On the spectrum of a class of distance-transitive graphs

Seyed Morteza Mirafzal, Ali Zafari
Department of Mathematics
Lorestan University, Khoramabad, Iran
morteza_mirafzal@yahoo.com, mirafzal.m@lu.ac.ir, zafari.math.pu@gmail.com

Abstract
Let $\Gamma = \text{Cay}(\mathbb{Z}_n, S_k)$ be the Cayley graph on the cyclic additive group \mathbb{Z}_n ($n \geq 4$), where $S_1 = \{1, n-1\}$, ..., $S_k = S_{k-1} \cup \{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_n - \{0\}$ for any $k \in \mathbb{N}$, $1 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor - 1$. In this paper, we will show that $\chi(\Gamma) = \omega(\Gamma) = k + 1$ if and only if $k + 1 | n$. Also, we will show that if n is an even integer and $k = \frac{n}{2} - 1$ then $\text{Aut}(\Gamma) \cong \mathbb{Z}_2 \wr_1 \text{Sym}(k + 1)$ where $I = \{1, \ldots, k + 1\}$ and in this case, we show that Γ is an integral graph.

Keywords: Cayley graph, distance-transitive, wreath product
Mathematics Subject Classification : 05C15, 05C50
DOI:10.5614/ejgta.2017.5.1.7

1. Introduction

In this paper, a graph $\Gamma = (V, E)$ always means a simple connected graph with n vertices (without loops, multiple edges and isolated vertices), where $V = V(\Gamma)$ is the vertex set and $E = E(\Gamma)$ is the edge set. The size of the largest clique in the graph Γ is denoted by $\chi(\Gamma)$ and the size of the largest independent sets of vertices by $\alpha(\Gamma)$. A graph Γ is called a vertex-transitive graph if for any $x, y \in V$ there is some π in $\text{Aut}(\Gamma)$, the automorphism group of Γ, such that $\pi(x) = y$. Let Γ be a graph, the complement Γ' of Γ is the graph whose vertex set is $V(\Gamma)$ and whose edges are the pairs of nonadjacent vertices of Γ. It is well known that for any graph Γ, $\text{Aut}(\Gamma') = \text{Aut}(\Gamma)$
[8]. If Γ is a connected graph and $\partial(u, v)$ denotes the distance in Γ between the vertices u and v, then for any automorphism π in $\text{Aut}(\Gamma)$ we have $\partial(u, v) = \partial(\pi(u), \pi(v))$.

Let k be a positive integer, a k-colouring of a graph Γ is a mapping $f : V(\Gamma) \rightarrow \{1, \ldots, k\}$ such that $f(x) \neq f(y)$ for any two adjacent vertices x and y in Γ, and if such a mapping exists we say that Γ is k-colorable. The chromatic number $\chi(\Gamma)$ of Γ is the minimum number k such that Γ is k-colorable. Let Γ be a graph and $\mathcal{I}(\Gamma)$ denote the set of all independent sets of the graph Γ. A fractional colouring of a graph Γ is a weight function $\mu : \mathcal{I}(\Gamma) \rightarrow [0, 1]$ such that for any vertex x of Γ, $\sum_{x \in I \in \mathcal{I}(\Gamma)} \mu(I) = 1$, and if such a weight function exists we say that Γ is fractional colouring. The fractional chromatic number of a graph Γ is denoted by $\chi_f(\Gamma)$ and defined in [9, Page 134]. Also a fractional clique of a graph Γ is denoted by $\psi_f(\Gamma)$ and defined in [9, Page 134].

Let $\Upsilon = \{\gamma_1, \ldots, \gamma_{k+1}\}$ be a set and K be a group then we write $\text{Fun}(\Upsilon, K)$ to denote the set of all functions from Υ into K, we can turn $\text{Fun}(\Upsilon, K)$ into a group by defining a product:

$$(fg)(\gamma) = f(\gamma)g(\gamma) \text{ for all } f, g \in \text{Fun}(\Upsilon, K) \text{ and } \gamma \in \Upsilon,$$

where the product on the right is in K. Since Υ is finite, the group $\text{Fun}(\Upsilon, K)$ is isomorphic to K^{k+1} (a direct product of $k + 1$ copies of K) via the isomorphism $f \rightarrow (f(\gamma_1), \ldots, f(\gamma_{k+1}))$. Let H and K be groups and suppose H acts on the nonempty set Υ. Then the wreath product of K by H with respect to this action is defined to be the semidirect product $\text{Fun}(\Upsilon, K) \rtimes H$ where H acts on the group $\text{Fun}(\Upsilon, K)$ via

$$f^x(\gamma) = f(\gamma^x) \text{ for all } f \in \text{Fun}(\Upsilon, K), \gamma \in \Upsilon \text{ and } x \in H.$$

We denote this group by $K\text{wr}_\Upsilon H$. Consider the wreath product $G = K\text{wr}_\Upsilon H$. If K acts on a set Δ then we can define an action of G on $\Delta \times \Upsilon$ by

$$(\delta, \gamma)^{(f, h)} = (\delta^{f(\gamma)}, \gamma^h) \text{ for all } (\delta, \gamma) \in \Delta \times \Upsilon,$$

where $(f, h) \in \text{Fun}(\Upsilon, K) \rtimes H = K\text{wr}_\Upsilon H$ [6].

Eigenvalues of an undirected graph Γ are the eigenvalues of an arbitrary adjacency matrix of Γ. Harary and Schwenk [10] defined Γ to be integral, if all of its eigenvalues are integers. For a survey of integral graphs see [3]. In [2] the number of integral graphs on n vertices is estimated. Known characterizations of integral graphs are restricted to certain graph classes, see [1].

Let G be a finite group and S a subset of G that is closed under taking inverses and does not contain the identity. A Cayley graph $\Gamma = \text{Cay}(G, S)$ is a graph whose vertex-set and edge-set are defined as follows:

$$V(\Gamma) = G; \quad E(\Gamma) = \{\{x, y\} | x^{-1}y \in S\}.$$

It is well known that every Cayley graph is vertex-transitive.

For any graph Γ, $\omega(\Gamma) \leq \chi(\Gamma)$ [8]. Also it is well known that for bipartite graphs $\omega(\Gamma) = \chi(\Gamma) = 2$. Let Γ be the $\text{Cay}(\mathbb{Z}_n, S_k)$ where $\mathbb{Z}_n (n \geq 4)$, is the cyclic additive group with identity $\{0\}$, and for any $k \in \mathbb{N}$, $1 \leq k \leq \left[\frac{n}{2}\right] - 1$, $S_1 = \{1, n-1\}, \ldots, S_{k-1} = \{k, n-k\}$ are inverse-closed subsets of $\mathbb{Z}_n - \{0\}$. In this paper we will show that $\chi(\Gamma) = \omega(\Gamma) = k + 1$ if and only if $k + 1 | n$, also we show that if n is an even integer and $k = \frac{n}{2} - 1$ then $\text{Aut}(\Gamma) \cong \mathbb{Z}_2\text{wr}_\Gamma\text{Sym}(k+1), \quad$ where $I = \{1, \ldots, k + 1\}$.

64
2. Definitions and Preliminaries

Proposition 2.1. [11] For any graph Γ we have

$$\omega(\Gamma) \leq \omega_f(\Gamma) \leq \chi_f(\Gamma) \leq \chi(\Gamma).$$

Proposition 2.2. [8] If Γ is vertex transitive graph, then we have

$$\omega_f(\Gamma) = \frac{|V(\Gamma)|}{\alpha(\Gamma)}.$$

Definition 1. [4] Let Γ be a graph with automorphism group $\text{Aut}(\Gamma)$. We say that Γ is symmetric if, for all vertices u, v, x, y of Γ such that u and v are adjacent, also, x and y are adjacent, there is an automorphism π such that $\pi(u) = x$ and $\pi(v) = y$. We say that Γ is distance-transitive if, for all vertices u, v, x, y of Γ such that $\partial(u, v) = \partial(x, y)$, there is an automorphism π such that $\pi(u) = x$ and $\pi(v) = y$.

Remark 2.1. [4] Let Γ be a graph. It is clear that we have a hierarchy of conditions:

distance-transitive \Rightarrow symmetric \Rightarrow vertex-transitive

Definition 2. [4], [5] For any vertex v of a connected graph Γ we define

$$\Gamma_r(v) = \{u \in V(\Gamma) | \partial(u, v) = r\},$$

where r is a non-negative integer not exceeding d, the diameter of Γ. It is clear that $\Gamma_0(v) = \{v\}$, and $V(\Gamma)$ is partitioned into the disjoint subsets $\Gamma_0(v), \ldots, \Gamma_d(v)$, for each v in $V(\Gamma)$. The graph Γ is called distance-regular with diameter d and intersection array $\{b_0, \ldots, b_{d-1}; c_1, \ldots, c_d\}$, if it is regular of valency k and for any two vertices u and v in Γ at distance r we have $|\Gamma_{r+1}(v) \cap \Gamma_1(u)| = b_r$, and $|\Gamma_{r-1}(v) \cap \Gamma_1(u)| = c_r$ $(0 \leq r \leq d)$. The numbers c_r, b_r and a_r, where

$$a_r = k - b_r - c_r \quad (0 \leq r \leq d),$$

is the number of neighbours of u in $\Gamma_r(v)$ for $\partial(u, v) = r$, are called the intersection numbers of Γ. Clearly $b_0 = k$, $b_d = c_0 = 0$ and $c_1 = 1$.

Remark 2.2. [4] It is clear that if Γ is distance-transitive graph then Γ is distance-regular.

Lemma 2.1. [4] A connected graph Γ with diameter d and automorphism group $G = \text{Aut}(\Gamma)$ is distance-transitive if and only if it is vertex-transitive and the vertex-stabilizer G_v is transitive on the set $\Gamma_r(v)$, for each $r \in \{0, 1, \ldots, d\}$, and $v \in V(\Gamma)$.

Theorem 2.1. [5] Let Γ be a distance-regular graph which the valency of each vertex as k, with diameter d, adjacency matrix A and intersection array,

$$\{b_0, b_1, \ldots, b_{d-1}; c_1, c_2, \ldots, c_d\}.$$

Then the tridiagonal $(d + 1) \times (d + 1)$ matrix
On the spectrum of a class of distance-transitive graphs

Seyed Morteza Mirafzal, Ali Zafari

\[
J(\Gamma) = \begin{bmatrix}
a_0 & b_0 & 0 & 0 & \cdots \\
c_1 & a_1 & b_1 & 0 & \cdots \\
0 & c_2 & a_2 & b_2 & \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
c_{d-2} & a_{d-2} & b_{d-2} & 0 & \\
\cdots & 0 & c_{d-1} & a_{d-1} & b_{d-1} \\
\cdots & 0 & 0 & c_d & a_d
\end{bmatrix},
\]
determines all the eigenvalues of \(\Gamma \).

Theorem 2.2. [7] Let \(\Gamma \) be a graph such that contains \(k + 1 \) components \(\Gamma_1, \ldots, \Gamma_{k+1} \). If for any \(i \in I = \{1, \ldots, k+1\} \), \(\Gamma_i \cong \Gamma_1 \) then \(\text{Aut}(\Gamma) \cong \text{Aut}(\Gamma_1) \wr I \text{Sym}(k+1) \).

3. Main Results

Proposition 3.1. Let \(\Gamma = \text{Cay}(\mathbb{Z}_n, S_k) \) be the Cayley graph on the cyclic group \(\mathbb{Z}_n (n \geq 4) \), where \(S_1 = \{1, n-1\}, \ldots, S_k = S_{k-1} \cup \{k, n-k\} \) are the inverse-closed subsets of \(\mathbb{Z}_n - \{0\} \) for any \(k \in \mathbb{N}, 1 \leq k \leq \lfloor \frac{n}{2} \rfloor - 1 \). Then \(\chi(\Gamma) = \omega(\Gamma) = k + 1 \) if and only if \(k + 1 \mid n \).

Proof. By definition of \(S_i \), \(1 \leq i \leq k \) clearly \(|S_i| = 2i \), hence \(|S_k| = 2k \). Let \(\Gamma = \text{Cay}(\mathbb{Z}_n, S_k) \) be the Cayley graph on the cyclic group \(\mathbb{Z}_n \) and \(S_k \) be the set of inverse-closed subset of \(\mathbb{Z}_n - \{0\} \) which is defined as before. By definition of \(\Gamma \) clearly \(\omega(\Gamma) = k + 1 \). So, if \(\chi(\Gamma) = \omega(\Gamma) = k + 1 \) then by Proposition 2.1, \(\chi_f(\Gamma) = \omega_f(\Gamma) = k + 1 \). Also we know that \(\Gamma \) is a vertex transitive graph, so by Proposition 2.2, \(k + 1 = \omega_f(\Gamma) = \frac{|V(\Gamma)|}{\alpha(\Gamma)} \) therefore \(k + 1 \mid n \). Conversely, if \(k + 1 \mid n \) then \(\chi(\Gamma) = k + 1 \), because \(\Gamma \) is a vertex transitive graph and the size of every clique in the graph \(\Gamma \) is \(k + 1 \), therefore \(\chi(\Gamma) = \omega(\Gamma) = k + 1 \).

Example 1. Suppose \(\Gamma_1 = \text{Cay}(\mathbb{Z}_{12}, S_2) \) and \(\Gamma_2 = \text{Cay}(\mathbb{Z}_{12}, S_3) \) are two Cayley graphs, then \(\chi(\Gamma_1) = \omega(\Gamma_1) = 3 \) and \(\chi(\Gamma_2) = \omega(\Gamma_2) = 4 \).

![Figure 1](image1.png)

Figure 1: \(\chi(\Gamma_1) = \omega(\Gamma_1) = 3 \)
![Figure 2](image2.png)

Figure 2: \(\chi(\Gamma_2) = \omega(\Gamma_2) = 4 \)
Proposition 3.2. Let $\Gamma = Cay(\mathbb{Z}_n, S_k)$ be the Cayley graph on the cyclic group \mathbb{Z}_n ($n \geq 4$), where $S_1 = \{1, n-1\}, \ldots, S_k = S_{k-1} \cup \{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_n - \{0\}$ for any $k \in \mathbb{N}$, $1 \leq k \leq \lfloor \frac{n}{2} \rfloor - 1$. If n is an even integer and $k = \frac{n}{2} - 1$ then $\text{Aut}(\Gamma) \cong \mathbb{Z}_2 \wr r_1 \text{Sym}(k+1)$, where $I = \{1, \ldots, k+1\}$.

Proof. Let $V(\Gamma) = \{1, \ldots, n\}$ be the vertex set of Γ. By assumptions and Proposition 2.2, the size of the largest independent set of vertices in the Γ is 2, because Γ is a vertex transitive graph and the size of every clique in the graph Γ is $k+1$. Thus, the size of the every independent set of vertices in the Γ is 2. Therefore for any $x \in V(\Gamma)$, there is exactly one $y \in V(\Gamma)$ such that $x^{-1}y = k + 1$. Hence, if $x^{-1}y = k + 1$ then two vertices x and y adjacent in the complement $\overline{\Gamma}$ of Γ, so $\overline{\Gamma}$ contains $k+1$ components $\Gamma_1, \ldots, \Gamma_{k+1}$ such that for any $i \in I = \{1, \ldots, k+1\}$, $\Gamma_i \cong \Gamma_1 \cong K_2$, where K_2 is the complete graph of 2 vertices. Therefore $\overline{\Gamma} \cong (k+1)K_2$, hence by Theorem 2.2, $\text{Aut}(\overline{\Gamma}) \cong \text{Aut}(K_2) \wr r_1 \text{Sym}(k+1) = \mathbb{Z}_2 \wr r_1 \text{Sym}(k+1)$, so $\text{Aut}(\Gamma) \cong \mathbb{Z}_2 \wr r_1 \text{Sym}(k+1)$.

Example 2. Let $\Gamma = Cay(\mathbb{Z}_{12}, S_5)$ be the Cayley graph on the cyclic group \mathbb{Z}_{12}, then $\chi(\Gamma) = \omega(\Gamma) = 6$, and $\text{Aut}(\Gamma) = \mathbb{Z}_2 \wr r_1 \text{Sym}(6)$, where $I = \{1, \ldots, 6\}$.

![Figure 3: $\chi(\Gamma) = \omega(\Gamma) = 6$](image)

Proposition 3.3. Let $\Gamma = Cay(\mathbb{Z}_n, S_k)$ be the Cayley graph on the cyclic group \mathbb{Z}_n ($n \geq 4$), where $S_1 = \{1, n-1\}, \ldots, S_k = S_{k-1} \cup \{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_n - \{0\}$ for any $k \in \mathbb{N}$, $1 \leq k \leq \lfloor \frac{n}{2} \rfloor - 1$. If n is an even integer and $k = \frac{n}{2} - 1$ then Γ is a distance-transitive graph.

Proof. By Lemma 2.1, it is sufficient to show that vertex-stabilizer G_v is transitive on the set $\Gamma_r(v)$ for every $r \in \{0, 1, 2\}$ and $v \in V(\Gamma)$, because of Γ is a vertex-transitive graph. We know $V(\Gamma) = \{1, 2, \ldots, \frac{n}{2} - 1, \frac{n}{2}, \frac{n}{2} + 1, \ldots, n\}$ is the vertex set of Γ. Let $G = \text{Aut}(\Gamma)$. Consider the vertex $v = 1$ in the $V(\Gamma)$, then $\Gamma_0(v) = \{1\}$, $\Gamma_1(v) = \{2, \ldots, \frac{n}{2} - 1, \frac{n}{2}, \frac{n}{2} + 2, \ldots, n\}$ and $\Gamma_2(v) = \{\frac{n}{2} + 1\}$. Let $\rho = (2, 3, \ldots, \frac{n}{2}, \frac{n}{2} + 2, \ldots, n)$ be the cyclic permutation of the vertex set of Γ. It is an easy task to show that ρ is an automorphism of Γ. We can show that $H = \langle (2, 3, \ldots, \frac{n}{2}, \frac{n}{2} + 2, \ldots, n) \rangle$ acts transitively on the set $\Gamma_r(v)$ for each $r \in \{0, 1, 2\}$, because H is a cyclic group. Note that if $1 \neq v \in V(\Gamma)$ then, we can show that vertex-stabilizer G_v is transitive on the set $\Gamma_r(v)$ for each $r \in \{0, 1, 2\}$, because Γ is a vertex-transitive graph.
Proposition 3.4. Let $\Gamma = \text{Cay}(\mathbb{Z}_n, S_k)$ be the Cayley graph on the cyclic group \mathbb{Z}_n ($n \geq 4$), where $S_1 = \{1, n-1\}, \ldots, S_k = S_{k-1} \cup \{k, n-k\}$ are the inverse-closed subsets of $\mathbb{Z}_n - \{0\}$ for any $k \in \mathbb{N}, 1 \leq k \leq \lfloor \frac{n}{2} \rfloor - 1$. If n is an even integer and $k = \frac{n}{2} - 1$ then Γ is an integral graph.

Proof. By Remark 2.2, it is clear that Γ is distance-regular, because Γ is a distance-transitive graph. Let $V(\Gamma) = \{1, 2, \ldots, n\}$ be the vertex set of Γ. Consider the vertex $v = 1$ in the $V(\Gamma)$, then $\Gamma_0(v) = \{1\}$, $\Gamma_1(v) = \{2, \ldots, \frac{n}{2} - 1, \frac{n}{2}, \frac{n}{2} + 2, \ldots, n\}$ and $\Gamma_2(v) = \{\frac{n}{2} + 1\}$. Let be u in the $V(\Gamma)$ such that $\partial(u, v) = 0$ then $u = v = 1$ and $|\Gamma_1(v) \cap \Gamma_1(u)| = 2k$, hence $b_0 = 2k$ and by Definition 2, $a_0 = 2k - b_0 = 0$. Also, if u in the $V(\Gamma)$ and $\partial(u, v) = 1$ then two vertices u, v are adjacent in Γ, so $|\Gamma_0(v) \cap \Gamma_1(u)| = 1$ and $|\Gamma_2(v) \cap \Gamma_1(u)| = 1$, hence $c_1 = 1, b_1 = 1$ and $a_1 = 2k - b_1 - c_1 = 2k - 2$. Finally, if u in the $V(\Gamma)$ and $\partial(u, v) = 2$ then two vertices u, v are not adjacent in Γ, so $|\Gamma_1(v) \cap \Gamma_1(u)| = 2k$, hence $c_2 = 2k$ and $a_2 = 2k - c_2 = 0$. So the intersection array of Γ is $\{2k, 1; 1, 2k\}$. Therefore by Theorem 2.1, the tridiagonal $(3) \times (3)$ matrix,

$$
\begin{bmatrix}
 a_0 & b_0 & 0 \\
 c_1 & a_1 & b_1 \\
 0 & c_2 & a_2
\end{bmatrix}
= \begin{bmatrix}
 0 & 2k & 0 \\
 1 & 2k - 2 & 1 \\
 0 & 2k & 0
\end{bmatrix},
$$

determines all the eigenvalues of Γ. It is clear that all the eigenvalues of Γ are $2k, 0, -2$ and their multiplicities are $1, k + 1, k$, respectively. So Γ is an integral graph. \hfill \square

References

