frankl [6] proved that a 1-intersecting family has size at most $(n-1)$!. In [13] a statistical application of EKR theorem is given.

The other application of EKR theorem can be found in hyper graphs. A hypergraph is a generalization of a graph in which an edge can join any number of vertices. Formally, a hypergraph H is a pair $H=(X, E)$, where X is a set of elements called vertices, and E is a set of non-empty subsets of X called edges. Therefore, E is a subset of $P(X)-\{\phi\}$, where $P(X)$ is the power set of X. The Erdős-Ko-Rado theorem is part of the theory of hypergraphs, specifically, uniform hypergraphs of rank r. A family of sets is a hypergraph, and when all the sets are the same size it is called a uniform hypergraph. Since every set in A has size r, A is an r-uniform hypergraph. Given $n>2 k$, every intersecting k-uniform hypergraph H on n vertices contains a vertex that lies in at most $\binom{n-2}{k-2}$ edges. This result can be viewed as a special case of the degree version of a well-known conjecture of Erdős on hypergraph matchings. In [10], it is proved that given integers n, k, s with $n \geq 3 k^{2} s$, every k-uniform hypergraph H on n vertices with minimum vertex degree greater than $\binom{n-1}{k-1}-\binom{n-s}{k-1}$ contains s disjoint edges.

Finally, we find the independence number of a Cayley derangement graph constructed by Mathieu group. The Mathieu groups are five sporadic simple groups $M_{11}, M_{12}, M_{22}, M_{23}$ and M_{24} introduced by Mathieu (1861, 1873). They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objects. They were the first sporadic groups to be discovered. In [1], it is proved that the Mathieu group M_{12} has the EKR property and it is a well-known fact that the stabilizer of a point in M_{12} is M_{11}. Then the independence number of derangement graph of M_{12} is equal with the size of the stabilizer of a point (the size of M_{11}) which is 7920 .

References

[1] B. Ahmadi, Maximum Intersecting Families of Permutations, Ph.D. thesis. University of Regina, Regina, (2013).
[2] B. Ahmadi and K. Meagher, The Erdős-Ko-Rado property for some permutation groups groups, Australas. J. Comb. 61 (1) (2015), 23-41.
[3] M. Bardestani and K. Mallahi-Karai, On the Erdős-Ko-Rado property for finite groups, J. Algebr. Comb. 42 (2015), 111-128.
[4] P.J. Cameron and C.Y. Ku, Intersecting families of permutations, European J. Combin. 24 (2003), 881-890.
[5] P. Erdős, Chao Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. 12 (1961), 313-320.
[6] P. Frankl and M. Deza, The maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A. 22 (1977), 352-360.
[7] M. Ghorbani and F. Nowroozi-Larki, Automorphism group of groups of order pqr, Journal of Algebraic Structures and Their Applications 1 (2014), 49-56.
[8] M. Ghorbani and M. Rajabi-Parsa, On the spectrum of derangement graphs of order a product of three primes, Journal of Algebraic Structures and Their Applications 6 (2019), 81-89.
[9] C. Godsil and K. Meagher, A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations, European J. Combin. 30 (2009), 404-414.
[10] H. Huang and Y. Zhao, Degree versions of the Erdős-Ko-Rado Theorem and Erdős hypergraph matching conjecture, arXiv:1605.07535v1.
[11] G. James and M. Liebeck, Representation and Characters of Groups, Cambridge University Press. Cambridge, (1993).
[12] B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type graphs, European J. Combin. 25 (2004), 657-673.
[13] T.M. Ligget, Extensions of the Erdős-Ko-Rado theorem and a statistical application, J. Combin. Theory Ser. A 23 (1977), 15-21.
[14] K. Meagher and P. Spiga, An Erdős-Ko-Rado theorem for the derangement graph of PGL(2, q) acting on the projective line, J. Combin. Theory Ser. A. 118 (2011), 532-544.
[15] K. Meagher and P. Spiga, An Erdős-Ko-Rado-type theorem for PGL3(q), SIAM J. Discrete Math. 28 (2014), 918-941.
[16] H. Holder, Die Gruppen der ordnungen p^{3}, pq, pqr, p^{4}, Math. Ann. XLIII. (1893), 371-410.
[17] M. Jalali-Rad and A.R. Ashrafi, Erdős-Ko-Rado properties of some finite groups, Sib. Electron. Math. Reports 13 (2016), 1249-1257
[18] J.S. Rose, A Course on Group Theory, Cambridge University Press (1978).
[19] C.Y. Ku and T.W.H. Wong, Intersecting families in the alternating group and direct product of symmetric groups, Electron. J. Combin. 14 (2007), \#R25.
[20] J. Wang and S.J. Zhang, An Erdős-Ko-Rado-type theorem in Coxeter groups, European J. Combin. 29 (2008), 1112-1115.

