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Abstract

Let G = (V,E) be a simple connected graph. The eccentric-distance sum of G is defined as
ξds(G) =

∑
{u,v}⊆V (G)

[e(u) + e(v)]d(u, v), where e(u) is the eccentricity of the vertex u in G

and d(u, v) is the distance between u and v. In this paper, we establish formulae to calculate
the eccentric-distance sum for some graphs, namely wheel, star, broom, lollipop, double star,
friendship, multi-star graph and the join of Pn−2 and P2.
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1. Introduction

Let G be a simple connected graph with the vertex set V (G) and the edge set E(G). The
degree of a vertex u ∈ V (G) is denoted by d(u) and is the number of vertices adjacent to u. For
vertices u, v ∈ V (G), the distance d(u, v) is defined as the length of any shortest path connecting
u and v in G and D(u) denotes the sum of distances between u and all other vertices of G. The
eccentricity e(u) of a vertex u is the largest distance between u and any other vertex v of G, i.e.,
e(u) = max{d(u, v); v ∈ V (G)}. Let Kn, Pn, Wn, Cn and K1,n−1 denote a complete graph, path,
wheel, cycle and star on n vertices, respectively [14].
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The Wiener index is defined as the sum of all distances between unordered pairs of vertices

W (G) =
∑

{u,v}⊆V (G)

d(u, v).

It is considered as one of the most used topological index with high correlation with many physical
and chemical indices of molecular compounds (for the recent survey on Wiener index see [4, 5]).

The parameter DD(G) called the degree distance of G was introduced by Dobrynin and
Kochetova [6] and Gutman [13] as a graph-theoretical descriptor for characterizing alkanes; it can
be considered as a weighted version of the Wiener index and is defined as

DD(G) =
∑

{u,v}⊆V (G)

[d(u) + d(v)]d(u, v) =
∑

u∈V (G)

d(u)D(u)

where the summation goes over all pairs of vertices in G. In fact, when G is a tree on n vertices, it
has been demonstrated that Wiener index and degree distance are closely related by (see [15, 19])
DD(G) = 4W (G)− n(n− 1).

Sharma, Goswami and Madan [26] introduced a distance-based molecular structure descriptor,
eccentric connectivity index (ECI) defined as

ξc(G) =
∑

v∈V (G)

e(v)d(v).

The index ξc(G) was successfully used for mathematical models of biological activities of diverse
nature [9, 11, 12, 22, 25, 26]. The investigation of its mathematical properties started only recently
(for a survey on eccentric connectivity index see [17]). In [8, 18, 23, 28], the extremal graphs
in various class of graphs with maximal or minimal ECI are determined. In [1, 2, 7] the authors
determined the closed formulae for the eccentric connectivity index of nanotubes and nanotori.

Recently, a novel graph invariant for predicting biological and physical properties eccentric-
distance sum was introduced by S.Gupta, M.Singh and A.K.Madan [12]. This topological index
has vast potential application in structure activity/property relationships of molecules and it also
displays high discriminating power with respect to both biological activities and physical properties;
see[12]. The authors in [12] have shown that some structure activity and quantitative structure
property studies using eccentric-distance sum were better than the corresponding values obtained
using the Wiener index. It is also interesting to study the mathematical property of this topological
index. The eccentric-distance sum (EDS) of G is defined as

ξds(G) =
∑

u∈V (G)

e(u)D(u).

The eccentric-distance sum can be defined alternatively as

ξds(G) =
∑

{u,v}⊆V (G)

[e(u) + e(v)]d(u, v).
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Yu, Feng and Ilić [27] identified the extremal unicyclic graphs of given girth having the
minimal and second minimal EDS; they also characterized trees with minimal EDS among the
n-vertex trees of a given diameter. Hua, Xu and Shu[16] obtained the sharp lower bound on EDS
of n-vertex cacti. Ilić, Yu and Feng [20] studied various lower and upper bounds for the EDS in
terms of other graph invariant including the Wiener index, the degree distance index, the eccentric
connectivity index and so on.

In this paper we establish formulae to calculate the eccentric-distance sum for some graphs,
namely wheel, star, broom graph, lollipop, double star, friendship, multi-star graph and Pln graph.

2. Main Results

M. J. Morgan et al. calculated the eccentric-distance sum for complete graph, cycle graph
and path graph.

Proposition 2.1. [3]
1.ξds(Kn) = n(n− 1)

2.ξds(Cn) =


n4

8
, if n is even

n(n− 1)2(n+ 1)

8
, if n is odd.

3.ξds(Pn) =


25n4 − 16n3 − 28n2 + 16n

96
, if n is even

25n4 − 16n3 − 34n2 + 16n+ 9

96
, if n is odd.

Proposition 2.2. ξds(Wn) = (n− 1)(4n− 9)

Proof. e(v1) = 1 and e(vi) = 2 where, i = 2, 3, . . . , n. Then,

ξds(Wn) =
∑

{vi,vj}⊆V (Wn)

[e(vi) + e(vj)]d(vi, vj)

=(1 + 2)1(n− 1) + (2 + 2)1(2) + (2 + 2)2(n− 4)

+ (2 + 2)1 + (2 + 2)2(n− 4) + (2 + 2)1 + (2 + 2)2(n− 5)

+ · · ·+ (2 + 2)1 + (2 + 2)2(1) + (2 + 2)1

=(n− 1)(4n− 9).
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Proposition 2.3. ξds(K1,n−1) = (n− 1)(4n− 5)

Proof. e(v0) = 1 and e(vi) = 2 where, i = 1, 2, 3, . . . , n− 1. Then,

ξds(K1,n−1) =(1 + 2)1(n− 1) + (2 + 2)2(n− 2) + (2 + 2)2(n− 3) + · · ·+ (2 + 2)2(1)

=(n− 1)(4n− 5).

Definition 2.1. [23] The broom graphBn,d is a graph consisting of a path Pd, together with (n−d)
end vertices all adjacent to the same end vertex of Pd.

u
u u

u
uu

u uu u
v1 v2 v3 vd−1 vd

u1

u2

u3

u4

un−d

Figure 1. Broom graph Bn,d
.

Theorem 2.1. The eccentric-distance sum of a broom graph Bn,d is

ξds(Pd+1) + (n− d− 1)

d
2
(d2 − 3d+ 4n) +

d∑
k= d

2

k2 +

d
2
−1∑

k=1

(d− k)k

 ,
when d is even,

ξds(Pd+1) + (n− d− 1)

d
2
(d2 − 3d+ 4n) +

d∑
k= d−1

2
+1

k2 +

d−1
2∑

k=1

(d− k)k

 ,
when d is odd.

Proof. Let {v1, v2, . . . , vd, u1, u2, . . . , un−d} be the set of n vertices of the broom graph Bn,d. We
consider the following cases.

Case(i): d is even.

e(v1) = d, e(v2) = e(vd) = d − 1, e(v3) = e(vd−1) = d − 2, . . . , e(v d
2
) = e(v d

2
+2) =

d

2
+ 1,

e(v d
2
+1) =

d

2
, and e(u1) = e(u2) = · · · = e(un−d) = d. Then,
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ξds(Bn,d) =ξ
ds(Pd+1) + {[d+ d] d+ [(d− 1) + d] (d− 1) + [(d− 2) + d] (d− 2) + · · ·

+

[(
d

2
+ 2

)
+ d

](
d

2
+ 2

)
+

[(
d

2
+ 1

)
+ d

](
d

2
+ 1

)
+

[
d

2
+ d

]
d

2

+

[(
d

2
+ 1

)
+ d

](
d

2
− 1

)
+ · · ·+ [(d− 2) + d] 2 + [(d− 1) + d] 1

}
(n− d− 1)

+ (d+ d) 2 [(n− d− 1) + (n− d− 2) + · · ·+ 2 + 1]

=ξds(Pd+1) + (n− d− 1)

d
2
(d2 − 3d+ 4n) +

d∑
k= d

2

k2 +

d
2
−1∑

k=1

(d− k)k

 .
Case(ii): d is odd.
e(v1) = d, e(v2) = e(vd) = d − 1, e(v3) = e(vd−1) = d − 2, . . . , e(v d+1

2
−1) = e(v d+1

2
+2) =

d− 1

2
+ 2, e(v d+1

2
) = e(v d+1

2
+1) =

d− 1

2
+ 1, and e(u1) = e(u2) = · · · = e(un−d) = d. Then,

ξds(Bn,d) =ξ
ds(Pd+1) + {[d+ d] d+ [(d− 1) + d] (d− 1) + [(d− 2) + d] (d− 2) + · · ·

+

[(
d− 1

2
+ 2

)
+ d

](
d− 1

2
+ 2

)
+

[(
d− 1

2
+ 1

)
+ d

](
d− 1

2
+ 1

)
+

[(
d− 1

2
+ 1

)
+ d

](
d− 1

2

)
+

[(
d− 1

2
+ 2

)
+ d

](
d− 1

2
− 1

)
+ · · ·

+ [(d− 2) + d] 2 + [(d− 1) + d] 1} (n− d− 1) + (d+ d) 2 [(n− d− 1)

+ (n− d− 2) + · · ·+ 2 + 1]

=ξds(Pd+1) + (n− d− 1)

d
2
(d2 − 3d+ 4n) +

d∑
k= d−1

2
+1

k2 +

d−1
2∑

k=1

(d− k)k

 .

Definition 2.2. [23] The lollipop graph Ln,d is a graph obtained from a complete graph Kn−d and
a path Pd, by joining one of the end vertices of Pd to all the vertices of Kn−d.

t
t t

t
tt

t t t t

Figure 2. Lollipop graph L10,5
.
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Theorem 2.2. The eccentric-distance sum of a lollipop graph Ln,d is

ξds(Pd+1) + (n− d− 1)

d2
2
(d+ 1) + d(n− d) +

d∑
k= d

2

k2 +

d
2
−1∑

k=1

(d− k)k

 ,
when d is even,

ξds(Pd+1) + (n− d− 1)

d2
2
(d+ 1) + d(n− d) +

d∑
k= d−1

2
+1

k2 +

d−1
2∑

k=1

(d− k)k

 ,
when d is odd.

Proof. Let {v1, v2, . . . , vd, u1, u2, . . . , un−d} be the set of n vertices of the lollipop graph Ln,d. We
consider the following cases.

Case(i): d is even.

ξds(Ln,d) =ξ
ds(Pd+1) + {[d+ d] d+ [(d− 1) + d] (d− 1) + [(d− 2) + d] (d− 2) + · · ·

+

[(
d

2
+ 2

)
+ d

](
d

2
+ 2

)
+

[(
d

2
+ 1

)
+ d

](
d

2
+ 1

)
+

[
d

2
+ d

]
d

2

+

[(
d

2
+ 1

)
+ d

](
d

2
− 1

)
+ · · ·+ [(d− 2) + d] 2 + [(d− 1) + d] 1

}
(n− d− 1)

+ d (n− d− 1) (n− d)

=ξds(Pd+1) + (n− d− 1)

d2
2
(d+ 1) + d(n− d) +

d∑
k= d

2

k2 +

d
2
−1∑

k=1

(d− k)k

 .
Case(ii): d is odd.

ξds(Ln,d) =ξ
ds(Pd+1) + {[d+ d] d+ [(d− 1) + d] (d− 1) + [(d− 2) + d] (d− 2) + · · ·

+

[(
d− 1

2
+ 2

)
+ d

](
d− 1

2
+ 2

)
+

[(
d− 1

2
+ 1

)
+ d

](
d− 1

2
+ 1

)
+

[(
d− 1

2
+ 1

)
+ d

](
d− 1

2

)
+

[(
d− 1

2
+ 2

)
+ d

](
d− 1

2
− 1

)
+ · · ·

+ [(d− 2) + d] 2 + [(d− 1) + d] 1} (n− d− 1) + d (n− d− 1) (n− d)

=ξds(Pd+1) + (n− d− 1)

d2
2
(d+ 1) + d(n− d) +

d∑
k= d−1

2
+1

k2 +

d−1
2∑

k=1

(d− k)k

 .
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Definition 2.3. [21] A double star graph Sn,m is a graph constructed from K1,n−1 and K1,m−1 by
joining their centers v0 and u0. The vertex-set V (Sn,m) is V (K1,n−1) ∪ V (K1,m−1) =
{v0, v1, . . . , vn−1, u0, u1, . . . , um−1} and the edge-set E(Sn,m) = {v0u0, v0vi, u0uj|1 ≤ i ≤ (n −
1); 1 ≤ j ≤ (m− 1)}. Therefore, a double star graph is bipartite.

u u uuuuu

uuuuu u u
u u
v0

v1
v2

v3

v4

v5

v6

vn−1

u0

u1
u2

u3

u4

u5

u6
um−1

Figure 3. Double star graph Sn,m.

Theorem 2.3. The eccentric-distance sum of a double star graph Sn,m is 3[(n − 2)(2n − 1) +
m(2m+ 5) + 6(n− 1)(m− 1)− 5].

Proof. e(v0) = 2 = e(u0) and e(vi) = 3 = e(uj) where, i = 1, 2, . . . , n−1 and j = 1, 2, . . . ,m−1
Then,

ξds(Sn,m) =[(3 + 2)1 + (3 + 2)2 + (3 + 3)3(m− 1)](n− 1)

+ (2 + 2)1 + (2 + 3)2(m− 1) + (2 + 3)1(m− 1)

+ (3 + 3)2(n− 2) + (3 + 3)2(n− 3) + · · ·+ (3 + 3)2(1)

+ (3 + 3)2(m− 2) + (3 + 3)2(m− 3) + · · ·+ (3 + 3)2(1)

=3[(n− 2)(2n− 1) +m(2m+ 5) + 6(n− 1)(m− 1)− 5].

Definition 2.4. [13] The friendship (or Dutch windmill or fan) graph Fn is a graph constructed by
joining n copies of the cycle graph C3 with a common vertex.

uv4

uv5 uv6
uv7uv0uv3

u
v2

u
v1

u
v2n

Figure 4. Friendship graph Fn
.
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Theorem 2.4. The eccentric-distance sum of friendship graph Fn is 2n(8n− 3).

Proof. e(v0) = 1 and e(vi) = 2 where, i = 1, 2, . . . , 2n. Then,

ξds(Fn) =(2 + 2)1 + (2 + 2)2(2n− 2) + (2 + 2)2(2n− 2)

+ (2 + 2)1 + (2 + 2)2(2n− 4) + (2 + 2)2(2n− 4)

+ (2 + 2)1 + (2 + 2)2(2n− 6) + (2 + 2)2(2n− 6)

...
+ (2 + 2)1 + (2 + 2)2(2) + (2 + 2)2(2)

+ (2 + 2)1 + (1 + 2)1(2n)

=2n(8n− 3).

Definition 2.5. [24] Consider the star graphK1,n with vertex set {v0, v1, v2, . . . , vn}, introduce an
edge to each of the pendant vertices v1, v2, . . . , vn to get the resulting graph K1,n,n with vertices
{v0, v1, . . . , vn, vn+1 , . . . , v2n}, again introduce an edge to each of the pendant vertices vn+1, . . . ,
v2n, to get the graph K1,n,n,n. Repeating this (m − 1) times we get a graph K

1,n, n, . . . , n︸ ︷︷ ︸
m−times

called

multi-star graph with (mn + 1) vertices v0, v1, v2, . . . , vn, vn+1, . . . , v2n, v2n+1, . . . , v3n, . . . ,
v(m−1)n+1, . . . , vmn and mn edges, as shown in Figure 5.

@
@

@
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@
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@
@
@

ss

ss
s
ss

s s s
s

ss s
s

ss
ss

s s

s

s

s

s

s

s

s

sss

s

s
Figure 5. Multi-star graph K

1,n, n, . . . , n︸ ︷︷ ︸
m−times

.

Theorem 2.5. The eccentric-distance sum of a multi-star graph K1,n,n,...,n is

nm

6
(m+ 1)(8m+ 1) + n(n+ 1)

{
m

[
2

m∑
k=1

(k + 1)k +
m−1∑
k=1

(m+ 1 + k)(m− k)

]

58



www.ejgta.org

The eccentric-distance sum of some graphs | Padmapriya P. et al.

+
m∑
k=1

k +
1

2

[
m∑
k=1

k(k + 1)2 +
m−1∑
k=1

(k + 1)(k + 2)

]
+ 1

}
+
n

2

[
m−1∑
k=1

(m+ k + 1)k(k + 1)

+
m−1∑
k=1

(m+ k)(m− k)(m− k + 1)

]
.

Proof.

ξds

K
1,n, n, . . . , n︸ ︷︷ ︸

m−times


={[m+ (m+ 1)]1 + [m+ (m+ 2)]2 + · · ·+ [m+ (m+m)]m}n
+ {[(m+ 1) + (m+ 1)]2 + [(m+ 1) + (m+ 2)]3 + · · ·+ [(m+ 1) + (m+m)](m+ 1)}
[(n− 1) + (n− 2) + (n− 3) + · · ·+ 2 + 1]

+ {[(m+ 2) + (m+ 1)]3 + [(m+ 2) + (m+ 2)]4 + · · ·+ [(m+ 2) + (m+m)](m+ 2)}
[(n− 1) + (n− 2) + (n− 3) + · · ·+ 2 + 1]

...
+ {[(m+m) + (m+ 1)](m+ 1) + [(m+m) + (m+ 2)](m+ 2) + · · ·
+ [(m+m) + (m+m)](m+m)}[(n− 1) + (n− 2) + (n− 3) + · · ·+ 2 + 1]

+ {[(m+ 1) + (m+ 2)]1 + [(m+ 1) + (m+ 3)]2 + · · ·+ [(m+ 1) + (m+m)](m− 1)}n
+ {[(m+ 2) + (m+ 3)]1 + [(m+ 2) + (m+ 4)]2 + · · ·+ [(m+ 2) + (m+m)](m− 2)}n
...
+ {[(m+ (m− 1)) + (m+m)]1}n

=
nm

6
(m+ 1)(8m+ 1) + n(n+ 1)

{
m

[
2

m∑
k=1

(k + 1)k +
m−1∑
k=1

(m+ 1 + k)(m− k)

]

+
m∑
k=1

k +
1

2

[
m∑
k=1

k(k + 1)2 +
m−1∑
k=1

(k + 1)(k + 2)

]
+ 1

}

+
n

2

[
m−1∑
k=1

(m+ k + 1)k(k + 1) +
m−1∑
k=1

(m+ k)(m− k)(m− k + 1)

]
.

Definition 2.6. [24] Pln (n ≥ 3) is a graph obtained by the join of Pn−2 and P2, as shown in
Figure 6.
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u5

un−1

un

Figure 6. Pln graph, n ≥ 3.

Theorem 2.6. The eccentric-distance sum of Pln (n ≥ 6) graph is 4n2 + 19n− 29.

Proof. e(u1) = 1 = e(u2) and e(ui) = 2 where, i = 3, 4, . . . , n. Then,

ξds(Pln) =(1 + 2)1(n− 2) + (1 + 1)1 + (1 + 2)1(n− 2)

+ (2 + 2)1 + (2 + 2)2(n− 4)

+ (2 + 2)1 + (2 + 2)2(n− 5)

...
+ (2 + 2)1 + (2 + 2)2(1)

+ (2 + 2)1

=4n2 + 19n− 29.
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