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Abstract

A vertex of degree one is called an end-vertex and the set of end-vertices of G is denoted by
End(G). For a positive integer k, a tree T be called k-ended tree if |End(T )| ≤ k. In this
paper, we obtain sufficient conditions for spanning k-trees of 3-regular connected graphs. We give
a construction sequence of graphs satisfying the condition. At the end, we present a conjecture
about spanning k-ended trees of 3-regular connected graphs.
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1. Introduction

Throughout this article we consider only finite undirected labeled graphs without loops or
multiple edges. The vertex set and edge set of graph G is denoted by V = V (G) and E = E(G),
respectively. For u, v ∈ V , an edge joining two vertices u and v is denoted by uv or vu. The
neighbourhood NG(v) or N(v) of vertex v is the set of all u ∈ V which are adjacent to v. The
degree of a vertex v, denoted by degG(u) = |NG(v)|.

The minimum degree of a graph G is denoted δ(G) and the maximum degree is denoted ∆(G).
If all vertices of G have same degree k, then the graph G is called k-regular. The distance between
vertices u and v, denoted by dG(u, v) or d(u, v), is the length of a shortest path between u and
v. A Hamiltonian path of a graph is a path passing through all vertices of the graph. A graph is
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Hamiltonian-connected if every two vertices are connected with a Hamiltonian path. In graph G,
an independent set is a subset S of V (G) such that no two vertices in S are adjacent. A maximum
independent set is an independent set of largest possible size for a given graph G. This size is
called the independence number of G, that denoted by α(G).

A vertex of degree one is called an end-vertex, and the set of end-vertices of G is denoted by
End(G). If T is a tree, an end-vertex of a T is usually called a leaf of T and the set of leaves of
T is denoted by leaf(T ). A spanning tree is called independence if End(G) is independent in G.
For a positive integer k, a tree T is said to be a k-ended tree if |End(T )| ≤ k. We define σk(G) =
min{d(v1) + . . .+ d(vk) | {v1, . . . , vk} is an independent set in G}. Clearly, σ1(G) = δ(G).

By using σ2(G), Ore [4] obtain the following famous theorem on Hamiltonian path. Notice that
a Hamiltonian path is spanning 2-ended tree. A Hamilton cycle can be interpreted as a spanning
1-ended tree. In particular, K2 is hamiltonian and is a 1-ended tree.

Theorem 1.1. [4] Let G be a connected graph, if σ2(G) ≥ |G| − 1, then G has Hamiltonian path.

The following theorem of Las Vergnas Broersma and Tuinstra [1] gives a similar sufficient
condition for a graph G to have a spanning k-ended tree.

Theorem 1.2. [2] Let k ≥ 2 be an integer, and letG be a connected graph. If σ2(G) ≥ |G|−k+1,
then G has a spanning k-ended tree.

Win [10] obtained a sufficient condition related to independent number for k-connected graph
that confirms a conjecture of Las Vergnas Broersma and Tuinstra [1] gave a degree sum condition
for a spanning k-ended tree.

Theorem 1.3. [10] Let k ≥ 2 and let G be a m-connected graph. If α(G) ≤ m + k − 1, then G
has a spanning k-ended tree.

A closure operation is useful in the study of existence of Hamiltonian cycles, Hamiltonian path
and other spanning subgraphs in graph. It was first introduced by Bondy and Chavatal.

Theorem 1.4. [1] Let G be a graph and let u and v be two nonadjacent vertices of G then,
(1) Suppose degG(u) + degG(v) ≥ |G|. Then G has a Hamiltonian cycle if and only if G+ uv has
a Hamiltonian cycle.
(2) Suppose degG(u) + degG(v) ≥ |G| − 1. Then G has a Hamiltonian path if and only if G+ uv
has a Hamiltonian path.

After [1], many researchers have defined other closure concepts for various graph properties.
More on k-ended tree and spanning tree can be found in [6, 7, 8, 9]. In this paper, we obtain

sufficient conditions for spanning k-ended trees of 3-regular connected graphs and with construc-
tion sequence of graphs like Gm, we will show this condition is sharp. At the end, we present a
conjecture about spanning k-ended trees of 3-regular connected graphs.
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2. Our results

Lemma 2.1. Let T be a tree with n vertices such that ∆(T ) ≤ 3. If |leaf(T )| = k and p be the
number of vertices of degree 3 in T , then k = p+ 2.

Proof. It is easy by the induction on p.

Lemma 2.2. Let G be a labelled graph and k ≥ 3 be the smallest integer such that G has a
spanning tree T with k leaves. Then, no two leaves of T are adjacent in G.

Proof. Put S = {v1, v2, . . . , vk} be the set of all leaves of T . By contradiction, suppose that
v1 and v2 are adjacent vertices in G. If T1 = T + v1v2, then T1 contains a unique cycle as
C : v1v2c1c2 . . . c`v1 where ci ∈ G for 1 ≤ i ≤ `. Since k ≥ 3 then there exist vertex vs ∈ G
such that it is not a vertex of C. Let P be the shortest path of vertex vs to the cycle C such that its
intersection with cycle C is cj for 1 ≤ j ≤ `.
Now, we omit the edge cj−1cj of T1, (If j = 1 put cj−1 = v2). Let T2 = T1 − cj−1cj . Then
T2 is a spanning subtree of G such that degT2

(cj) ≥ 2. The vertices of degree one in spanning
subtree T2 is equal to the set {v3, v4, . . . , vk} either {v3, v4, . . . , vk, cj−1} . That is a contradiction
by minimality of k.

Theorem 2.1. Let G be a labeled 3-regular connected graph such that |V (G)| = n ≥ 6. Then G
has a spanning

⌊
n+2
4

⌋
-ended tree.

Proof. For the graph T , we denote the vertices of degree 1 with the set A1, the vertices of degree
2 with the set A2 and the vertices of degree 3 with the set A3.
If v ∈ A3 then the two adjacent edges to v (those were in G but are not in T ), each one connects
v to a vertex of A2 in G, because by Lemma 2.2 it can not connect v to a member of A1. So, for
each vertex in A1 there exist two vertices in A2 such that they are connected to v in G but not in T .
Now, we have 2 × |A1| ≤ |A2|. Let |A1| = k, |A2| = s and |A3| = p. By Lemma 2.1 we have
k = p+ 2 and since 2|A1| ≤ |A2| then 2k ≤ s.
We have

n = p+ s+ k = k − 2 + s+ k ≥ k − 2 + 2k + k = 4k − 2,

Then k ≤ bn+2
4
c.

3. Some concluding remarks

Now we construct the sequence Gm of 3-regular graphs, For m = 1, Consider the graph G1 as
Figure 1.

Clearly G1 has spanning subtree like T that has 3 leaves and G has no spanning subtree with
less than 3 leaves. Every part of G1 like subgraph induced by vertices {1, 2, 3, 4, 5} is called a
branch, so G1 has 3 branch. Let H be a branch of G1 with vertices {1, 2, 3, 4, 5} and set of edges
{12, 15, 23, 24, 34, 35, 45}. Since the edge {01} is a cut edge in G1, So T must has a vertex with
degree one inH . Also in every other branches ofG1, T must has a vertex with degree one. soG1 is
3-ended tree and has no spanning tree with less than 3 leaves. Now, we counteract 3-regular graph
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Figure 1. The 3-regular graph G1 with 3 branch.

Figure 2. One part of G2 constructed from G1.

G2, consider G1 and for each branch of that like H defined as above, we removed two vertices
{3, 4} and add 8 new vertices {v1, . . . , v8} then we construct new 3-regular graph as Figure 2.

Clearly |G2| = 16 + 3 × 6 and minimum number leaves in every spanning subtree of G2 is at
least 2× 3 and obviously G2 has spanning subtree with 2× 3 leaves.
Let the number of vertices of Gm is equal n and the number of branches of Gm is equal k, then we
have the table 1.

m n k
G1 16 3
G2 16 + 3× 6 2× 3
G3 16 + 3× 6 + 2× 3× 6 2× 2× 3
. . . . . . . . .
Gm 16 + 3× 6 + . . .+ 2m−2 × 3× 6 2m−1 × 3

Table 1. The number of vertices and branches of Gm for m ∈ N.

It obvious for each m ∈ N if the number of vertices of Gm is equal n and the number of
branches of Gm is equal k, then n+2

6
= k, and so Gm is n+2

6
-ended tree (such that n+2

6
is the

minimum number for that Gm is n+2
6

-ended tree).
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Conjecture 1. There exists n ∈ N such that each 3-regular graph with at least n vertices has a
spanning bn+2

6
c-ended tree.
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[1] J.A. Bondy, and V. Chvátal, A method in graph theory, Discrete Math. 15 (2) (1976), 111–
135.

[2] H. Broersma and H. Tuinstra, Independence trees and Hamilton cycles, J. Graph Theory 29
(1998), 227–237.

[3] M. Kano, A. Kyaw, H. Matsuda, K. Ozeki, A. Saito and T. Yamashita, Spanning trees with a
bounded number of leaves in a claw-free graph, submitted.

[4] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55.

[5] M. Las Vergnas, Sur une proprit des arbres maximaux dans un graphe, C. R. Acad. Sci. Paris
Sr. A 272 (1971), 1297–1300.

[6] J. Akiyama and M. Kano, Factors and factorizations of graphs, Lecture Note in Mathematics
(LNM 2031), Springer, 2011 (Chapter 8).

[7] A. Czygrinow, G. Fan, G. Hurlbert, H.A. Kierstead and W.T. Trotter, Spanning trees of
bounded degree, Electron. J. Combin. 8 (1) (2001) 12. R33.

[8] K. Ozeki and T. Yamashita, Spanning trees: a survey, Graphs Combin. 27 (2011), 1–26.

[9] G. Salamon and G. Wiener, On finding spanning trees with few leaves, Inform. Process. Lett.
105 (2008), 164–169.

[10] S. Win, On a conjecture of Las Vergnas concerning certain spanning trees in graphs, Result.
Math. 2 (1979), 215–224.

211


