Electronic Journal of Graph Theory and Applications

Spanning k-ended trees of 3-regular connected graphs

Hamed Ghasemian Zoeram, Daniel Yaqubi
Faculty of Agriculture and Animal Science, University of Torbat-e Jam, Iran
hamed90ghasemian@gmail.com, daniel_yaqubi@yahoo.es

Abstract

A vertex of degree one is called an end-vertex and the set of end-vertices of G is denoted by $\operatorname{End}(G)$. For a positive integer k, a tree T be called k-ended tree if $|\operatorname{End}(T)| \leq k$. In this paper, we obtain sufficient conditions for spanning k-trees of 3 -regular connected graphs. We give a construction sequence of graphs satisfying the condition. At the end, we present a conjecture about spanning k-ended trees of 3 -regular connected graphs.

Keywords: Spanning tree, k-ended tree, leaf, 3-regular graph, connected graph Mathematics Subject Classification : 05C05, 05C07
DOI:10.5614/ejgta.2017.5.2.4

1. Introduction

Throughout this article we consider only finite undirected labeled graphs without loops or multiple edges. The vertex set and edge set of graph G is denoted by $V=V(G)$ and $E=E(G)$, respectively. For $u, v \in V$, an edge joining two vertices u and v is denoted by $u v$ or $v u$. The neighbourhood $N_{G}(v)$ or $N(v)$ of vertex v is the set of all $u \in V$ which are adjacent to v. The degree of a vertex v, denoted by $\operatorname{deg}_{G}(u)=\left|N_{G}(v)\right|$.

The minimum degree of a graph G is denoted $\delta(G)$ and the maximum degree is denoted $\Delta(G)$. If all vertices of G have same degree k, then the graph G is called k-regular. The distance between vertices u and v, denoted by $d_{G}(u, v)$ or $d(u, v)$, is the length of a shortest path between u and v. A Hamiltonian path of a graph is a path passing through all vertices of the graph. A graph is

Received: 20 March 2016, Revised: 30 July 2017, Accepted: 14 August 2017.

Hamiltonian-connected if every two vertices are connected with a Hamiltonian path. In graph G, an independent set is a subset S of $V(G)$ such that no two vertices in S are adjacent. A maximum independent set is an independent set of largest possible size for a given graph G. This size is called the independence number of G, that denoted by $\alpha(G)$.

A vertex of degree one is called an end-vertex, and the set of end-vertices of G is denoted by $\operatorname{End}(G)$. If T is a tree, an end-vertex of a T is usually called a leaf of T and the set of leaves of T is denoted by $\operatorname{leaf}(T)$. A spanning tree is called independence if $\operatorname{End}(G)$ is independent in G. For a positive integer k, a tree T is said to be a k-ended tree if $|\operatorname{End}(T)| \leq k$. We define $\sigma_{k}(G)=$ $\min \left\{d\left(v_{1}\right)+\ldots+d\left(v_{k}\right) \mid\left\{v_{1}, \ldots, v_{k}\right\}\right.$ is an independent set in $\left.G\right\}$. Clearly, $\sigma_{1}(G)=\delta(G)$.

By using $\sigma_{2}(G)$, Ore [4] obtain the following famous theorem on Hamiltonian path. Notice that a Hamiltonian path is spanning 2 -ended tree. A Hamilton cycle can be interpreted as a spanning 1-ended tree. In particular, K_{2} is hamiltonian and is a 1-ended tree.

Theorem 1.1. [4] Let G be a connected graph, if $\sigma_{2}(G) \geq|G|-1$, then G has Hamiltonian path.
The following theorem of Las Vergnas Broersma and Tuinstra [1] gives a similar sufficient condition for a graph G to have a spanning k-ended tree.

Theorem 1.2. [2] Let $k \geq 2$ be an integer, and let G be a connected graph. If $\sigma_{2}(G) \geq|G|-k+1$, then G has a spanning k-ended tree.

Win [10] obtained a sufficient condition related to independent number for k-connected graph that confirms a conjecture of Las Vergnas Broersma and Tuinstra [1] gave a degree sum condition for a spanning k-ended tree.

Theorem 1.3. [10] Let $k \geq 2$ and let G be a m-connected graph. If $\alpha(G) \leq m+k-1$, then G has a spanning k-ended tree.

A closure operation is useful in the study of existence of Hamiltonian cycles, Hamiltonian path and other spanning subgraphs in graph. It was first introduced by Bondy and Chavatal.

Theorem 1.4. [1] Let G be a graph and let u and v be two nonadjacent vertices of G then, (1) Suppose $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \geq|G|$. Then G has a Hamiltonian cycle if and only if $G+$ uv has a Hamiltonian cycle.
(2) Suppose $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \geq|G|-1$. Then G has a Hamiltonian path if and only if $G+u v$ has a Hamiltonian path.

After [1], many researchers have defined other closure concepts for various graph properties.
More on k-ended tree and spanning tree can be found in [6, 7, 8, 9]. In this paper, we obtain sufficient conditions for spanning k-ended trees of 3-regular connected graphs and with construction sequence of graphs like G_{m}, we will show this condition is sharp. At the end, we present a conjecture about spanning k-ended trees of 3 -regular connected graphs.

2. Our results

Lemma 2.1. Let T be a tree with n vertices such that $\Delta(T) \leq 3$. If $|\operatorname{lea} f(T)|=k$ and p be the number of vertices of degree 3 in T, then $k=p+2$.

Proof. It is easy by the induction on p.
Lemma 2.2. Let G be a labelled graph and $k \geq 3$ be the smallest integer such that G has a spanning tree T with k leaves. Then, no two leaves of T are adjacent in G.

Proof. Put $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be the set of all leaves of T. By contradiction, suppose that v_{1} and v_{2} are adjacent vertices in G. If $T_{1}=T+v_{1} v_{2}$, then T_{1} contains a unique cycle as $C: v_{1} v_{2} c_{1} c_{2} \ldots c_{\ell} v_{1}$ where $c_{i} \in G$ for $1 \leq i \leq \ell$. Since $k \geq 3$ then there exist vertex $v_{s} \in G$ such that it is not a vertex of C. Let P be the shortest path of vertex v_{s} to the cycle C such that its intersection with cycle C is c_{j} for $1 \leq j \leq \ell$.
Now, we omit the edge $c_{j-1} c_{j}$ of T_{1}, (If $j=1$ put $c_{j-1}=v_{2}$). Let $T_{2}=T_{1}-c_{j-1} c_{j}$. Then T_{2} is a spanning subtree of G such that $\operatorname{deg}_{T_{2}}\left(c_{j}\right) \geq 2$. The vertices of degree one in spanning subtree T_{2} is equal to the set $\left\{v_{3}, v_{4}, \ldots, v_{k}\right\}$ either $\left\{v_{3}, v_{4}, \ldots, v_{k}, c_{j-1}\right\}$. That is a contradiction by minimality of k.

Theorem 2.1. Let G be a labeled 3 -regular connected graph such that $|V(G)|=n \geq 6$. Then G has a spanning $\left\lfloor\frac{n+2}{4}\right\rfloor$-ended tree.

Proof. For the graph T, we denote the vertices of degree 1 with the set A_{1}, the vertices of degree 2 with the set A_{2} and the vertices of degree 3 with the set A_{3}.
If $v \in A_{3}$ then the two adjacent edges to v (those were in G but are not in T), each one connects v to a vertex of A_{2} in G, because by Lemma 2.2 it can not connect v to a member of A_{1}. So, for each vertex in A_{1} there exist two vertices in A_{2} such that they are connected to v in G but not in T. Now, we have $2 \times\left|A_{1}\right| \leq\left|A_{2}\right|$. Let $\left|A_{1}\right|=k,\left|A_{2}\right|=s$ and $\left|A_{3}\right|=p$. By Lemma 2.1 we have $k=p+2$ and since $2\left|A_{1}\right| \leq\left|A_{2}\right|$ then $2 k \leq s$.
We have

$$
n=p+s+k=k-2+s+k \geq k-2+2 k+k=4 k-2
$$

Then $k \leq\left\lfloor\frac{n+2}{4}\right\rfloor$.

3. Some concluding remarks

Now we construct the sequence G_{m} of 3 -regular graphs, For $m=1$, Consider the graph G_{1} as Figure 1.

Clearly G_{1} has spanning subtree like T that has 3 leaves and G has no spanning subtree with less than 3 leaves. Every part of G_{1} like subgraph induced by vertices $\{1,2,3,4,5\}$ is called a branch, so G_{1} has 3 branch. Let H be a branch of G_{1} with vertices $\{1,2,3,4,5\}$ and set of edges $\{12,15,23,24,34,35,45\}$. Since the edge $\{01\}$ is a cut edge in G_{1}, So T must has a vertex with degree one in H. Also in every other branches of G_{1}, T must has a vertex with degree one. so G_{1} is 3 -ended tree and has no spanning tree with less than 3 leaves. Now, we counteract 3 -regular graph

Figure 1. The 3-regular graph G_{1} with 3 branch.

Figure 2. One part of G_{2} constructed from G_{1}.
G_{2}, consider G_{1} and for each branch of that like H defined as above, we removed two vertices $\{3,4\}$ and add 8 new vertices $\left\{v_{1}, \ldots, v_{8}\right\}$ then we construct new 3-regular graph as Figure 2.

Clearly $\left|G_{2}\right|=16+3 \times 6$ and minimum number leaves in every spanning subtree of G_{2} is at least 2×3 and obviously G_{2} has spanning subtree with 2×3 leaves.
Let the number of vertices of G_{m} is equal n and the number of branches of G_{m} is equal k, then we have the table 1 .

m	n	k
G_{1}	16	3
G_{2}	$16+3 \times 6$	2×3
G_{3}	$16+3 \times 6+2 \times 3 \times 6$	$2 \times 2 \times 3$
\ldots	\ldots	\cdots
G_{m}	$16+3 \times 6+\ldots+2^{m-2} \times 3 \times 6$	$2^{m-1} \times 3$

Table 1. The number of vertices and branches of G_{m} for $m \in \mathbb{N}$.
It obvious for each $m \in \mathbb{N}$ if the number of vertices of G_{m} is equal n and the number of branches of G_{m} is equal k, then $\frac{n+2}{6}=k$, and so G_{m} is $\frac{n+2}{6}$-ended tree (such that $\frac{n+2}{6}$ is the minimum number for that G_{m} is $\frac{n+2}{6}$-ended tree).

Conjecture 1. There exists $n \in \mathbb{N}$ such that each 3-regular graph with at least n vertices has a spanning $\left\lfloor\frac{n+2}{6}\right\rfloor$-ended tree.

References

[1] J.A. Bondy, and V. Chvátal, A method in graph theory, Discrete Math. 15 (2) (1976), 111135.
[2] H. Broersma and H. Tuinstra, Independence trees and Hamilton cycles, J. Graph Theory 29 (1998), 227-237.
[3] M. Kano, A. Kyaw, H. Matsuda, K. Ozeki, A. Saito and T. Yamashita, Spanning trees with a bounded number of leaves in a claw-free graph, submitted.
[4] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55.
[5] M. Las Vergnas, Sur une proprit des arbres maximaux dans un graphe, C. R. Acad. Sci. Paris Sr. A 272 (1971), 1297-1300.
[6] J. Akiyama and M. Kano, Factors and factorizations of graphs, Lecture Note in Mathematics (LNM 2031), Springer, 2011 (Chapter 8).
[7] A. Czygrinow, G. Fan, G. Hurlbert, H.A. Kierstead and W.T. Trotter, Spanning trees of bounded degree, Electron. J. Combin. 8 (1) (2001) 12. R33.
[8] K. Ozeki and T. Yamashita, Spanning trees: a survey, Graphs Combin. 27 (2011), 1-26.
[9] G. Salamon and G. Wiener, On finding spanning trees with few leaves, Inform. Process. Lett. 105 (2008), 164-169.
[10] S. Win, On a conjecture of Las Vergnas concerning certain spanning trees in graphs, Result. Math. 2 (1979), 215-224.

