Electronic Journal of Graph Theory and Applications

On topological integer additive set-labeling of star graphs

Hafizh M. Radiapradana ${ }^{\text {a }}$, Suhadi Wido Saputro ${ }^{\text {a }}$, Erma Suwastika ${ }^{\text {a }}$, Oki Neswan $^{\text {a }}$, Andrea Semaničová-Feňovčíkováb
${ }^{a}$ Department of Mathematics,
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung, Indonesia
${ }^{b}$ Department of Applied Mathematics and Informatics, Technical University, Letná 9, Košice, Slovakia

hafizhmcdc@gmail.com, \{suhadi, ermasuwastika, oneswan\}@math.itb.ac.id, andrea.fenovcikova@tuke.sk

Abstract

For integer $k \geq 2$, let $X=\{0,1,2, \ldots, k\}$. In this paper, we determine the order of a star graph $K_{1, n}$ of $n+1$ vertices, such that $K_{1, n}$ admits a topological integer additive set-labeling (TIASL) with respect to a set X. We also give a condition for a star graph $K_{1, n}$ such that $K_{1, n}$ is not a TIASL-graph on set X.

Keywords: set-labeling, set topology, star graph, sumset, topological integer additive set-labeling Mathematics Subject Classification : 05C78
DOI: 10.5614/ejgta.2018.6.2.13

1. Introduction

Research on graph labeling was started after Rosa introduced the concept of β-valuation of graphs [2]. The concept of set-assignment [1], which is defined as follows, is analogous to the number valuations of graphs. Let $G(V, E)$ be a graph, X be a non-empty set, and $\mathcal{P}(X)$ be the power set of X. Then the set-valued function $f: V(G) \rightarrow \mathcal{P}(X)$ is called the set-assignment of vertices of G. We can also define a set-assignment of edges or both elements (vertices and edges)

Received: 31 August 2017, Revised: 28 June 2018, Accepted: 14 September 2018.
in a similar way. A set-assignment of a graph G is called a set-labeling (or a set-valuation) of G if it is injective.

In this paper, we combine the concept of the vertex set-labeling and the set topology. A topology on a non-empty set X is a collection \mathcal{T} of subsets of X having the following properties:

1. The set X and \emptyset are in \mathcal{T}.
2. The union of the elements of any sub-collection of \mathcal{T} is in \mathcal{T}.
3. The intersection of the elements of any finite sub-collection of \mathcal{T} is in \mathcal{T}.

Let G be a connected, simple, and finite graph. Let X be a finite non-empty set of non-negative integers. A vertex set-labeling $f: V(G) \rightarrow \mathcal{P}(X)-\{\emptyset\}$ is called a topological integer additive set-labeling (TIASL) of G if f is an injective function, $\{f(V(G)) \cup\{\emptyset\}\}$ is a topology of X, and there exists the corresponding function $f^{+}: E(G) \rightarrow \mathcal{P}(X)-\{\emptyset\}$ such that for every edge $u v \in E(G), f^{+}(u v)=f(u)+f(v)$. We recall that the sumset (or Minkowski sum [4]) of two non-empty sets A and B, denoted by $A+B$, is defined by $A+B=\{a+b \mid a \in A ; b \in B\}$. A graph G which admits TIASL is called a topological integer additive set-labelled graph (in short, TIASL-graph).

The topological integer additive set-labeling was introduced by Sudev and Germina [3]. They give a tight condition for a TIASL-graph. They proved that G is a TIASL-graph if and only if G has at least one pendant vertex. They also characterized all TIASL-graphs with respect to either the indiscrete topology or Sierpenski's topology.

Let G be a graph having a pendant vertex. For integer $k \geq 2$, let $X=\{0,1,2, \ldots, k\}$. It seems that every graph G admits a topological integer additive set-labeling on set X if the cardinality of X is big enough. In [3], Sudev and Germina proved that an (n, m)-tadpole graph is a TIASLgraph. An (n, m)-tadpole graph is a graph obtained from one copies of cycle $C_{n}, n \geq 3$, and path $P_{m}, m \geq 2$, by identifying an end point of the path P_{m} to a vertex of cycle C_{n}. They have shown that an (n, m)-tadpole graph of $n+m-1$ vertices admits a topological integer additive set-labeling on set $X=\{0,1,2, \ldots, k\}$ where $k=2(m+n)-5$.

In this paper, we consider a star graph $K_{1, n}$ of $n+1$ vertices and a given set $X=\{0,1,2, \ldots, k\}$ where $k \geq 2$. We obtain two main results. The first result is related to the order of a star graph $K_{1, n}$ such that $K_{1, n}$ is a TIASL-graph on the set X.
Theorem 1.1. Let $K_{1, n}$ be a star graph with $n+1$ vertices. For $k \geq 2$, let $X=\{0,1,2, \ldots, k\}$. If n is one of the positive integers below, then $K_{1, n}$ is a TIASL-graph on set X.
(a) $n \in\{1,2, \ldots, 4 k-4\}$, or
(b) $n=2^{r_{1}}+r_{2}-2$ for $r_{1} \in\{2,3, \ldots, k-1\}$ and $r_{2} \in\{1,2\}$.

In the second result, we give a condition for a star graph $K_{1, n}$ such that $K_{1, n}$ is not a TIASLgraph on set X.
Theorem 1.2. Let $K_{1, n}$ be a star graph with $n+1$ vertices. For $k \geq 2$, let $X=\{0,1,2, \ldots, k\}$. If $3 \cdot 2^{k-1}-2 \leq n \leq 2^{k+1}-2$, then $K_{1, n}$ is not a TIASL-graph on set X.

In order to prove both theorems above, we also consider the following useful proposition.
Proposition 1.1. Let S be a finite non-empty set of non-negative integers with s elements. Then $\mathcal{P}(S)$ is a topology of S with 2^{s} elements.

2. Proof of Theorem 1.1

For an integer $k \geq 2$, let $X=\{0,1,2, \ldots, k\}$. First we must consider the following proposition which has been proved by Sudev and Germina [3].

Proposition 2.1. Let $f: V(G) \rightarrow \mathcal{X}-\{\emptyset\}$ is a TIASL of a graph G. Then, the vertices whose set-labels containing the maximal element of the ground set X are pendant vertices which are adjacent to the vertex having the set-label $\{0\}$.

From Proposition 2.1, if f is a TIASL of a graph G, then there exists a vertex v of G such that $f(v)=\{0\}$. Therefore, we must construct a topology of X containing $\{0\}$.

Proposition 2.2. There exists a topology \mathcal{T} containing $\{0\}$ on set X such that $|\mathcal{T}|=t$, where t is one of the positive integers as follows.
(a) $3 \leq t \leq 4 k-2$, or
(b) $t=2^{r_{1}}+r_{2}$ for $r_{1} \in\{2,3, \ldots, k-1\}$ and $r_{2} \in\{1,2\}$.

Proof. We distinguish two cases.
Part 2.2.1. $3 \leq t \leq 4 k-2$
Let $I_{0}=X$. For $i \in\{1,2, \ldots, k\}$, we define recursively

$$
I_{i}=I_{i-1}-\max \left(I_{i-1}\right)
$$

and

$$
\mathcal{I}_{i}=\left\{I_{k}\right\} \cup\left\{I_{s} \mid 0 \leq s \leq i-1\right\} .
$$

Note that $\left|\mathcal{I}_{i}\right|=i+1$. We also define $I_{i}^{*}=I_{k-i}-\{0\}$ and $\mathcal{I}_{i}^{*}=\left\{I_{s}^{*} \mid 1 \leq s \leq i\right\}$. In this case, $\left|\mathcal{I}_{i}^{*}\right|=i$. For $j \in\{1,2, \ldots, k-2\}$, we define

$$
\widehat{I}_{j}=I_{j+2} \cup\{k-1\}
$$

and

$$
\widehat{I}_{j}^{*}=\widehat{I}_{j}-\{0\} .
$$

We also define

$$
\mathcal{I}_{j}^{* *}=\widehat{\mathcal{I}}_{j} \cup \widehat{\mathcal{I}}_{j}^{*}
$$

where $\widehat{\mathcal{I}}_{j}=\left\{\widehat{I}_{s} \mid 1 \leq s \leq j\right\}$ and $\widehat{\mathcal{I}}_{j}^{*}=\left\{\widehat{I}_{s}^{*} \mid 1 \leq s \leq j\right\}$. Note that $\left|\mathcal{I}_{j}^{* *}\right|=2 j$.
By some definitions above, we define a collection-set \mathcal{T}_{1} with t elements as follows.

$$
\mathcal{T}_{1}=\{\emptyset\} \cup \begin{cases}\mathcal{I}_{t-2}, & \text { if } 3 \leq t \leq k+2, \\ \mathcal{I}_{k} \cup \mathcal{I}_{t-k-2}^{*}, & \text { if } k+3 \leq t \leq 2 k+2, \\ \mathcal{I}_{k} \cup \mathcal{I}_{k-1}^{*} \cup \mathcal{I}_{t-1}^{* *}, & \text { if } 2 k+3 \leq t \leq 4 k-3 \text { and } t \text { is odd } \\ \mathcal{I}_{k} \cup \mathcal{I}_{k}^{*} \cup \mathcal{I}_{\frac{t-2}{2}-k}^{* *}, & \text { if } 2 k+4 \leq t \leq 4 k-2 \text { and } t \text { is even } .\end{cases}
$$

Note that $I_{k}=\{0\} \in \mathcal{T}_{1}$. Now, we will show that \mathcal{T}_{1} is a topology of X.
Let A and B be two distinct elements of \mathcal{T}_{1} where $|A| \leq|B|$. If $A \subset B$, then $A \cap B=A \in \mathcal{T}_{1}$ and $A \cup B=B \in \mathcal{T}_{1}$. Otherwise, we distinguish six cases.

1. $A \in \mathcal{I}_{k}$ and $B \in \mathcal{I}_{i}^{*}$ for $i \in\{1,2, \ldots, k\}$ (or $B \in \mathcal{I}_{k}$ and $A \in \mathcal{I}_{i}^{*}$)

Then $A \cap B \in \mathcal{I}_{i}^{*}$ and $A \cup B \in \mathcal{I}_{k}$.
2. $A \in \mathcal{I}_{k}$ and $B \in \widehat{\mathcal{I}}_{j}$ for $j \in\{1,2, \ldots, k-2\}$ (or $B \in \mathcal{I}_{k}$ and $A \in \widehat{\mathcal{I}}_{j}$)

Then $A \cap B \in \mathcal{I}_{k}$ and either $A \cup B \in \mathcal{I}_{k}$ or $A \cup B \in \widehat{\mathcal{I}}_{j}$.
3. $A \in \mathcal{I}_{k}$ and $B \in \widehat{\mathcal{I}}_{j}^{*}$ for $j \in\{1,2, \ldots, k-2\}$ (or $B \in \mathcal{I}_{k}$ and $A \in \widehat{\mathcal{I}}_{j}^{*}$)

Then $A \cap B \in \mathcal{I}_{k}^{*}$ and either $A \cup B \in \widehat{\mathcal{I}}_{j}$ or $A \cup B \in \mathcal{I}_{k}$.
4. $A \in \mathcal{I}_{i}^{*}$ and $B \in \widehat{\mathcal{I}}_{j}$ for $i \in\{k-1, k\}$ and $j \in\{1,2, \ldots, k-2\}$ (or $B \in \mathcal{I}_{i}^{*}$ and $A \in \widehat{\mathcal{I}}_{\dot{\mathcal{I}}}$)

Then either $A \cap B=\emptyset$ or $A \cap B \in \mathcal{I}_{i}^{*}$ or $A \cap B \in \widehat{\mathcal{I}}_{j}^{*}$. Also, we have either $A \cup B \in \widehat{\mathcal{I}}_{j}$ or $A \cup B \in \mathcal{I}_{k}$.
5. $A \in \mathcal{I}_{i}^{*}$ and $B \in \widehat{\mathcal{I}}_{j}^{*}$ for $i \in\{k-1, k\}$ and $j \in\{1,2, \ldots, k-2\}$ (or $B \in \mathcal{I}_{i}^{*}$ and $A \in \widehat{\mathcal{I}}_{j}^{*}$)

Then either $A \cap B \in \mathcal{I}_{k}$ or $A \cap B=\emptyset$. Also, we have either $A \cup B \in \mathcal{I}_{i}^{*}$ or $A \cup B \in \widehat{\mathcal{I}}_{j}^{*}$.
6. $A \in \widehat{\mathcal{I}}_{j}$ and $B \in \widehat{\mathcal{I}}_{j}^{*}$ for $j \in\{1,2, \ldots, k-2\}$ (or $B \in \widehat{\mathcal{I}}_{j}$ and $A \in \widehat{\mathcal{I}}_{j}^{*}$)

Then $A \cap B \in \widehat{\mathcal{I}}_{j}^{*}$ and $A \cup B \in \widehat{\mathcal{I}}_{j}$.
From the six cases above, we obtain that every two distinct elements A and B in \mathcal{T}_{1} satisfy $A \cap B \in \mathcal{T}_{1}$ and $A \cup B \in \mathcal{T}_{1}$. Since \mathcal{T}_{1} also contains \emptyset and X, it implies that \mathcal{T}_{1} is a topology of X.

Part 2.2.2. $t=2^{r_{1}}+r_{2}$ for $r_{1} \in\{2,3, \ldots, k-1\}$ and $r_{2} \in\{1,2\}$
We define the sets $J_{r_{1}}=\left\{0,1, \ldots, r_{1}\right\}$. Now, we consider an element a of X such that $a \neq \max (X)$. Let $X^{-}=X-\{a\}$. By these definitions, we define a collection-set \mathcal{T}_{2} with t elements as follows.

$$
\mathcal{T}_{2}= \begin{cases}\mathcal{P}\left(J_{r_{1}}\right) \cup\{X\}, & \text { if } t=2^{r_{1}}+1, \\ \mathcal{P}\left(J_{r_{1}}\right) \cup\left\{\{X\},\left\{X^{-}\right\}\right\}, & \text {if } t=2^{r_{1}}+2 .\end{cases}
$$

Now, we will show that \mathcal{T}_{2} is a topology of X.
Note that $\emptyset,\{0\}, X \in \mathcal{T}_{2}$. Let A and B be two distinct elements of \mathcal{T}_{2}. We distinguish three cases.

1. $A, B \in \mathcal{P}\left(J_{r_{1}}\right)$

By Proposition 1.1, then $A \cap B \in \mathcal{P}\left(J_{r_{1}}\right)$ and $A \cup B \in \mathcal{P}\left(J_{r_{1}}\right)$.
2. $A \in \mathcal{P}\left(J_{r_{1}}\right)$ or $A=X^{-}$, and $B=X$

Then $A \cup B=B$ and $A \cap B=A$.
3. $A \in \mathcal{P}\left(J_{r_{1}}\right)$ and $B=X^{-}$.

Then $A \cap B \in \mathcal{P}\left(J_{r_{1}}\right)$ and $A \cup B \in\left\{X, X^{-}\right\}$.
From three cases above, we obtain that $A \cap B, A \cup B \in \mathcal{T}_{2}$.
Now, we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. Let $V\left(K_{1, n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n+1}\right\}$, where v_{1} is the centre of $K_{1, n}$. Let \mathcal{T}_{t} be a topology of X with t elements satisfying Proposition 2.2. Let $\mathcal{T}_{t}^{\prime}=\mathcal{T}_{t}-\{\emptyset\}$. Now, we define a vertex injective labeling $f: V\left(S_{n}\right) \rightarrow \mathcal{T}_{t}^{\prime}$ such that $f\left(v_{1}\right)=\{0\}$. Since for $2 \leq i \leq n, v_{1}$ is adjacent to v_{i} and $f\left(v_{1}\right)+f\left(v_{i}\right)=f\left(v_{i}\right) \in \mathcal{T}_{t}^{\prime} \subseteq \mathcal{P}(X)$, we obtain that $K_{1, n}$ is a TIASL-graph on the set X.

3. Proof of Theorem 1.2

Let S be a finite non-empty set of non-negative integers. From Proposition 1.1, it is clear that $\mathcal{P}(S)$ is a topology on the set S. Let $\mathcal{A} \subset \mathcal{P}(S)$. On some cases of \mathcal{A}, the collection $\mathcal{P}(S)-\mathcal{A}$ is not a topology on the set S. In proposition below, we prove that if $L \in \mathcal{P}(S)$ is not an element of a topology \mathcal{T} on the set S, then there exists an element $l \in L$ such that $\{l\} \notin \mathcal{T}$.

Proposition 3.1. Let S be a finite non-empty set of non-negative integers with selements, and \mathcal{T} be a topology of S. Let $A \in \mathcal{P}(S)$ but $A \notin \mathcal{T}$. Then there exists an element a of A such that $\{a\} \notin \mathcal{T}$.

Proof. By the definition of a topology, we have $A \neq \emptyset$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$. If $r=1$, then we are done. Now, we assume that $r \geq 2$. Suppose that $\left\{a_{i}\right\} \in \mathcal{T}$ for $1 \leq i \leq r$. Note that $\bigcup_{i=1}^{r}\left\{a_{i}\right\}=A \notin \mathcal{T}$, a contradiction.

Let the collection \mathcal{T} be a topology on the set S which is satisfying Proposition 3.1 above and the set $L \in \mathcal{P}(S)$ but $L \notin \mathcal{T}$. Let $l \in L$ and $\{l\} \notin \mathcal{T}$. So, there are no two distinct sets A_{1} and A_{2} in \mathcal{T} such that $A_{1} \cap A_{2}=\{l\}$. Therefore, we need to determine how many elements of \mathcal{T} such that \mathcal{T} may be a topology on the set S.

Proposition 3.2. Let S be a finite non-empty set of non-negative integers with $s \geq 2$ elements. Let \mathcal{A} be a non-empty collection-set, where every element of \mathcal{A} is an element of $\mathcal{P}(S)$. If $\mathcal{P}(S)-\mathcal{A}$ is a topology of S, then $|\mathcal{P}(S)-\mathcal{A}| \leq 3 \cdot 2^{s-2}$.

Proof. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$. By Proposition 1.1, $\mathcal{P}(S)$ is a topology of S with 2^{s} elements. Let \mathcal{A} be a non-empty collection-set, where every element of \mathcal{A} is element of $\mathcal{P}(S)$. Let $\mathcal{T}=$ $\mathcal{P}(S)-\mathcal{A}$ be a topology of S.

Let $E \in \mathcal{A}$. Since \mathcal{T} is a topology of S, it is clear that $E \neq \emptyset$ and $E \neq S$. By considering Proposition 3.1, without lost of generality, let $v_{s} \in E$ and $\left\{v_{s}\right\} \notin \mathcal{T}$. We can say that $\left\{v_{s}\right\} \in \mathcal{A}$.

Let $\mathcal{B}=\left\{\left\{v_{s}, v_{i}\right\} \mid 1 \leq i \leq s-1\right\}$. Note that $|\mathcal{B}|=s-1$. Since \mathcal{T} is a topology of S, then at least $s-2$ elements of \mathcal{B} are in \mathcal{A}. Without lost of generality, let $\widehat{\mathcal{B}}=\left\{\left\{v_{s}, v_{i}\right\} \mid 1 \leq i \leq s-2\right\} \subseteq$ \mathcal{A}. Now, we define $B=\left\{v \mid\left\{v_{s}, v\right\} \in \widehat{\mathcal{B}}\right\}$. We also define $\mathcal{C}=\left\{\left\{v_{s}\right\} \cup C \mid C \in \mathcal{P}(B)\right\}$. Note that $|\mathcal{C}|=2^{s-2},\left\{v_{s}\right\} \in \mathcal{C}$, and $\mathcal{B} \subseteq \mathcal{C}$. Note that for any distinct elements $C_{1}, C_{2} \in \mathcal{C}$, we have $C_{1} \cup C_{2}$ and $C_{1} \cap C_{2}$ are also in \mathcal{C}. However, every $C \in \mathcal{C}$ satisfy $C \cap\left\{v_{s}, v_{s-1}\right\}=\left\{v_{s}\right\} \in \mathcal{A}$. So, it must be $\mathcal{C} \subseteq \mathcal{A}$. Therefore, we obtain

$$
|\mathcal{P}(S)-\mathcal{A}| \leq 2^{s}-2^{s-2}=3 \cdot 2^{s-2}
$$

Proof of Theorem 2. Theorem 1.2 is a direct consequence of Propositions 1.1 and 3.2.

Acknowledgement

This work is partially supported by Riset Program Penelitian, Pengabdian Masyarakat, dan Inovasi (P3MI) 1016/I1.C01/PL/2017, by APVV-15-0116, and by VEGA 1/0233/18.

References

[1] B.D. Acharya and K.A. Germina, Set-valuations of graphs and their applications: A survey, Ann. Pure Appl. Math. 4 (1) (2013), 8-42.
[2] A. Rosa, On certain valuation of the vertices of a graph, in Theory of Graphs (Int. Symposium, Rome, July 1966), Gordon and Breach, N.Y., and Dunod. Paris (1967), 349-355.
[3] N.K. Sudev and K.A. Germina, A study on topological integer additive set-labeling of graphs, Electron. J. Graph Theory Appl. 3 (1) (2015), 70-84.
[4] G. Varadhan and D. Manocha, Accurate Minkowski sum approximation of polyhedral models, Graph. Models 68 (2006), 343-355.

